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Unsupervised probabilistic Bayesian models are powerful tools for statistical

analysis, especially in the area of information retrieval, document analysis and text

processing. Despite their success, unsupervised probabilistic Bayesian models are

often slow in inference due to inter-entangled mutually dependent latent variables. In

addition, the parameter space of these models is usually very large. As the data from

various different media sources—for example, internet, electronic books, digital films,

etc—become widely accessible, lack of scalability for these unsupervised probabilistic

Bayesian models becomes a critical bottleneck.

The primary focus of this dissertation is to speed up the inference process in

unsupervised probabilistic Bayesian models. There are two common solutions to scale

the algorithm up to large data: parallelization or streaming. The former achieves

scalability by distributing the data and the computation to multiple machines. The

latter assumes data come in a stream and updates the model gradually after seeing

each data observation. It is able to scale to larger datasets because it usually takes



only one pass over the entire data.

In this dissertation, we examine both approaches. We first demonstrate the

effectiveness of the parallelization approach on a class of unsupervised Bayesian

models—topic models, which are exemplified by latent Dirichlet allocation (LDA).

We propose a fast parallel implementation using variational inference on the MapRe-

duce framework, referred to as Mr. LDA. We show that parallelization enables

topic models to handle significantly larger datasets. We further show that our

implementation—unlike highly tuned and specialized implementations—is easily

extensible. We demonstrate two extensions possible with this scalable framework: 1)

informed priors to guide topic discovery and 2) extracting topics from a multilingual

corpus.

We propose polylingual tree-based topic models to infer topics in multilingual

corpora. We then propose three different inference methods to infer the latent

variables. We examine the effectiveness of different inference methods on the task of

machine translation in which we use the proposed model to extract domain knowledge

that considers both source and target languages. We apply it on a large collection

of aligned Chinese-English sentences and show that our model yields significant

improvement on BLEU score over strong baselines.

Other than parallelization, another approach to deal with scalability is to learn

parameters in an online streaming setting. Although many online algorithms have

been proposed for LDA, they all overlook a fundamental but challenging problem—

the vocabulary is constantly evolving over time. To address this problem, we propose



an online LDA with infinite vocabulary—infvoc LDA. We derive online hybrid

inference for our model and propose heuristics to dynamically order, expand, and

contract the set of words in our vocabulary. We show that our algorithm is able to

discover better topics by incorporating new words into the vocabulary and constantly

refining the topics over time.

In addition to LDA, we also show generality of the online hybrid inference

framework by applying it to adaptor grammars, which are a broader class of models

subsuming LDA. With proper grammar rules, it simplifies to the exact LDA model,

however, it provides more flexibility to alter or extend LDA with different grammar

rules. We develop online hybrid inference for adaptor grammar, and show that

our method discovers high-quality structure more quickly than both MCMC and

variational inference methods.
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Chapter 1

Introduction

One central goal of computer science is to manage a large and growing collection

of data, and to extract meaningful information out of it. As the data from internet,

magazines, books, digital films, and all other media sources become widely acces-

sible, they require more effective methods to discover useful patterns and valuable

information from them. To understand these data cannot solely depend on human

annotation. One popular technique for navigating these large unannotated data is

to use statistical modeling.

In this work, we primarily focus on the problem of modeling text corpora.

Namely, we want to find a set of patterns of short descriptions (namely, the topic)

among a collection of documents. Many statistical approaches have been proposed

to address this problem, i.e., latent semantic indexing (Deerwester et al., 1990;

Papadimitriou et al., 1998, LSI) and probabilistic latent semantic indexing (Hofmann,

1999, pLSI). Among all of these, one of the most widely used statistical frameworks

for navigating large unannotated document collections is topic models, which are

exemplified by latent Dirichlet allocation Blei et al. (2003, LDA), as a generative

model for document-centric corpora.

LDA is a powerful tool for statistical analysis of document collections and

other discrete data. It assumes that the words of each document arise from a mixture

1



of topics, each of which is a multinomial distribution over the vocabulary. LDA

is completely unsupervised, i.e. requires no human annotation, and discovers the

thematic trends in a corpus. In addition to capturing which topics exist in a corpus,

LDA also associates documents with these topics.

The problem of estimating the latent parameters in probabilistic Bayesian

models is referred to inference. Although several inference algorithms have been

proposed, many of them are slow. Inference speed is certainly a critical bottleneck of

many probabilistic Bayesian models, in particular, the LDA and its variants. This

certainly does not meet the needs of industry. For example, up till Jun 2014, Google

processes about 100PB (petabytes) and stores additional 15EB (exabytes) data per

day.1 In such “large data” settings, slow inference prevents probabilistic Bayesian

models from being used in industrial engineering applications as well as academia

research projects.

There are two natural ways to deal with this problem. One is to parallelize the

algorithm by dividing the computations across multiple machines. This reduces the

total running time of the algorithm. Another solution is to stream the algorithm

in an online setting and gradually update the parameters over time, so that the

algorithm would only take one or few passes over the entire dataset.

Parallelization is a common technique that is often used to speed up an

algorithm. It splits the computational and memory requirements of an algorithm

onto multiple machines. By investing more computational power and utilize more

hardware resources, one shall expect to speed-up the inference process of Bayesian

1http://followthedata.wordpress.com/2014/06/24/data-size-estimates/
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models significantly. This method is particularly appealing to industrial applications,

especially with well-designed frameworks and well-deployed computational resources.

For example, distributed file systems like Google file system (Ghemawat et al., 2003)

or Hadoop (White, 2010) are used to store and backup data. Large-scale computation

frameworks like MapReduce (Dean & Ghemawat, 2004), GPU (Kirk & Hwu, 2010)

or Pregel (Malewicz et al., 2010) provide generic mechanisms to speed up algorithms.

In addition, distributed databases and processing unit like Hive (Thusoo et al., 2009)

are used for fast queries and efficient data management.

Another approach is to stream Bayesian statistical models online. Instead of

batch learning, which loads the entire dataset and updates the parameters, online

learning processes data piece by piece and update the model incrementally after

every iteration. After processing a significant size of the data, one shall expect

the model to converge. The online approach usually takes only one pass over the

entire dataset and assumes past data are no longer available. This approach fits

well into industrial applications as new data constantly arrive. Another advantage

of doing this, as useful add-ons to the model, one can likely to extract additional

information throughout time, for example, the topic shift of the corpus, the evolution

of vocabularies, etc. This is particularly useful in time-dependent or chronological-

ordered data, for example, finding research topic momentum in scientific document

collections from 1950’s till now.

3



1.1 Overview and Organization

In this section, we describe the general organization, and list down our con-

tributions throughout this dissertation. Our main contributions in this thesis lay

across three difference aspects—model, inference and implementation.

• Contribution to model refers to the proposal of a new probabilistic Bayesian

model for the data.

• Contribution to inference refers to the development and derivation of new

inference methods for an either new or existing model.

• Contribution to implementation refers to the development and release of

new scalable and fast implementation about an inference technique or model.

We structure the remainder of this dissertation as follows and highlight our con-

tributions in bold.

Chapter 2 briefly reviews latent Dirichlet allocation topic models and explains

variational inference technique in detail. We show full derivations of the updates for

variational expectation maximization algorithm.

In Chapter 3, we improve the implementation of existing models and

inference techniques using MapReduce—Mr. LDA. As opposed to other techniques

which use Gibbs sampling, our proposed framework is based on variational inference,

which easily fits into a distributed environment. We compare the scalability of Mr.

LDA against Mahout (Foundation et al., 2010), an existing large scale topic modeling

package. We show that Mr. LDA out-performs Mahout both in running time

and held-out likelihood. More importantly, our variational implementation—unlike

4



highly tuned and specialized implementations based on Gibbs sampling—is easily

extensible. We also demonstrate two extensions of our framework possible with this

scalable framework: informed priors to guide topic discovery and extracting topics

from a multilingual corpus.

In Chapter 4, we first review MCMC inference (Griffiths & Steyvers, 2004).

We also discuss the hybrid inference mode (Mimno et al., 2012), which interleaves

MCMC sampling inside variational inference that creates sparse sufficient statistics

to reduce the memory and time requirement.

In Chapter 5, we 1) propose novel polylingual tree-based topic models

to infer topics in multilingual environment, 2) derive three different inference

schemes to infer latent variables in the model, and 3) implement our model

using MapReduce to scale up to large datasets and evaluate it on a downstream

task of statistical machine translation. Previous work uses only the source language

and completely ignores the target language, which can disambiguate domains. Our

proposed polylingual tree-based topic models consider both source and target lan-

guages. We show that our proposed model is able to infer better translation domains

and improve the translation quality. We evaluate our model on a Chinese to English

translation task and yield significant improvement over strong baselines.

One other approach to scale up an algorithm is to stream the data and update

the parameters online.

In Chapter 6, we review the online variational inference for topic models (Hoff-

man et al., 2010). We then discuss the Dirichlet process (Ferguson, 1973) and

its generalization—Pitman-Yor process (Pitman & Yor, 1997). In addition, we

5



review the truncation free updates (Wang & Blei, 2012) for Bayesian nonparametric

distribution.

In Chapter 7, we focus on online streaming updates for topic models. We

1) propose a novel online topic model with infinite vocabulary, 2) derive

online hybrid inference for our proposed model, and 3) demonstrate our imple-

mentation is able to incorporate new words into vocabulary and refine topics over

time. Unlike all past online approaches, our model addresses a challenge, but often

overlooked problem—the vocabulary is constantly changing and evolving throughout

time. Vanilla LDA assumes a topic is drawn from a finite Dirichlet distribution, i.e.,

the vocabulary is fixed. This assumption precludes words being added or dropped

over time. Particularly in online cases, this is neither reasonable nor appealing.

There are many reasons immutable vocabularies do not make sense. For example,

new words (“crowdsource”) are invented or words cross languages (“Gangnam” from

Korean to English) are introduced, or words (“whan that Aprill”2) are outdated. To

be flexible, online topic models must be able to capture the invention and deletion

of a word in the vocabulary. Essentially, a better alternative is to draw the topic—

distribution over vocabulary—from a Dirichlet process Ferguson (1973), which is

a nonparametric extension of Dirichlet distribution and has supports over possibly

infinite number of atoms. In Chapter 7, we use the Dirichlet process as the topic

prior and present online topic models with infinite vocabulary, which is a Bayesian

nonparametric extension of online LDA.

2from the book Tales of Caunterbury
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An alternative approach to address the above problem is adaptor gram-

mars (Johnson et al., 2007). Adaptor grammars are appealing because they are very

flexible in prototyping different probabilistic Bayesian models, for example, Johnson

(2010) use the adaptor grammar to implement topic models. Adaptor grammars

break the strong independence assumptions of typical grammar models—particularly

probabilistic context free grammar (Stolcke, 1995, PCFG). The model can be viewed

as a nonparametric extension to PCFG. However, the weaker statistical indepen-

dence assumptions that adaptor grammars make come at the cost of expensive

inference.

In Chapter 8, we show the generality of our online hybrid inference framework

to adaptor grammars. We 1) develop online hybrid inference for an existing

Bayesian nonparametric model—adaptor grammars, and 2) demonstrate our im-

plementation is able to scale to significant larger datasets than past approaches.

Our online hybrid inference algorithm processes examples in small batches in a

streaming manner. As more data are observed, our approach is able to expand,

adjust and prune the sets of adapted grammar rules over time, which obviates the

need for expensive preprocessing required by previous approaches. This also makes

our algorithm appealing to much larger datasets.

Finally, in Chapter 9, we summarize our contributions, conclude this dissertation

and discuss several possible future research directions.

7



Chapter 3 Chapter 5 Chapter 7 Chapter 8
Task Topic Models Topic Models Topic Models Adaptor Grammar

Approach Parallelization Parallelization Online Streaming Online Streaming
Model

Blei et al. (2003)

√ √
Johnson et al. (2007)

Inference
√ √ √

Implementation
√ √ √ √

Table 1.1: Main contributions in this dissertation.

1.2 Contributions

In this section, we summarize our main contributions in this thesis as illustrated

in Table 1.1. Our contributions in this dissertation are:

• We implement a large-scale distributed topic modeling package—Mr. LDA—

in MapReduce on the existing LDA model using previously proposed variational

inference method. We show our implementation is able to scale up to significant

larger datasets, and yields better performance than Mahout. We demonstrate

the flexibility of our implementation using two extensions: 1) informed priors

to incorporate human prior knowledge into topic discovery and 2) polylingual

LDA for modeling topics in multilingual environment.

• We propose a novel polylingual tree-based topic model to infer topics on

multilingual corpora. We further derive three different inference schemes to

infer latent variables of our proposed model. We implement our model using

MapReduce and scale it up to large datasets. We evaluate the performance of

our model on a downstream task of statistical machine translation.

• We propose a novel online topic model which supports possibly infinite vocabu-

lary. We derive online hybrid inference for our proposed model. We demonstrate

our implementation is able to incorporate new words into vocabulary and refine

8



topics over time more effectively than many past approaches.

• We derive the online hybrid inference for an existing Bayesian nonparametric

model—adaptor grammars. We show that our implementation is able to scale

up to larger datasets than past approaches.
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Chapter 2

Background: Topic Models and Variational Inference

Compared to past approaches (Deerwester et al., 1990; Hofmann, 1999), latent

Dirichlet allocation (Blei et al., 2003, LDA), discovers a set of topics, which are

distributions over all words. These semantic coherent topics describe the main themes

of a corpus. Besides, it also discovers the topic proportion—a distribution over all

topics—for each document, from which we know the main themes of a document.

In the rest of this chapter, we first review some domains and applications that use

LDA in Section 2.1. We then describe the generative story of LDA in Section 2.2.

Finally, in Section 2.3, we overview two popular inference techniques on LDA.

2.1 Applications and Domains

LDA has been successfully applied to many applications in modeling textuary

datasets. For example, in the field of computational linguistics, Griffiths et al. (2005)

explore a composite framework based on hidden Markov model (HMM) and LDA

to jointly model part-of-speech (POS) tags and topics. Boyd-Graber & Resnik

(2010) relax the bag-of-words assumption and incorporate syntax structure into

LDA. Toutanova & Johnson (2008) propose a Bayesian LDA-based model for the

task of POS tagging in a semi-supervised environment.

In field of information retrieval, Bhattacharya & Getoor (2006) propose a
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LDA-based model for unsupervised entity resolution. Shu et al. (2009) extend the

LDA model to discover named entities in scientific journal automatically. Kataria

et al. (2011) add external domain knowledge extracted from wikipedia into LDA

and propose a hierarchical semi-supervised model for name entity resolution. Wei

& Croft (2006) use the topics extracted from LDA as document features on the

task of text retrieval. Zhang et al. (2007) formulate a social network into textuary

corpus using connected arcs as vocabulary and apply LDA to discover community

structures.

In addition, LDA is popular in humanity research, literature study, politics

and cognition science, for example, understand scientific ideas (Hall et al., 2008),

discover political perspectives (Paul & Girju, 2010) and understand the connection

between Bayesian models and cognition (Landauer et al., 2006; Griffiths et al., 2007),

etc. It is useful in many application, such as document classification, or revealing

latent structures and hidden relationship between documents and trends.

Although our primary focus in this thesis is on text corpora and collection of

discrete data, LDA is widely used in other domains in computer science as well, such

as microarray experiments (Perina et al., 2010), genome clustering (Falush et al.,

2003) and discover patterns in population genetics (Shringarpure & Xing, 2008) in

the field of computational biology.

In the field of computer vision, Sivic et al. (2005) extract local scale-invariant

features (Lowe, 1999, SIFT), which are referred as the “visual words”, and apply

LDA to discover object categories in image datasets. Blei & Jordan (2003) extend the

LDA framework and incorporate correlation between images and human annotated
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tags. Li Fei-Fei & Perona (2005) use LDA to cluster the features of images (referred

as “codewords”) and categorize natural scenes in image datasets. Wang et al. (2009a)

further extend these two works and jointly model the images, class labels and human

annotations.

Despite the successes of topic models, they suffer from slow inference, especially

in the case of big data. In this thesis, we are going to discuss different approaches to

scale up topic models to large datasets.

2.2 Latent Dirichlet Allocation

We review the generative process of vanilla LDA with K topics of V words

(Blei et al. (2003) and Griffiths & Steyvers (2004) offer more thorough reviews). Let

us refer the hyperparameters of the Dirichlet distributions for documents and topics

to α and β respectively.

Latent Dirichlet allocation (Blei et al., 2003, LDA) follows a simple generative

process. It assumes K topics, each of which is drawn from a Dirichlet distribution

prior, βk ∼ Dir(η), k = {1, . . . , K}. Given the topics, LDA subsequently generates a

document collection as following:

1: for each document d in a corpus D do

2: Choose distribution θd over topics from a Dirichlet distribution θd ∼ Dir(αθ).

3: for each of the n = 1, . . . , Nd word indexes do

4: Choose a topic zn from the distribution over topics of current document

zn ∼ Mult(θd).
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5: Choose a word wn from the appropriate topic’s distribution over words

p(wn|βzn).

6: end for

7: end for

2.3 Inference

Given observed documents, posterior inference discovers the latent variables

that best explain an observed corpus. Several inference schemes have been well

developed for LDA and its variants. The two most commonly used inference

methods for probabilistic Bayesian models are the Markov chain Monte Carlo

(MCMC) approximation (Neal, 1993; Robert & Casella, 2004) and variational

Bayesian inference (VB) or variational inference for short (Jordan et al., 1999). The

former relies on drawing random samples from a Markov chain whose stationary

distribution is the posterior of interest. The model is guaranteed to converge—under

some additional assumptions on the Markov chain—after significant number of

samples. One special case, where the Markov chain is defined by the conditional

distribution of each latent variable, is Gibbs sampling (Geman & Geman, 1990). It is

widely applied in many Bayesian statistical models (Teh, 2006; Griffiths & Steyvers,

2004; Finkel et al., 2007; Griffiths & Ghahramani, 2005).

The latter, variational inference, approximates a posterior distribution with a

simplified variational distribution. Typically, the variational distribution is usually

from a more manageable family of distributions by assuming independence structure
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that may not be present in the true posterior. This leads to a distribution that

is easier to factorize and/or estimate. The goal is trying to find the “best” fit

distribution or settings inside this family by minimizing the Kullback-Leibler (KL)

divergence between the true posterior and variational distribution. This gives us a

lower bound on the model likelihood. We are able to learn the model by maximizing

this lower bound. Like MCMC, this approach has also found widespread use in

Bayesian statistical models (Blei et al., 2003; Blei & Jordan, 2005; Blei & Lafferty,

2005; Wang & Blei, 2009).

Variational methods enjoy clear convergence criteria, tend to be faster than

MCMC in high-dimensional problems and provide particular advantages over

MCMC sampling when latent variable pairs are not conjugate. Gibbs sampling

requires conjugacy, and other forms of sampling that can handle non-conjugacy,

such as Metropolis-Hastings, are much slower than variational methods. In the next

section, we are going to discuss about the variational inference updates for LDA.

2.3.1 Variational Inference

Inference in probabilistic models uncovers the latent variables that best explain

observed data. Variational methods, based on techniques from statistical physics,

use optimization to find a distribution over the latent variables that is close to

the posterior log likelihood of interest (Jordan et al., 1999; Wainwright & Jordan,

2008). Variational methods provide effective approximations in topic models and

nonparametric Bayesian models (Blei & Jordan, 2005; Teh et al., 2006; Kurihara
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et al., 2007). In this chapter, we first review the a broad class of variational inference

technique in general form. Then, we use LDA as an example to illustrate how to

estimate the latent variables using variational inference.

General Variational Inference Variational inference methods cast the inference

on a graphical model as an optimization problem. Let us refer all latent variables in

the true graphical model as Z, parametrized by Θ. With variational methods, we

begin by positing a family of distributions q ∈ Q over the same latent variables Z

with a simpler dependency pattern than p. This simpler distribution is called the

variational distribution and is parametrized by Ω, a set of variational parameters.

Variational methods then minimize the Kullback-Leibler (KL) divergence between

the variational distribution q and the true posterior. This is equivalent to optimizing

the parameters in q and hence find the member in q that is closest to the true

posterior distribution.

Evidence Lower Bound Variational inference minimizes the KL divergence

between the variational distribution and the posterior distribution. The objective

function to optimize in such case is often referred to as the evidence lower bound
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(ELBO), which is a lower bound on the observed data X,

log p(X) = log

∫
p(X,Z,Θ)δZδΘ

= log

∫
p(X,Z,Θ)

q(Z,Ω)

q(Z,Ω)
δZδΘ

= log Eq[
p(X,Z,Θ)

q(Z,Ω)
]

≥ Eq [log (p(X|Z)p(Z|Θ))]− Eq [log q(Z|Ω)]

= L. (2.1)

The ELBO L contains two terms. The first term is the expected joint data likelihood

under the variational distribution q. The second term is the entropy of the variational

distribution q. Both of these two terms are tractable and can be computed easily.

Variational inference fits the variational parameters Ω to tighten this lower

bound and thus minimizes the KL divergence between the variational distribution

and the true posterior (Jordan et al., 1999; Wainwright & Jordan, 2008).

KL[q(Z,Ω)||p(Z,Θ|X)] = Eq [log q(Z,Ω)]− Eq [log p(Z,Θ|X)]

= Eq [log q(Z,Ω)]− Eq [log p(X,Z,Θ)]− log p(X)

= −L+ const. (2.2)

The variational distribution is typically chosen by removing probabilistic de-

pendencies from the true distribution. This makes inference tractable and also

induces independence in the variational distribution between latent variables. This
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independence can be engineered to allow parallelization of independent components

across multiple computers.

Mean Field Variational Inference for LDA One simplest variational distri-

bution family is the mean field variational distribution, where all hidden variables

are mutually independent and governed by distinct parameters. Such a variational

distribution naturally leads to coordinate ascent algorithm, where hidden variables

can be updated in turn during the optimization step. In addition, the entropy term

in the ELBO factorizes into independent components, and hence is easy to compute.

Let us use LDA as an example to illustrate mean field variational inference.

We illustrate the graphical model of LDA in Figure 2.1(a). The observed data X

are in the form of M documents, each of which contains Nd words {w1, w2, . . . , wNd
}.

The latent variables Z are corpus-level distributions over vocabularies per topic β,

document-level distributions over topics per document θ and topic assignment per

word z.

The mean field variational distribution for LDA is shown in Figure 2.1(b). It

assumes each latent variable follows its unique distribution and governed by its own

variational parameters. The distribution over vocabulary for topic βk is drawn from

a variational Dirichlet distribution with parameter λ. The distribution over topics

for document θd is drawn from a variational Dirichlet distribution governed by γ

and topic assignment zdn is drawn from a variational multinomial distribution with

parameter φ.

The mean field variational distribution q for LDA breaks the connection
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Figure 2.1: Graphical model of LDA and the mean field variational distribution.
Each latent variable, observed datum, and parameter is a node. Lines between
represent possible statistical dependence. Shaded nodes are observations; rectangular
plates denote replication; and numbers in the bottom right of a plate show how
many times plates’ contents repeat. In the variational distribution (right), the latent
variables θ, β, and z are explained by a simpler, fully factorized distribution with
variational parameters γ, λ, and φ.

between words and documents

q(z,θ,β) =
∏
k

Dir(βk |λk)
∏
d

Dir(θd | γd)
∏
n

Mult(zd,n |φd,n). (2.3)

where Dir(•) represents a Dirichlet distribution, and Mult(•) is a multinomial

distribution.

We can then write down the fully factorized evidence lower bound L according
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to Eqn. (2.1) as

L =Eq
[
log
(
p(w|z,θ,β)p(θ,β|α,η)

)]
− Eq [log q(z,θ,β|φ,γ,λ)]

=Eq
[
log
(
p(w|z,β)p(z|θ)p(θ|α)p(β|η)

)]
− Eq

[
log
(
q(z|φ)q(θ|γ)q(β|λ)

)]
=Eq [log p(w|z,β)] + Eq [log p(z|θ)] + Eq [log p(θ|α)] + Eq [log p(β|η)]

− Eq [log q(z|φ)]− Eq [log q(θ|γ)]− Eq [log q(β|λ)]

=Eq

[
log
∏
d

∏
n

p(wdn|zdn,β)

]
+ Eq

[
log
∏
d

∏
n

p(zdn|θd)

]

+ Eq

[
log
∏
d

p(θd|α)

]
+ Eq

[
log
∏
k

p(βk|η)

]

− Eq

[
log
∏
d

q(zd|φd)

]
− Eq

[
log
∏
d

q(θd|γd)

]
− Eq

[
log
∏
k

q(βk|λk)

]

=
∑
d

∑
n

Eq [log p(wdn|zdn,β)] +
∑
d

∑
n

Eq [log p(zdn|θd)]

+
∑
d

Eq [log p(θd|α)] +
∑
k

Eq [log p(βk|η)]

−
∑
d

Eq [log q(zd|φd)]−
∑
d

Eq [log q(θd|γd)]−
∑
k

Eq [log q(βk|λk)] . (2.4)

Variational inference then updates all the variational parameters in turn using

coordinate ascent. The overall variational inference framework resembles a standard

expectation maximization (EM) algorithm,1 and alternates between updating the

expectations of the variational distribution q and maximizing the probability of the

parameters given the “observed” expected counts.

1This is sometimes referred as variational EM algorithm, because it optimizes an objective
function described in the space of variational distribution q. It reduces to classical EM algorithm if
p ≡ q.
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2.3.2 The Need for Large-Scale Topic Models

However, both MCMC and VB approaches take significant time to converge.

MCMC, in particular Gibbs sampling, constantly samples the value of a latent

variable conditioned on all others. While every single sampling iteration in MCMC

is fast, it requires a long burn-in period and takes hundreds or even thousands of

iterations to reach a relatively stable distribution. Meanwhile, the MCMC approach

lacks a clear criterion on the convergence of the sampler. Variational inference, on

the other hand, clearly defines the objective function for optimization with a lower

bound on the KL divergence, and typically takes dozens of iterations to converge.

Nevertheless, every iteration in a variational inference approach usually requires

significantly longer running time than MCMC.

The slowness in learning speed certainly become a large bottleneck of many

Bayesian statistical models, in particularly, the LDA and its variants. In this thesis,

we address this limitation via two different approaches: a distributed approach and

an online streaming approach. In Chapter 3, we first discuss a distributed approach

by using MapReduce framework to scale up LDA. We then review hybrid inference

mode which interleaves MCMC sampling inside the variational inference framework

(Chapter 4). In Chapter 5, we focus on a large scale distributed topic models for

mutlilingual corpus with hybrid inference by incorporating word and document

correlations.

We then change gear to another approach to scale up topic models—online

updates—by first reviewing the truncation-free updates in Chapter 6. In Chapter 7,
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we propose a online topic model which expands the size of vocabulary along inference,

using hybrid inference and truncation-free updates. We further apply the online

hybrid inference framework to adaptor grammars—an existing flexible nonparametric

Bayesian model that generalizes topic models—and demonstrate how to use it to

quickly prototyping new nonparametric Bayesian models in Chapter 8.
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Chapter 3

Mr. LDA: A Flexible Large Scale Topic Modeling Package

The MapReduce framework for large-scale data processing (Dean & Ghemawat,

2004) is simple to learn but flexible enough to be broadly applicable to many different

algorithms. Designed at Google and open-sourced by Yahoo!, Hadoop MapReduce is

one of the mainstays of industrial data processing and has also been gaining traction

for problems of interest to the academic community such as machine translation (Dyer

et al., 2008), language modeling (Brants et al., 2007), and grammar induction (Cohen

& Smith, 2009).

In this chapter, we scale up a simple existing topic model—LDA—by paralleliz-

ing the algorithm with the MapReduce programming framework (Mr. LDA).1 Mr.

LDA relies on variational inference Blei et al. (2003), as opposed to the prevailing

trend of using Gibbs sampling. We argue for using variational inference over MCMC

sampling approach in Section 3.1. Section 3.2 describes how variational inference

naturally fits into the MapReduce framework. In Section 3.3, we discuss two specific

extensions of LDA to demonstrate the flexibility of the proposed framework. These

are an informed prior to guide topic discovery and a new inference technique for

inferring topics in multilingual corpora (Mimno et al., 2009). Next, we evaluate Mr.

LDA’s ability to scale in Section 3.4 before summarize this chapter in Section 3.5.

1Code is available for download at http://mrlda.cc.
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3.1 Scaling out LDA

In practice, probabilistic models work by maximizing the log-likelihood of

observed data given the structure of an assumed probabilistic model. Less technically,

generative models tell a story of how your data came to be with some pieces of the

story missing; inference fills in the missing pieces with the best explanation of the

missing variables. Because exact inference is often intractable (as it is for LDA),

complex models require approximate inference.

3.1.1 Why not Gibbs Sampling?

One of the most widely used approximate inference techniques for such models

is Markov chain Monte Carlo (MCMC) sampling, where one samples from a Markov

chain whose stationary distribution is the posterior of interest (Neal, 1993; Robert

& Casella, 2004). Gibbs sampling, where the Markov chain is defined by the

conditional distribution of each latent variable, has found widespread use in Bayesian

models (Neal, 1993; Teh, 2006; Griffiths & Steyvers, 2004; Finkel et al., 2007).

MCMC is a powerful methodology, but it has drawbacks. Convergence of the

sampler to its stationary distribution is difficult to diagnose, and sampling algorithms

can be slow to converge in high dimensional models (Robert & Casella, 2004).

Blei et al. (2003) present the first approximate inference technique for LDA

based on variational methods, but the collapsed Gibbs sampler by Griffiths & Steyvers

(2004) has been more popular in the community because it is easier to implement.

However, such methods inevitably have intrinsic problems that lead to difficulties in
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moving to web-scale: shared state, randomness, too many short iterations, and lack

of flexibility.

Shared State Unless the probabilistic model allows for discrete segments to

be statistically independent of each other, it is difficult to conduct inference in

parallel. However, we want models that allow specialization to be shared across many

different corpora and documents when necessary, so we typically cannot assume this

independence.

At the risk of oversimplifying, collapsed Gibbs sampling for LDA is essentially

multiplying the number of occurrences of a topic in a document by the number of

times a word type appears in a topic across all documents. The former is a document-

specific count, but the latter is shared across the entire corpus. For techniques that

scale out collapsed Gibbs sampling for LDA, the major challenge is keeping these

second counts for collapsed Gibbs sampling consistent when there is not a shared

memory environment.

Newman et al. (2008) consider a variety of methods to achieve consistent

counts: creating hierarchical models to view each slice as independent or simply

syncing counts in a batch update. Yan et al. (2009) first cleverly partition the

data using integer programming (an NP-Hard problem). Wang et al. (2009b) use

message passing to ensure that different slices maintain consistent counts. Smola

& Narayanamurthy (2010) use a distributed memory system to achieve consistent

counts in LDA, and Ahmed et al. (2012) extend the approach more generally to

latent variable models. Li et al. (2014) propose to use alias sampling techniques to
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further reduce the computation complexity.

Gibbs sampling approaches to scaling thus face a difficult dilemma: completely

synchronize counts, which can compromise scaling, or allow for inconsistent counts,

which could negatively impact the quality of inference. In contrast to engineering

work-arounds, variational inference provides a mathematical solution of how to scale

inference for LDA. By assuming a variational distribution that treats documents as

independent, we can parallelize inference without a need for synchronizing counts

(as required in collapsed Gibbs sampling).

Randomness By definition, Monte Carlo algorithms depend on randomness.

However, MapReduce implementations assume that every step of computation will

be the same, no matter where or when it is run. This allows MapReduce to have

greater fault-tolerance, running multiple copies of computation subcomponents in

case one fails or takes too long. This is, of course, easily fixed (e.g. by seeding a

random number generator in a shard-dependent way), but it adds another layer

of complication to the algorithm. Variational inference, given an initialization, is

deterministic, which is more in line with MapReduce’s system for ensuring fault

tolerance.

Many Short Iterations A single iteration of Gibbs sampling for LDA with K

topics is very quick. For each word, the algorithm performs a simple multiplication

to build a sampling distribution of length K, samples from that distribution, and

updates an integer vector. In contrast, each iteration of variational inference is
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difficult; it requires the evaluation of complicated functions that are not simple

arithmetic operations directly implemented in an ALU (these are described in

Section 3.2).

This does not mean that variational inference is slower, however. Variational

inference typically requires dozens of iterations to converge, while Gibbs sampling

requires thousands (determining convergence is often more difficult for Gibbs sam-

pling). Moreover, the requirement of Gibbs sampling to keep a consistent state

means that there are many more synchronizations required to complete inference,

increasing the complexity of the implementation and the communication overhead.

In contrast, variational inference requires synchronization only once per iteration

(dozens of times for a typical corpus); in a näıve Gibbs sampling implementation,

inference requires synchronization after every word in every iteration (potentially

billions of times for a moderately-sized corpus).

Mimno et al. (2012) propose a hybrid stochastic inference algorithm for LDA,

which benefits from both words. On the local document level, the method uses

MCMC sampling to obtain sparse samples for topic distribution per document;

and on the corpus level update, it updates the word distribution per topic using

variational inference. They also show that this hybrid MCMC-variational inference

algorithm yields better performance and significant speed-ups than vanilla variational

inference. In Chapter 4, we will discuss this method in detail.

Extension and Flexibility Compared to Mr. LDA, many Gibbs samplers are

highly tuned specifically for LDA, which restricts extensions and enhancements, one
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of the key benefits of the statistical approach. The techniques to improve inference

for collapsed Gibbs samplers (Yao et al., 2009) typically reduce flexibility; the

factorization of the conditional distribution is limited to LDA’s explicit formulation.

Adapting such tricks beyond LDA requires repeating the analysis to refactorize the

conditional distribution. In Section 3.3.1 we add an informed prior to topics’ word

distribution, which guides the topics discovered by the framework to psychologically

plausible concepts. In Section 3.3.2, we adapt Mr. LDA to learn multilingual

topics.

3.1.2 Related Work

Nallapati et al. (2007) extended variational inference for LDA to a parallelized

setting. Their implementation uses a master-slave paradigm in a distributed envi-

ronment, where all the slaves are responsible for the E-step and the master node

gathers all the intermediate outputs from the slaves and performs the M-step. While

this approach parallelizes the process to a small-scale distributed environment, the

final aggregation/merging showed an I/O bottleneck that prevented scaling beyond

a handful of slaves because the master has to explicitly read all intermediate results

from slaves.

Chu et al. (2007) develop a general and exact technique for parallel programming

of a large class of machine learning algorithms for multicore processors. They adapt

MapReduce (Dean & Ghemawat, 2004) paradigm—on multiple processors instead of

machines—to demonstrate the efficiency of parallelization approach on a variety of

27



learning algorithms, including logistic regression (LR), na ive Bayes (NB), support

vector machine (SVM) etc. Although they do not explicitly apply their parallelization

methods on LDA, they demonstrate the effectiveness on the general expectation

maximization (EM) algorithm, which is—as discussed in Chapter 2—the general

framework for variational inference. Their experimental results show approximately

linear speedup with an increasing number of processors.

Mr. LDA addresses these problems by parallelizing the work done by a single

master (a reducer is only responsible for a single topic) and relying on the MapReduce

framework, which can efficiently marshal communication between compute nodes.

Building on the MapReduce framework also provides advantages for reliability and

monitoring not available in an ad hoc parallelization framework.

The MapReduce (Dean & Ghemawat, 2004) framework was originally inspired

from the map and reduce functions commonly used in functional programming. It

adopts a divide-and-conquer approach. Each mapper processes a small subset of

data and passes the intermediate results as key value pairs to reducers. The reducers

receive these inputs in sorted order, aggregate them, and produce the final result.

In addition to mappers and reducers, the MapReduce framework allows for the

definition of combiners and partitioners. Combiners perform local aggregation on the

key value pairs after map function. Combiners help reduce the size of intermediate

data transferred and are widely used to optimize a MapReduce process. Partitioners

control how messages are routed to reducers.

Mahout (Foundation et al., 2010), an open-source machine learning package,

provides a MapReduce implementation of variational inference LDA, but it lacks
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Framework Inference Likelihood Asymmetric α Hyperparameter Informed β Multilingual

Mallet (McCallum, 2002)

Multi-thread Gibbs
√ √ √

×
√

GPU-LDA (Yan et al., 2009)

GPU Gibbs & V.B.
√

× × × ×

Async-LDA (Asuncion et al., 2008)

Multi-thread Gibbs
√

×
√

× ×

N.C.L. (Nallapati et al., 2007)

Master-Slave V.B. ∼ × × × ×

pLD
A (Wang et al., 2009b)

MPI & MapReduce Gibbs ∼ × × × ×

Y!LDA (Smola & Narayanamurthy, 2010)

Hadoop Gibbs
√ √ √

× ×

Mahout (Foundation et al., 2010)

MapReduce V.B.
√

× × × ×

Mr. LDA
MapReduce V.B.

√ √ √ √ √

Table 3.1: Comparison among different approaches. Mr. LDA supports all of these
features, as compared to existing distributed or multi-threaded implementations. (∼
- not available from available documentation.)

features required by mature LDA implementations such as supplying per-document

topic distributions and optimizing hyperparameters. Wallach et al. (2009) explain

how this is essential for model quality. Without per-document topic distributions,

many of the downstream applications of LDA (e.g., document clustering) become

more difficult.

Table 3.1 provides a general overview and comparison of features among

different approaches for scaling LDA. Mr. LDA is the only implementation which

supports all listed capabilities in a distributed environment.

3.2 Mr. LDA

Variational EM alternates between updating the expectations of the variational

distribution q and maximizing the probability of the parameters given the “observed”
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Algorithm 1 Mapper

Input:
Key - document ID d ∈ [1, C], where C = |C|.
Value - document content.

Output:
Key - key pair 〈pl, pr〉.
Value - value σ′.

Configure

1: Load in α’s, λ’s and γ’s from distributed cache.
2: Normalize λ’s for every topic.

Map

1: Initialize a zero V ×K-dimensional matrix φ.
2: Initialize a zero K-dimensional row vector σ.
3: Read in document content ‖w1, w2, . . . , wV ‖
4: repeat
5: for all v ∈ [1, V ] do
6: for all k ∈ [1,K] do

7: Update φv,k =
λv,k∑
v λv,k

· exp Ψ (γd,k).

8: end for
9: Normalize φv, set σ = σ + wvφv,∗

10: end for
11: Update row vector γd,∗ = α+ σ.
12: until convergence
13: for all k ∈ [1,K] do
14: for all v ∈ [1, V ] do
15: Emit 〈k, v〉 : wvφv,k.
16: end for
17: Emit 〈4, k〉 :

(
Ψ (γd,k)−Ψ

(∑K
l=1 γd,l

))
. {Section 3.2.4}

18: Emit 〈k, d〉 : γd,k to file.
19: end for
20: Aggregate L to global counter. {ELBO, Section 3.2.5}

expected counts. The remainder of this chapter focuses on adapting the parameter

updates into the MapReduce framework and challenges of working at a large scale.

We focus on the primary components of a MapReduce algorithm: the mapper, which

processes a single unit of data (in this case, a document); the reducer, which processes

a single view of globally shared data (in this case, a topic parameter); the partitioner,

which distributes the workload to reducers; and the driver, which controls the overall

algorithm. The interconnections between the components of Mr. LDA are depicted

in Figure 3.1.
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3.2.1 Mapper: Update φ and γ

Each document has associated variational parameters γ and φ. The mapper

computes the updates for these variational parameters and uses them to create the

sufficient statistics needed to update the global parameters. In this section, we

describe the computation of these variational updates and how they are transmitted

to the reducers.

Given a document, the updates for φ and γ are

φv,k ∝ Eq [βv,k] · eΨ(γk), γk = αk +
V∑
v=1

φv,k,

where v ∈ [1, V ] is the term index and k ∈ [1, K] is the topic index. In this case,

V is the size of the vocabulary V and K denotes the total number of topics. The

expectation of β under q gives an estimate of how compatible a word is with a topic;

words highly compatible with a topic will have a larger expected β and thus higher

values of φ for that topic.

Algorithm 1 illustrates the detailed procedure of the Map function. In the

first iteration, mappers initialize variables, e.g. seed λ with the counts of a single

document. For the sake of brevity, we omit that step here; in later iterations, global

parameters are stored in distributed cache – a synchronized read-only memory that is

shared among all mappers (White, 2010) – and retrieved prior to mapper execution

in a configuration step.

A document is represented as a term frequency sequence ~w = ‖w1, w2, . . . , wV ‖,

where wi is the corresponding term frequency in document d. For ease of
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notation, we assume the input term frequency vector ~w is associated with all the

terms in the vocabulary, i.e., if term ti does not appear at all in document d, wi = 0.

Because the document variational parameter γ and the word variational pa-

rameter φ are tightly coupled, we impose a local convergence requirement on γ in

the Map function. This means that the mapper alternates between updating γ and

φ until γ stops changing.

3.2.2 Partitioner: Evenly Distribute Workloads

The Map function in Algorithm 1 emits sufficient statistics for updating the

topic variational distribution λ. These sufficient statistics are keyed by a composite

key set 〈pleft, pright〉. These keys can take two forms: tuple of topic and word identifier

or, when the value represents the sufficient statistics for α updating, a unique value

4 and a topic identifier.

A partitioner is required to ensure that messages from the mappers are sent

to the appropriate reducers. Each reducer is responsible for updating the per-

topic variational parameter associated with a single topic indexed by k. This is

accomplished by ensuring the partitioner sorts on topic only. A consequence of this

is that any reducers beyond the number of topics is superfluous. Given that the

vast majority of the work is in the mappers, this is typically not an issue for LDA.

Algorithm 2 illustrates the pseudo-code of the partitioner.
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Algorithm 2 Partitioner

Input:
Key - key pair 〈pl, pr〉.
Partitioner

1: Partition data according to pl only, ignore pr.

Algorithm 3 Reducer

Input:
Key - key pair 〈pleft, pright〉.
Value - an iterator I over sequence of values.

Output:
Key - topic index k ∈ [1,K].
Value - V -dimensional column vector φ∗,k.

Reduce

1: Compute the sum σ over all values in the sequence I. σ is un-normalized λ if pleft 6= 4 and α
sufficient statistics (refer to Section 3.2.4 for more details) otherwise.

2: Emit 〈pleft, pright〉 : σ.

3.2.3 Reducer: Update λ

The Reduce function updates the variational parameter λ for distribution over

vocabulary per topic. It requires aggregation over all intermediate φ vectors

λv,k = ηv,k +
C∑
d=1

(
w(d)
v φ

(d)
v,k

)
,

where d ∈ [1, C] is the document index and w
(d)
v denotes the number of appearances

of term v in document d. Similarly, C is the number of documents. Although the

variational update for λ does not include a normalization, the expectation Eq [β]

requires the λ normalizer. In Mr. LDA, the λv,k parameters are distributed to all

mappers, and the normalization is taken care of by the mappers in a configuration

step prior to every iteration.

To improve performance, we use combiners to facilitate the aggregation of
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sufficient statistics in mappers before they are transferred to reducers. This decreases

bandwidth and saves the reducer computation.

3.2.4 Driver: Update α

Effective inference of topic models depends on learning not just the latent

variables β, θ, and z but also estimating the hyperparameters, particularly α. The

α parameter controls the sparsity of topics in the document distribution and is the

primary mechanism that differentiates LDA from previous models like pLSI and

LSI; not optimizing α risks learning suboptimal topics (Wallach et al., 2009).

Updating hyperparameters is also important from the perspective of equalizing

differences between inference techniques; as long as hyperparameters are optimized,

there is little difference between the output of inference techniques (Asuncion et al.,

2009).

Maximizing the global parameters in MapReduce can be handled in a manner

analogous to EM (Wolfe et al., 2008); the expected counts (of the variational

distribution) generated in many parallel jobs are efficiently aggregated and used to

recompute the top-level parameters.

The driver program marshals the entire inference process. On the first iteration,

the driver is responsible for initializing all the model parameters (K, V , C, η, α);

the number of topics K is user specified; C and V , the number of documents and

types, is determined by the data; the initial value of α is specified by the user; and λ

is randomly initialized or otherwise seeded.
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The driver updates α after each MapReduce iteration. We use a Newton-

Raphson method which requires the Hessian matrix and the gradient,

αnew = αold −H−1(αold) · g(αold), (3.1)

where the Hessian matrix H and α gradient are, respectively, as

H(k, l) =δ(k, l)CΨ′ (αk)− CΨ′
(∑K

l=1 αl

)
, (3.2)

g(k) =C

(
Ψ

(
K∑
l=1

αl

)
−Ψ (αk)

)
︸ ︷︷ ︸

computed in driver

+
C∑
d=1

Ψ (γd,k)−Ψ

(
K∑
l=1

γd,l

)
︸ ︷︷ ︸

computed in mapper︸ ︷︷ ︸
computed in reducer

. (3.3)

The Hessian matrix H depends entirely on the vector α, which changes during

updating α. The gradient g, on the other hand, can be decomposed into two terms:

the α-tokens (i.e., Ψ(
∑K

l=1 αl) − Ψ (αk)) and the γ-tokens (i.e.,
∑C

d=1 Ψ (γd,k) −

Ψ(
∑K

l=1 γd,l)). We can remove the dependence on the number of documents in the

gradient computation by computing the γ-tokens in mappers. This observation

allows us to optimize α in the MapReduce environment.

Because LDA is a dimensionality reduction algorithm, there are typically a

small number of topics K even for a large document collection. As a result, we can

safely assume the dimensionality of α, H, and g are reasonably low, and additional

gains come from the diagonal structure of the Hessian (Minka, 2000). Hence, the

updating of α is efficient and will not create a bottleneck in the driver.
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3.2.5 Likelihood Computation

The driver monitors the ELBO and terminate the inference once it is converged.

If not, it restarts the process with another round of mappers and reducers. Computing

the ELBO gives us

L(γ, φ, λ;α, η) =
C∑
d=1

Φ(α)︸ ︷︷ ︸
driver

+
C∑
d=1

(Ld(γ, φ) + Ld(φ)− Φ(γ)︸ ︷︷ ︸
computed in mapper

)

︸ ︷︷ ︸
computed in reducer

+
K∑
k=1

Φ(η∗,k)︸ ︷︷ ︸
driver / constant

−
K∑
k=1

Φ(λ∗,k)︸ ︷︷ ︸
reducer︸ ︷︷ ︸

driver

(3.4)

where

Φ(µ) = log Γ (
∑

i=1 µi)−
∑
i=1

log Γ (µi) (3.5)

+
∑
i

(µi − 1)
(

Ψ (µi)−Ψ
(∑

j µj

))
. (3.6)

Ld(γ, φ) =
K∑
k=1

V∑
v=1

φv,kwv

[
Ψ (γk)−Ψ

(∑K
i=1 γi

)]
, (3.7)

Ld(φ) =
V∑
v=1

K∑
k=1

φv,k

(
V∑
i=1

wi log
λi,k∑
j λj,k

− log φv,k

)
, (3.8)

Almost all of the terms that appear in the likelihood term can be computed in

mappers; the only term that cannot are the terms that depend on α, which is

updated in the driver, and the variational parameter λ, which is shared among all

documents. All terms that depend on α can be easily computed in the driver, while

the terms that depend on λ can be computed in each reducer.
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Thus, computing the total likelihood proceeds as follows: each mapper computes

its contribution to the likelihood bound L, and emits a special key that is unique

to likelihood bound terms and then aggregated in the reducer; the reducers add

topic-specific terms to the likelihood; these final values are then combined with the

contribution from α in the driver to compute a final likelihood bound.

Document Map: Update γ, φ

Test 
Likelihood 

Convergence

Parameters

Reducer

Document Map: Update γ, φ

Document Map: Update γ, φ

Document Map: Update γ, φ

Reducer

Reducer

Write λ

Sufficient
Statistics for
λ Update 

Driver: Update α

Write α

Hessian
Terms

Distributed Cache

Figure 3.1: Workflow of Mr. LDA. Each iteration is broken into three stages:
computing document-specific variational parameters in parallel mappers, computing
topic-specific parameters in parallel reducers, and then updating global parameters in
the driver, which also monitors convergence of the algorithm. Data flow is managed
by the MapReduce framework: sufficient statistics from the mappers are directed to
appropriate reducers, and new parameters computed in reducers are distributed to
other computation units via the distributed cache.
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3.2.6 Structural Optimization

In examining Mr. LDA’s performance, the two largest performance limitations

were the large number of intermediate values being generated by the mappers and

the time it takes for mappers to read in the current variational parameters during

during the mapper configuration phase.

Reducer Caching Recall that reducers sum over φ contributions and emit the

λ variational parameters, but mappers require a normalized form to compute the

expectation with of the topic with respect to the variational distribution. To improve

the normalization step, we compute the sum of the λ variational parameters in the

reducer (Lin & Dyer, 2010; Lin & He, 2009), and then emit this sum before we emit

the other λ terms.

Although this requires O(V ) additional memory, it is strictly less than the

memory required by mappers, so it in practice improves performance by allowing

mappers to more quickly begin processing data.

File Merge Loading files in the distributed cache and configuring every mapper

and reducer is another bottleneck for this framework. This is especially true if we

launch a large number of reducers every iteration — this will result in a large number

of small outputs, since Mr. LDA is designed to distribute workload equally. These

partial results would waste space if they are significantly smaller than HDFS block

size. Moreover, they cause a overhead in file transfer through distributed cache.

To alleviate this problem, we merge all relevant output before sending them to the
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distributed cache for the next iteration.

3.3 Flexibility of Mr. LDA

In this section, we highlight the flexibility of Mr. LDA to accommodate

extensions to LDA. These extensions are possible because of the modular nature of

Mr. LDA’s design.

3.3.1 Informed Prior

The standard practice in topic modeling is to use a same symmetric prior (i.e.,

ηv,k is the same for all topics k and words v). However, the model and inference

presented in Section 3.2 allows for topics to have different priors. Thus, users can

incorporate prior information into the model.

For example, suppose we wanted to discover how different psychological states

were expressed in blogs or newspapers. If this were our goal, we might create priors

that captured psychological categories to discover how they were expressed in a

corpus. The Linguistic Inquiry and Word Count (LIWC) dictionary (Pennebaker

& Francis, 1999) defines 68 categories encompassing psychological constructs and

personal concerns. For example, the anger LIWC category includes the words

“abuse”, “jerk”, and “jealous”; the anxiety category includes “afraid”, “alarm”, and

“avoid”; and the negative emotions category includes “abandon”, “maddening”, and
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“sob”. Using this dictionary, we built a prior η as follows:

ηv,k =


10, if v ∈ LIWC categoryk

0.01, otherwise

,

where ηv,k is the informed prior for word v of topic k. This is accomplished via a

slight modification of the reducer (i.e., to make it aware of the values of η) and

leaving the rest of the system unchanged.

3.3.2 Polylingual LDA

In this section, we demonstrate the flexibility of Mr. LDA by showing how its

modular design allows for extending LDA beyond a single language. PolyLDA (Mimno

et al., 2009) assumes a document-aligned multilingual corpus. For example, articles

in Wikipedia have links to the version of the article in other languages; while the

linked documents are ostensibly on the same subject, they are usually not direct

translations, and are often written with a culture-specific focus.

PolyLDA assumes that a single document has words in multiple languages,

but each document has a common, language agnostic per-document distribution

θ (Figure 3.2). Each topic also has different facets for language; these topics end

up being consistent because of the links across language encoded in the consistent

themes present in documents.

Because of the modular way in which we implemented inference, we can perform

multilingual inference by embellishing each data unit with a language identifier l and
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NLd K

N1d K
β1,kz1n w1n

θdα

βL,kzLn wLn

... ...

Figure 3.2: Graphical model for polylingual LDA (Mimno et al., 2009). Each
document has words in multiple languages. Inference learns the topics across
languages that have cooccurring words in the corpus. The modular inference of Mr.
LDA allows for inference for this model to be accomplished by the same framework
created for monolingual LDA.

Document Map: Update !, "
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Likelihood 

Convergence

Parameters

Reducer
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Document Map: Update !, "

Document Map: Update !, "

Reducer
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Distributed Cache

Reducer
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Driver: Update $

Write # (German)

Figure 3.3: Workflow of polylingual LDA. Each iteration is broken into three stages:
updating λ happens l times, once for each language, updating φ happens using only
the relevant language for a word and updating γ happens as usual, combining the
contributions of all languages relevant for a document.
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change inference as follows:

• Updating λ happens l times, once for each language. The updates for a

particular language ignores expected counts of all other languages.

• Updating φ happens using only the relevant language for a word.

• Updating γ happens as usual, combining the contributions of all languages

relevant for a document.

This is also illustrated in Figure 3.3.

From an implementation perspective, PolyLDA is a collection of monolingual

Mr. LDA computations sequenced appropriately. Mr. LDA’s approach of taking

relatively simple computation units, allowing them to scale, and preserving simple

communication between computation units stands in contrast to the design choices

made by approaches using Gibbs sampling.

For example, Smola & Narayanamurthy (2010) interleave the topic and doc-

ument counts during the computation of the conditional distribution using the

“binning” approach (Yao et al., 2009). While this improves performance, changing

any of the modeling assumptions would potentially break this optimization.

In contrast, Mr. LDA’s philosophy allows for easier development of extensions

of LDA. While we only discuss two extensions here, other extensions are possible. In

Chapter 5, we will demonstrate how to apply polylingual LDA as domain knowledge

to statistical machine translation. For example, implementing supervised LDA (Blei

& McAuliffe, 2007) only requires changing the computation of φ and a regression; the

rest of the model is unchanged. Implementing syntactic topic models (Boyd-Graber

& Blei, 2008) requires changing the mapper to incorporate syntactic dependencies.
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3.4 Experiments

We implemented Mr. LDA using Java with Hadoop 0.20.1 and ran all

experiments on a cluster containing 16 physical nodes; each node has 16 2.4GHz

cores, and has been configured to run a maximum of 6 map and 3 reduce tasks

simultaneously. The cluster is usually under a heavy, heterogeneous load. In this

section, we document the speed and likelihood comparison of Mr. LDA against

Mahout LDA, another large scale topic modeling implementation based on variational

inference. We report results on three datasets:

• TREC document collection (disks 4 and 5 (NIST, 1994)), newswire documents

from the Financial Times and LA Times. It contains more than 300k distinct

types over half a million documents. We remove types appearing fewer than

20 times, reducing the vocabulary size to approximately 60k.

• The BlogAuthorship corpus (Koppel et al., 2006), which contains about 10

million blog posts from American users. In contrast to the newswire-heavy

TREC corpus, the BlogAuthorship corpus is more personal and informal. Again,

terms in fewer than 20 documents are excluded, resulting in 53k distinct types.

• Paired English and German Wikipedia articles (more than half a million in each

language). As before, we ignore terms appearing in fewer than 20 documents,

resulting in 170k English word types and 210k German word types. While each

pair of linked documents shares a common subject (e.g. “George Washington”),

they are usually not direct translations. The document pair mappings were

established from Wikipedia’s interlingual links.
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3.4.1 Informed Priors

In this experiment, we build the informed priors from LIWC (Pennebaker &

Francis, 1999) introduced in Section 3.3.1. We feed the same informed prior to both

the TREC dataset and BlogAuthorship corpus. Throughout the experiments, we set

the number of topics to 100, with a subset guided by the informed prior.

Table 3.2 shows topics for both TREC and BlogAuthorship. The prior acts as

a seed, causing words used in similar contexts to become part of the topic. This is

important for computational social scientists who want to discover how an abstract

idea (represented by a set of words) is actually expressed in a corpus. For example,

public news media (i.e. news articles like TREC) connect positive emotions to

entertainment, such as music, film and TV, whereas social media (i.e. blog posts)

connect it to religion. The Anxiety topic in news relates to middle east, but in blogs

it focuses on illness, e.g. bird flu. In both corpora, Causation was linked to science

and technology.

Using informed priors can discover radically different words. While LIWC

is designed for relatively formal writing, it can also discover Internet slang such

as “lol” (“laugh out loud”) in Affective Process category. As a result, an informed

prior might be helpful in aligning existing lexical resources with corpora with sparse

and/or out-of-dictionary vocabularies, e.g., Twitter data.

On the other hand, some discovered topics do not have a clear relationship with

the initial LIWC categories, such as the abbreviations and acronyms in Discrepancy

category. In other cases, the LIWC categories were different enough from the dataset
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that model chose not to use topics with ill-fitting priors, e.g. the Cognitive Process

category.

3.4.2 Polylingual LDA

As discussed in Section 3.3.2, Mr. LDA’s modular design allows us to consider

models beyond vanilla LDA. To the best of our knowledge, we believe this is the

first framework for variational inference for polylingual LDA (Mimno et al., 2009),

scalable or otherwise. In this experiment, we fit 50 topics to paired English and

German Wikipedia articles. We let the program run for 33 iterations with 100

mappers and 50 reducers. Table 3.3 lists down some words from a set of selected

topics.

The results listed indicates a similar topics for both English and German. For

example, the topic about Europe (“french”, “paris”, “russian” and “moscow”) in

English is matched with the topic in German (“frankreich”, “paris”, “russischen”

and “moskau”). Similar behavior was observed for other topics.

The topics discovered by polylingual LDA are not exact matches, however.

For example, the second to last column in Table 3.3 is about North America, but

the English words focus on Canada, while the corresponding German topic focuses

on the United States. Similarly, the forth last column in English contains keywords

like “hong”, “kong” and “korean”, which did not appear in the top 10 words in

German. Since this corpus is not a direct translation, these discrepancies might due

to a different perspectives, different editorial styles, or different cultural norms.
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3.4.3 Scalability

To measure the scalability and accuracy of Mr. LDA, we compare Mr. LDA

with Mahout (Foundation et al., 2010), another large scale topic modeling package

based on variational inference. We use Mahout-0.4 as our baseline measure. In

this set of experiments, we use 90% of the entire TREC corpus as training data

and the rest as test data. We ensure that both packages have identical inputs (i.e.

identical preprocessing to remove stopwords and selecting vocabulary). We monitor

the held-out likelihood under the settings of 50 and 100 topics.

In all experiments, we set the memory limit for every mapper and reducer

instance to 2.0-GB. For the hyper-parameter α, Mahout uses a default setting of 50
K

(recall that K is the number of topic). In order for the results to be comparable, for

Mr. LDA, we start the hyper-parameter α from same setting as in Mahout. Mr.

LDA continuously updates vector α in the driver program, whereas Mahout does not.

All experiments are carried out with 100 mapper instances and 20 reducer instances.

We then plot the held-out log-likelihood of test data against the (cumulative) training

time. Our empirical results show that, with identical data and hardware, Mr. LDA

out-performs Mahout LDA in both the speed and likelihood.

We let both models run for 40 iterations. The held-out likelihood was computed

using the variational distribution obtained after every iteration. Figure 3.4(a) shows

the result for 50 topics. Mr. LDA runs faster than Mahout. In addition, Mr.

LDA yields a better held-out log-likelihood than Mahout, probably as a consequence

of hyper-parameter updating—a critical step for variational inference that Mahout
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Figure 3.4: Training time vs. held-out log-likelihood on 50 (left) and 100 (right)
topics. This figure shows the accumulated training time of the model against the
held-out log-likelihood over Mr. LDA and Mahout measured over 40 iterations on 50
topics. Markers indicate the finishing point of a iteration. Mr. LDA out-performs
Mahout both in speed and likelihood.

does not support.

When we double the total number of topics to 100, the difference in processing

time is magnified. Mr. LDA converges faster than Mahout, again due to the hyper-

parameter updating. Comparing to the previous diagram of 50 topics, we observe

that the training time of Mr. LDA is approximately doubled, which suggesting

Mr. LDA scales out effectively.

In-mapper-combiner In-mapper-combiner (iMC) provides an efficient way to

speed up the intermediate shuffling and sorting. Every mapper instance effectively

caches up key-value pairs, aggregates the values and flush them all upon closing

or memory reaches a limit. Therefore, it significantly reduces the total number of

intermediate key-value pairs. In this experiment, every mapper instance caches the

top 10000 frequent words and measure job status. The total number of topics is

1000. Table 3.4 records down the job status averaging over 20 iterations. In-mapper-

combiner does reduce the size of intermediate key-value pairs by almost a order of
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w/o iMC w iMC
Running Time (×103s) 10.635 4.015

Combine Input Records (×1010) 1.612 14.328
Combine Output Records (×109) 9.786 71.063

Map Output Bytes (×1011) 1.108 11.651
Map Output Records (×109) 6.931 72.815

Table 3.4: Job status averaging over 20 iterations for 1000 topics. In-mapper-
combiner caches top 10000 frequent tokens. In-mapper-combiner significantly reduces
the total number of intermediate key-value pairs. Hence, reduces the overall running
time.

magnitude, hence speed up the entire learning process significantly.

3.5 Summary

Understanding large text collections such as those generated by social media

requires algorithms that are unsupervised and scalable. In this chapter, we present

Mr. LDA, which fulfills both of these requirements. Beyond text, LDA is continually

being applied to new fields such as music (Hu & Saul, 2009) and source code (Maskeri

et al., 2008). All of these domains struggle with the scale of data, and Mr. LDA

could help them better cope with large data.

Mr. LDA represents a viable alternative to the existing scalable mechanisms

for inference of topic models. Its design easily accommodates other extensions,

as we have demonstrated with the addition of informed priors and multilingual

topic modeling, and the ability of variational inference to support non-conjugate

distributions allows for the development of a broader class of models than could be

built with Gibbs samplers alone. In Section 5, we will discuss how can we apply these

ideas to discover correlations in mutlilingual corpus, and improve the performance
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of statistical machine translation system. Mr. LDA, however, would benefit from

many of the efficient, scalable data structures that improved other scalable statistical

models (Talbot & Osborne, 2007); incorporating these insights would further improve

performance and scalability.

Mr. LDA framework is designed to facilitate many other possible topic model

extensions or variates based on variational inference approach. As we discussed

earlier in Section 3.3, supervised LDA (Blei & McAuliffe, 2007) different from vanilla

LDA in the sense of updating the topic word distribution — we need to incorporate

label information into the phi updating. Syntactic topic models (Boyd-Graber & Blei,

2008) shares the general framework with LDA, but add in syntactic dependencies

information during the mapper phase.

While we focused on LDA, the approaches used here are applicable to many

other models. Variational inference is an attractive inference technique for the

MapReduce framework, as it allows the selection of a variational distribution that

breaks dependencies among variables to enforce consistency with the computational

constraints of MapReduce. Developing automatic ways to enforce those computa-

tional constraints and then automatically derive inference (Winn & Bishop, 2005;

Stan Development Team, 2014) would allow for a greater variety of statistical models

to be learned efficiently in a parallel computing environment. In Chapter 8, we will

focus on the application of adaptor grammar (Johnson et al., 2007), which provides

a generic way to infer the latent variable in a hierarchical Bayesian network.

Variational inference is also attractive for its ability to handle online up-

dates Hoffman et al. (2010). Mr. LDA could be extended to more efficiently handle
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online batches in streaming inference (Hoffman et al., 2010), allowing for even larger

document collections to be quickly analyzed and understood. In Chapter 6, we will

explain in detail about the online variational updates. It takes only one pass over

the entire dataset and update the latent parameters gradually after seeing a subset

of data each time.
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Chapter 4

Background: Hybrid Variational-MCMC Inference

Recall that in Section 2.3, one common inference method for LDA—other

than variational Bayesian inference—is Markov chain Monte Carlo sampling (Neal,

1993; Griffiths & Steyvers, 2004, MCMC). MCMC approach has an advantage over

variational Bayesian method: each single iteration during inference is short, although

it generally requires many more bookkeeping efforts and more iterations to converge

(Section 3.1).

Hybrid inference (Mimno et al., 2012) benefits from both MCMC’s short itera-

tion and variational Bayesian’s parallelize format. It takes advantage of parallelizable

variational inference for global variables (Wolfe et al., 2008) while enjoying the sparse,

efficient updates for local variables (Neal, 1993).

In the rest of this chapter, we first give a brief review over MCMC sampling

approach in Section 4.1, and then discuss the hybrid inference mode in Section 4.2. In

Chapter 5, we explore the effectiveness of these three inference techniques—MCMC

sampling, variational EM and hybrid inference—on polylingual tree-based topic

models, which is targeted to modeling topics in multilingual environment.
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4.1 Markov chain Monte Carlo

As discussed in Section 2.3, MCMC relies on drawing random samples from

a Markov chain whose stationary distribution is the posterior of interest. Gibbs

sampling—a special case of MCMC inference approach—is when the conditional

posterior distributions of the target distribution can be sampled exactly, which is the

case in LDA due to Dirichlet and multinomial conjugacy. It is widely applied in many

Bayesian statistical models (Griffiths & Steyvers, 2004; Griffiths & Ghahramani,

2005; Teh, 2006; Finkel et al., 2007).

Recall that the generative story for LDA in Section 2.2 gives the following

complete probability model as shown in Figure 2.1(a),

βk ∼ Dirichlet(η), for k ∈ {1, . . . , K};

θd ∼ Dirichlet(α), for d ∈ {1, . . . , D};

zdn|θd ∼ Discrete(θd), for n ∈ {1, . . . , Nd};

wdn|zdn,βzdn ∼ Discrete(βzdn), for n ∈ {1, . . . , Nd};

where βk is the distribution over all the vocabulary for topic k and θd is the

distribution over all the topics for document d.

Let us denote w as all tokens in the corpus and z as the topic assignments for
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w. Given θ and β, the joint distribution of LDA is

p(w, z,θ,β;α, η) =
∏
k

p(βk|η) ·
∏
d

p(θd|α)
∏
n

p(zdn|θd)p(wdn|zdn,β) (4.1)

=
∏
d

p(θd|α)
∏
n

p(zdn|θd) ·
∏
k

p(βk|η)
∏
d

∏
n

p(wdn|zdn,β). (4.2)

Integrating over the hidden variables θ and β, the joint distribution p(w, z;α, η)

can be represented as

p(w, z;α, η) = p(z;α) · p(w|z; η)

=

∫
θ

∏
d

p(θd|α)
∏
n

p(zdn|θd)dθ ·
∫
β

∏
k

p(βk|η)
∏
d

∏
n

p(wdn|zdn,β)dβ

=

∫
θ

p(z|θ)p(θ|α)dθ ·
∫
β

p(w|z,β)p(β|η)dβ (4.3)

Since the Dirichlet prior is conjugate to the multinomial distribution, the

posterior distribution is still a Dirichlet distribution. By integrating out θ and β,

we have

p(z;α) =

∫
θ

p(z|θ)p(θ|α)dθ =
(Γ(Kα)

Γ(α)K

)D D∏
d=1

∏
k Γ(nk|d + α)

Γ(n·|d +Kα)
, (4.4)

p(w|z; η) =

∫
β

p(w|z,β)p(β|η)dβ =
(Γ(V η)

Γ(η)V

)T T∏
k=1

∏
w Γ(nw|k + η)

Γ(n·|k + V η)
, (4.5)

where nk|d is number of times topic k appears in document d, and nwd,n|k is the

number of times type wdn has been assigned to topic k. n·|d and n·|k are the counts

aggregated over the corresponding index.
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The state of any latent variable is conditioned on the current state of all the

other variables. As a result, for the latent topic assignment of any word wdn, we

sample from its full conditional distribution p(zdn|z−dn,w;α, η)

p(zdn = k|z−dn,w;α, η) =
p(zdn = k,z−dn,w;α, η)

p(z−dn,w;α, η)

=
p(zdn = k,z−dn;α)

p(z−dn;α)
· p(w|zdn = k,z−dn; η)

p(w|z−dn; η)

=

∏
j 6=k Γ(nj|d+α)·Γ(nk|d+α+1)

Γ(n·|d+Kα+1)∏
k Γ(nk|d+α)

Γ(n·|d+Kα)

·

∏
w 6=wdn

Γ(nw|k+η)·Γ(nwdn|k+η+1)

Γ(n·|k+V η+1)∏
w Γ(nw|k+η)

Γ(n·|k+V η)

=
Γ(nk|d + 1 + α)

Γ(nk|d + α)

Γ(n·|d +Kα)

Γ(n·|d +Kα + 1)

Γ(nwdn|k + η + 1)

Γ(nwdn|k + η)

Γ(n·|k + V η)

Γ(n·|k + V η + 1)

=
nk|d + α

n·|d + Tα
·
nwdn|k + η

n·|k + V η
(4.6)

4.2 Hybrid Variational-MCMC Inference

Recall that variational Bayesian inference follows an expectation maximization

approach, where the local variational parameters φdn (the variational distribution

over all the topics for the nth token in dth document) are updated in the expectation

step. Instead of computing this distribution explicitly, Mimno et al. (2012) propose

to use MCMC inference to approximate it. The distribution sampled from MCMC

will be subsequently sparse—namely, only a few topics will be activated. They

further show that such a sparse representation for φdn improves performance.

LDA models each of the D documents in a corpus as a mixture of K topics. It

can be specified by corpus-level global variables and document-level local variables.

The global variables are K topic-word distributions {βk} over all the vocabulary.
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For a document d with Nd tokens, the local variables are the distribution over all

the topics θd and the topic indicator variables {zdn} for all Nd words.

Unlike the standard mean-field variational Bayesian inference (Blei et al., 2003)

which imposes a variational distribution for θ, the hybrid approach marginalizes this

distribution. The variational distribution in this case is

q(z,β) =
∏
d

q(zd)
∏
k

q(βk). (4.7)

This factorization differs from the usual mean-field family for topic models. The

distribution q(zd) is a single distribution over the KNd possible topic configurations,

rather than a product of Nd distributions, each over K possible values.

Following Bishop (2006), the optimal variational distribution over topic config-

urations for a document, holding all other variational distribution fixed, is

q(zd) ∝ exp {Eq( 6=zd)[log p(zd|α)p(wd|zd,β)]} (4.8)

=
Γ(Kα)

Γ(Kα +Nd)

∏
k

Γ(α +
∑

n I [zdn = k])

Γ(α)

∏
n

exp {Eq[log βzdnwdn
]},

where ¬zd denotes the set of all unobserved variables besides zd, and I [•] is the

indicator function.

We can not explicitly evaluate this distribution because we would have to

consider a combinatorial number of topic configurations. To use stochastic gradient

ascent, however, we only need to approximate this distribution. We use MCMC

to sample topic configurations from q(zd), then use the empirical average of these
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samples to estimate the expectations.

We randomly initialize a topic configuration zd, then iteratively resample the

topic indicator for each word from the conditional distribution over that word given

all other topic assignment:

q(zdn = k|z−dn) ∝ (α +
∑
m 6=n

I [zdm = k]) exp {Eq[log βkwdn
]}. (4.9)

The distribution over topics for the dth documents can be therefore approximated by

collecting samples from this empirical distribution upon convergence to its stationary

distribution.

After some burn-in sweeps, we could start collecting samples from the empirical

distribution of the topic configuration. The expected sufficient statistics of word v in

topic k can be approximated by the average of all these samples over all documents

and all tokens:

Eq[nkv] ≈
∑
d

∑
n

Eq[I [zdn = k] I [wdn = v]]. (4.10)

The global parameters λ—distribution over vocabulary per topic—can be subse-

quently updated as

λkv = η +
∑
d

∑
n

Eq[I [zdn = k] I [wdn = v]], (4.11)

where η is the topic Dirichlet prior.

This approach lets us take advantage of sparse computation which can be
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potentially scalable to larger datasets. In addition, Mimno et al. (2012) show that

this approach yields much better performance than the standard variational Bayesian

inference method and MCMC sampling approach.

In Chapter 5, we explore the effectiveness of these three inference techniques—

MCMC sampling, variational EM and hybrid inference—on polylingual tree-based

topic models, which is targeted to modeling topics in multilingual environment. This

approach is also one of the corner stone for our online hybrid inference framework

for Bayesian nonparametric models, which we will discuss in Chapter 7 and 8.
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Chapter 5

Polylingual Tree-Based Topic Models

In Section 3.3.2, we demonstrate one flexible extension of Mr. LDA—

polylingual LDA to model topics for multilingual corpus. In this chapter, we

continue on this path and focus on modeling topics in multilingual environment.

In Section 5.1, we propose a novel model—polylingual tree-based topic models

(ptLDA)—to learn topics from multilingual corpus. Our model significantly differs

from all past multilingual topic models in the way that it uses information from

both external dictionaries and document alignments simultaneously to infer more

meaningful and reliable topics. In Section 5.2, we derive three different inference

techniques—MCMC sampling, variational EM, and hybrid variational-MCMC

inference—for this new model.

In Section 5.3, we evaluate the effectiveness of our polylingual tree-based topic

models using a downstream application of statistical machine translation (Koehn,

2009, SMT). We parallelize our model using MapReduce and scale it up to large

collection of aligned datasets. We use the inferred topics as domain knowledge to

improve the performance over baseline SMT systems. We show that ptLDA offers

better domain adaptation than other topic models for machine translation.
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5.1 Polylingual Tree-based Topic Models

Several topic models have been proposed to bridge the chasm between languages

in the past using different information, e.g., document connections (Mimno et al.,

2009), dictionaries (Boyd-Graber & Resnik, 2010), word correlations (Hu et al., 2011;

Hu & Boyd-Graber, 2012; Hu et al., 2013) and word alignments (Zhao & Xing, 2006).

In this section, we bring existing tree-based topic models (Boyd-Graber et al.,

2007, tLDA) and polylingual topic models (Mimno et al., 2009, pLDA) together,

and create the polylingual tree-based topic model (ptLDA) that incorporates both

word-level correlations and document-level alignment information.

In the rest of this section, we first review tree-based topic models in Section 5.1.1

and polylingual topic models in Section 5.1.2. We propose and describe our new

polylingual tree-based topic models in Section 5.1.3.

5.1.1 Word-level Correlations

Tree-based topic models incorporate the correlations between words by encour-

aging words that appear together in a concept to have similar probabilities given

a topic. These concepts can come from WordNet (Boyd-Graber & Resnik, 2010),

domain experts (Andrzejewski et al., 2009), or user constraints (Hu et al., 2013).

When we gather concepts from bilingual resources, these concepts can connect differ-

ent languages. For example, if a bilingual dictionary defines “电脑” as “computer”,

we combine these words in a concept.

We organize the vocabulary in a tree structure based on these concepts (Fig-
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ure 5.1): words in the same concept share a common parent node, and then that

concept becomes one of many children of the root node. Words that are not in any

concept—uncorrelated words—are directly connected to the root node. We call

this structure the tree prior.

When this tree serves as a prior for topic models, words in the same concept

are correlated in topics. For example, if “电脑” has high probability in a topic, so

will “computer”, since they share the same parent node. With the tree priors, each

topic is no longer a distribution over word types, instead, it is a distribution over

paths, and each path is associated with a word type. The same word could appear

in multiple paths, and each path represents a unique sense of this word.

5.1.2 Document-level Alignments

Lexical resources connect languages and help guide the topics. However, these

resources are sometimes brittle and may not cover the whole vocabulary. Aligned

document pairs provide a more corpus-specific, flexible association across languages.

Polylingual topic models (Mimno et al., 2009) assume that the aligned docu-

ments in different languages share the same topic distribution and each language

has a unique topic distribution over its word types. This level of connection between

languages is flexible: instead of requiring the exact matching on words and sentences,

only a coarse document alignment is necessary, as long as the documents discuss the

same topics.
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5.1.3 Combine Words and Documents

We propose polylingual tree-based topic models (ptLDA), which connect

information across different languages by incorporating both word correlation (as

in tLDA) and document alignment information (as in pLDA). In the context of

this dissertation, we assume the tree structure is given a priori. For the detailed

information on how to build meaningful prior tree structure, please refer to Hu et al.

(2011); Hu (2014).

As in lda, each word token is associated with a topic. However, tree-based

topic models introduce an additional step of selecting a concept in a topic responsible

for generating each word token. This is represented by a path yd,n through the topic’s

tree.

The probability of a path in a topic depends on the transition probabilities in

a topic. Each concept i in topic k has a distribution over its children nodes governed

by a Dirichlet prior: πk,i ∼ Dir(βi). Each path ends in a word (i.e., a leaf node) and

the probability of a path is the product of all of the transitions between topics it

traverses. Topics have correlations over words because the Dirichlet parameters can

encode positive or negative correlations (Andrzejewski et al., 2009).

With these correlated in topics in hand, the generation of documents is very

similar to lda. For every document d, we first sample a distribution over topics θd

from a Dirichlet prior Dir(α). For every token in the documents, we first sample a

topic zdn from the multinomial distribution θd, and then sample a path ydn along

the tree according to the transition distributions specified by topic zdn. Because
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every path ydn leads to a word wdn in language ldn, we append the sampled word wdn

to document dldn . Aligned documents have words in both languages; monolingual

documents only have words in a single language.

The full generative process is:

1: for topic k ∈ 1, · · · , K do

2: for each internal node ni do

3: draw a distribution πki ∼ Dir(βi)

4: end for

5: end for

6: for document set d ∈ 1, · · · , D do

7: draw a distribution θd ∼ Dir(α)

8: for each word in documents d do

9: choose a topic zdn ∼ Mult(θd)

10: sample a path ydn with probability
∏

(i,j)∈ydn πzdn,i,j

11: ydn leads to word wdn in language ldn

12: append token wdn to document dldn

13: end for

14: end for

If we use a flat symmetric Dirichlet prior instead of the tree prior, we recover

pLDA; and if all documents are monolingual (i.e., with distinct distributions over

topics θ), we recover tLDA. ptLDA connects different languages on both the

word level (using the word correlations) and the document level (using the docu-
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computer, ��
market, 市�
government, 政府
science, 科学

Dictionary: Vocabulary: English (0), Chinese (1)

computer �� market 市� government 政府 science 科学

天气scientific policy

0    scientific
0    policy
1    ��
1    市�

0    computer  
0    market
0    government
0    science

1    政府
1    科学
1    天气

Prior Tree:  0  1

Figure 5.1: An example of constructing a prior tree from a bilingual dictionary:
word pairs with the same meaning but in different languages are concepts; we create
a common parent node to group words in a concept, and then connect to the root;
uncorrelated words are connected to the root directly. Each topic uses this tree
structure as a prior.

ment alignments). We compare these models’ machine translation performance in

Section 5.3.

5.2 Inference

Inference of probabilistic models discovers the posterior distribution over latent

variables. For a collection of D documents, each of which contains Nd number of

words, the latent variables of ptLDA are: transition distributions πki for every

topic k and internal node i in the prior tree structure; multinomial distributions over

topics θd for every document d; topic assignments zdn and path ydn for the nth word
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wdn in document d. The joint distribution of polylingual tree-based topic models is

p(w, z,y,θ,π;α, β) =
∏

k

∏
i p(πki|βi) ·

∏
d p(θd|α) ·

∏
d

∏
n p(zdn|θd) (5.1)

·
∏

d

∏
n

(
p(ydn|zdn,π)p(wdn|ydn)

)
.

Exact inference is intractable, so we turn to approximate posterior inference

to discover the latent variables that best explain our data. We explore multiple

inference schemes, including variational inference (Section 2.3.1), MCMC sampling

(Section 4.1) and hybrid approach (Section 4.2). While all of these methods optimize

the joint likelihood but they might give different results on a downstream translation

task.

5.2.1 Markov Chain Monte Carlo Inference

We use a collapsed Gibbs sampler for tree-based topic models to sample the

path ydn and topic assignment zdn for word wdn,

p(zdn = k, ydn = s|¬zdn,¬ydn,w;α,β) (5.2)

∝ I [Ω(s) = wdn] ·
Nk|d + α∑
k′(Nk′|d + α)

·
∏
i→j∈s

Ni→j|k + βi→j∑
j′(Ni→j′|k + βi→j′)

,

where Ω(s) represents the word that path s leads to, Nk|d is the number of tokens

assigned to topic k in document d and Ni→j|k is the number of times edge i→ j in

the tree assigned to topic k, excluding the topic assignment zdn and its path ydn of

current token wdn. In practice, we sample the latent variables using efficient sparse
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updates (Yao et al., 2009; Hu & Boyd-Graber, 2012).

5.2.2 Variational Bayesian Inference

Variational Bayesian inference approximates the posterior distribution with

a simplified variational distribution q over the latent variables: document topic

proportions θ, transition probabilities π, topic assignments z, and path assignments

y.

Variational distributions typically assume a mean-field distribution over these

latent variables, removing all dependencies between the latent variables. We follow

this assumption for the transition probabilities q(π |λ) and the document topic

proportions q(θ |γ); both are variational Dirichlet distributions. However, due to

the tight coupling between the path and topic variables, we must model this joint

distribution as one multinomial, q(z,y |φ). If word token wdn has K topics and

S paths, it has a K ∗ S length variational multinomial φdnks, which represents

the probability that the word takes path s in topic k. The complete variational

distribution is

q(θ,π, z,y|γ,λ,φ) =
∏

d q(θd|γd) ·
∏

k

∏
i q(πki|λki) ·

∏
d

∏
n q(zdn, ydn|φdn).

(5.3)

Our goal is to find the variational distribution q that is closest to the true

posterior, as measured by the Kullback-Leibler (KL) divergence between the true

posterior p and variational distribution q. This induces an “evidence lower bound”
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(ELBO, L) as a function of a variational distribution q:

L = Eq[log p(w, z,y,θ,π)]− Eq[log q(θ,π, z,y)]

=
∑

k

∑
i Eq[log p(πki|βi)] +

∑
d Eq[log p(θd|α)]

+
∑

d

∑
n Eq[log p(zdn, ydn|θd,π)p(wdn|ydn)]

+ H[q(θ)] + H[q(π)] + H[q(z,y)], (5.4)

where H[•] represents the entropy of a distribution.

Optimizing L using coordinate descent provides the following updates:

φdnkt ∝ exp{Ψ(γdk)−Ψ(
∑

k γdk) +
∑

i→j∈s
(
Ψ(λk,i→j)−Ψ(

∑
j′ λk,i→j′)

)
};

γdk = αk +
∑

n

∑
s∈Ω−1(wdn) φdnkt; (5.5)

λk,i→j = βi→j +
∑

d

∑
n

∑
s∈Ω′(wdn) φdnktI [i→ j ∈ s] ;

where Ω′(wdn) is the set of all paths that lead to word wdn in the tree, and t

represents one particular path in this set. I [i→ j ∈ s] is the indicator of whether

path s contains an edge from node i to j.

5.2.3 Hybrid Variational-MCMC Inference

Given the complementary strengths of MCMC and V.B., and following hybrid

inference we discussed in Chapter 4, we also derive hybrid inference for ptLDA.

The transition distributions π are treated identically as in variational inference.

We posit a variational Dirichlet distribution λ and choose the one that minimizes
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the KL divergence between the true posterior and the variational distribution.

For topic z and path y, instead of variational updates, we use a Gibbs sampler

within a document. We sample zdn and ydn conditioned on the topic and path

assignments of all other document tokens, based on the variational expectation of π,

q(zdn = k, ydn = s|¬zdn,¬ydn;w) ∝ (α +
∑

m 6=n I [zdm = k])

· exp{Eq[log p(ydn|zdn,π)p(wdn|ydn)]}.

This equation embodies how this is a hybrid algorithm: the first factor resembles

the Gibbs sampling term encoding how much a document prefers a topic, while the

second factor encodes the expectation under the variational distribution of how much

a path is preferred by this topic,

Eq[log p(ydn|zdn,π)p(wdn|ydn)] = I[Ω(ydn)wdn] ·
∑

i→j∈ydn Eq[log λzdn,i→j].

For every document, we sweep over all its tokens and resample their topic

zdn and path ydn conditioned on all the other tokens’ topic and path assignments

¬zdn and ¬ydn. To avoid bias, we discard the first B burn-in sweeps and take the

following M samples. We then use the empirical average of these samples update

the global variational parameter q(π|λ) based on how many times we sampled these

paths

λk,i→j = 1
M

∑
d

∑
n

∑
s∈Ω−1(wdn)

(
I [i→ j ∈ s] · I [zdn = k, ydn = s]

)
+ βi→j. (5.6)
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For our experiments, we use the recommended settings B = 5 and M = 5 from Mimno

et al. (2012).

5.3 Experiments

Topic models have two primary applications: to aid human exploration of

corpora (Chang et al., 2009b) or serve as a low-dimensional representation for

downstream applications. In this section, we focus on the second application, which

has been fruitful for computer vision (Li Fei-Fei & Perona, 2005), computational

biology (Perina et al., 2010), and information retrieval (Kataria et al., 2011).

We evaluate our polylingual tree-based topic models on the downstream task

of statistical machine translation (SMT). In the rest of this section, we first briefly

review the domain adaptation for SMT, and several past approaches using topic

models as domain knowledge for SMT. We then discuss about the general setup

of our SMT pipeline, configurations of our experiments, and underlying datasets.

Finally, we show the performance of our polylingual tree-based topic models on

domain adaptation for SMT systems. We demonstrate our model yields 1.2 BLEU

score improvement over strong baselines.

Domain Adaptation for SMT Modern machine translation systems use millions

of examples of translations to learn translation rules. These SMT systems are usually

trained on documents with the same genre (e.g., sports, business) from a similar

style (e.g., newswire, blog-posts). These are called domains. Translations within one

domain are better than translations across domains since they vary dramatically

70



in their word choices and style. A correct translation in one domain may be

inappropriate in another domain. For example, “潜水” in a newspaper usually means

“underwater diving”. On social media, it means a non-contributing “lurker”.

Systems that are robust to systematic variation in the training set are said

to exhibit domain adaptation. Training a SMT system using diverse data requires

domain adaptation. Early efforts focus on building separate models (Foster & Kuhn,

2007) and adding features (Matsoukas et al., 2009) to model domain information.

Chiang et al. (2011) combine these approaches by directly optimizing genre and

collection features by computing separate translation tables for each domain.

Topic Models as Domain Adaptation Topic models provide a solution where

domains can be automatically induced from raw data: treat each topic as a domain.1

They have been shown to be a promising solution for automatically discovering

domains in machine translation corpora.

Machine translation uses inherently multilingual data: an SMT system must

translate a phrase or sentence from a source language to a different target language.

However, past work either relies solely on monolingual source-side models (Eidelman

et al., 2012; Hasler et al., 2012; Su et al., 2012), or limited modeling of the target

side (Xiao et al., 2012).

We evaluate our new polylingual tree-based topic models, ptLDA, and existing

topic models—LDA, pLDA, and tLDA—on their ability to induce domains for

machine translation and the resulting performance of the translations on standard

1Henceforth we will use the term “topic” and “domain” interchangeably: “topic” to refer to the
concept in topic models and “domain” to refer to SMT corpora.
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machine translation metrics.

Dataset and SMT Pipeline We use the NIST MT Chinese-English parallel

corpus (NIST), excluding non-UN and non-HK Hansards portions as our training

dataset. It contains 1.6M sentence pairs, with 40.4M Chinese tokens and 44.4M

English tokens. We replicate the SMT pipeline of Eidelman et al. (2012): word

segmentation (Tseng et al., 2005), align (Och & Ney, 2003), and symmetrize (Koehn

et al., 2003) the data. We train a modified Kneser-Ney trigram language model on

English (Chen & Goodman, 1996). We use CDEC (Dyer et al., 2010) for decoding,

and MIRA (Crammer et al., 2006) for parameter training. To optimize SMT system,

we tune the parameters on NIST MT06, and report results on three test sets: MT02,

MT03 and MT05.2

Topic Models Configuration We compare our polylingual tree-based topic

model (ptLDA) against tree-based topic models (tLDA), polylingual topic models

(pLDA) and vanilla topic models (LDA).3 We also examine different inference

algorithms—Gibbs sampling (gibbs), variational inference (variational) and hy-

brid approach (variational-hybrid)—on the effects of SMT performance. In all

experiments, we set the per-document Dirichlet parameter α = 0.01 and the number

of topics to 10, as used in Eidelman et al. (2012).

2The NIST datasets contain 878, 919, 1082 and 1664 sentences for MT02, MT03, MT05 and
MT06 respectively.

3For Gibbs sampling, we use implementations available in Hu et al. (2013) for tLDA; and
Mallet (McCallum, 2002) for LDA and pLDA.
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Resources for Prior Tree To build the tree for tLDA and ptLDA, we extract

the word correlations from a Chinese-English bilingual dictionary (Denisowski, 1997).4

We filter the dictionary using the NIST vocabulary, and keep entries mapping single

Chinese and single English words. The prior tree has about 1000 word pairs (dict).

We also extract the bidirectional word alignments between Chinese and English

using GIZA++ (Och & Ney, 2003). We then remove the word pairs appearing more

than 50K times or fewer than 500 times and construct a second prior tree with about

2500 word pairs (align).

We apply both trees to tLDA and ptLDA, denoted as tLDA-dict, tLDA-

align, ptLDA-dict, and ptLDA-align. However, tLDA-align and ptLDA-align do

worse than tLDA-dict and ptLDA-dict, so we omit tLDA-align in the results.

SMT Performance Evaluation We examine the effectiveness of using topic

models for domain adaptation on standard SMT evaluation metrics—BLEU (Pap-

ineni et al., 2002) and TER (Snover et al., 2006). We report the results on three

different test sets (Figure 5.2), and all SMT results are averaged over five runs.

We refer to the SMT model without domain adaptation as baseline.5 LDA

marginally improves machine translation (less than half a BLEU point). Polylin-

gual topic models pLDA and tree-based topic models tLDA-dict are consistently

better than LDA, suggesting that incorporating additional bilingual knowledge

improves topic models. These improvements are not redundant: our new ptLDA-

4This is a two-level tree structure. However, one could build a more sophisticated tree prior
with a hierarchical dictionary such as multilingual WordNet.

5Our replication of Eidelman et al. (2012) yields slightly higher baseline performance, but the
trend is consistent.
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Figure 5.2: Machine translation performance for different models and inference
algorithms against the baseline, on BLEU (top, higher the better) and TER (bottom,
lower the better) scores. Our proposed ptLDA performs best. Results are averaged
over 5 random runs. For model ptLDA-dict with different inference schemes, the
BLEU improvement on three test sets is mostly significant with p = 0.01, except
the results on MT03 using variational and variational-hybrid inferences.

dict model, which has aspects of both models yields the best performance among

these approaches—up to a 1.2 BLEU point gain (higher is better), and -2.6 TER

improvement (lower is better). The BLEU improvement is significant (Koehn, 2004)

at p = 0.01,6 except on MT03 with variational and variational-hybrid inference.

While ptLDA-align performs better than baseline SMT and LDA, it is

worse than ptLDA-dict, possibly because of errors in the word alignments, making

the tree priors less effective.

6Because we have multiple runs of each topic model (and thus different translation models), we
select the run closest to the average BLEU for the translation significance test.
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Scalability of Inference Methods While gibbs has better translation scores

than variational and variational-hybrid, it is less scalable to larger datasets. With

1.6M NIST training sentences, gibbs takes nearly a week to run 1000 iterations. In

contrast, the parallelized variational and variational-hybrid approaches, which

we implement in MapReduce (Dean & Ghemawat, 2004; Wolfe et al., 2008) similar

to what we discussed in Chapter 3, take less than a day to converge.

5.4 Summary

Topic models generate great interest, but their use in “real world” applications

still lags; this is particularly true for multilingual topic models. As topic models

become more integrated in commonplace applications, their adoption, understanding,

and robustness will improve.

This chapter contributes to the deeper integration of topic models into critical

applications by presenting a new multilingual topic model, ptLDA, comparing it

with other multilingual topic models on a machine translation task, and showing

that these topic models improve machine translation. ptLDA models both source

and target data to induce domains from both dictionaries and alignments. Further

improvement is possible by incorporating topic models deeper in the decoding process

and adding domain knowledge to the language model.
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Chapter 6

Background: Online Truncation-Free Variational Inference

As discussed in Chapter 1, other than parallelization, one other solution to

scale up topic models and related probabilistic Bayesian models is to infer the latent

parameters in online streaming mode. The basic idea of online learning for topic mod-

els follows the general framework of stochastic gradient descent algorithm (Diebolt

& Ip, 1996; Bottou, 1998; Bottou & Le Cun, 2003).

In this chapter, we first review the online variational inference for latent

Dirichlet allocation (Hoffman et al., 2010) in Section 6.1. Then, we briefly talk

about the Dirichlet process and its generalization Pitman-Yor process in Section 6.2,

which are popular Bayesian nonparametric models for discrete data. Finally, in

Section 6.3, we discuss the truncation-free update mechanism that enables online

hybrid inference for Bayesian nonparametric models. In following chapters, we are

going to apply the online hybrid inference to topic models (Chapter 7) and adaptor

grammars (Chapter 8).

6.1 Online Variational Inference

Recall the evidence lower bound (ELBO) L for LDA discussed in Chapter 2,

it is computed over the entire dataset of D documents. This requires the algorithm

to take a full pass through the entire dataset. It can therefore be slow to apply
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to very large datasets, and is not naturally suited to settings where new data are

constantly arriving. To deal with this limitation, Hoffman et al. (2010) propose

an online variational inference algorithm for topic models. The online algorithm is

nearly as simple as the batch variational inference algorithm, but converges much

faster for large datasets.

In the online setting, we assume documents arrive sequentially in time. In

order to get an approximation of the gradient over entire dataset from only one

document, we assume that particular document appears D times, i.e., the entire

dataset contains D exactly same documents. The ELBO in this case is written as

L =D ·
∑
n

Eq [log p(wn|zn,β)] +D ·
∑
n

Eq [log p(zn|θ)]

+D · Eq [log p(θd|α)] +
∑
k

Eq [log p(βk|η)]

−D · Eq [log q(zd|φd)]−D · Eq [log q(θd|γd)]−
∑
k

Eq [log q(βk|λk)] , (6.1)

and obtain a stochastic approximation over the gradient.

Given the ELBO, we are able to write down the noisy update of global

variational parameter λ as

λ̃kv = ηkv +D ·
(
w(d)
v φ

(d)
kv

)
. (6.2)

In such case, the online update of the global variational parameter is simply the
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interpolation of the old value and the noisy update:

λ = (1− ε)λ+ ελ̃, (6.3)

where ε is the decay factor of λ over iterations.

Such an update follows the theory of Newton’s methods, which multiplies

the gradient with the inverse of the Hessian H matrix for objective function using

conjugate gradient techniques. In variational inference, an alternative is to use the

Fisher information matrix of the variational distribution q, i.e., the Hessian of the

log of the variational probability density function (Sato, 2001; Bottou & Murata,

2002). Please refer to Hoffman et al. (2010, pg. 5-6) for a detailed derivation.

The decay factor ε is usually set to ε = (τ0 + i)−κ, where i is the iteration

counts. Learning inertia τ0 prevents premature convergence (i.e., slows down the

early iterations of the learning algorithm), and learning rate κ controls how quickly

new parameter estimates replace the old ones. Variable κ ∈ (0.5, 1] is required for

convergence.

One common technique in stochastic learning is to consider multiple observa-

tions per update to reduce noise. In the online case, this means approximating the

gradient and updating the variational parameters using minibatches that contains B

documents:

λ̃v,k = ηv,k +
D

B

∑
b

(
w(d)
v φ

(d)
v,k

)
, (6.4)
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and we recover the batch setting if B = D and κ = 0.

6.2 Dirichlet Process

One model challenge during online inference, is due to the online stochastic

nature—namely, the dimensionality of latent parameter space is often unknown in

advance. This is a classical Bayesian nonparametric problem. Bayesian nonparametric

is an appealing solution, because it models arbitrary distributions with an unbounded

and possibly countably infinite support.

While Bayesian nonparametric is a broad field, we focus on the Dirichlet

process (Ferguson, 1973, DP). In the following sections, we are going to briefly

review the definition of a Dirichlet process (Section 6.2), and discuss how to inference

the latent parameters in online fashion using truncation-free variational updates

(Section 6.3).

The Dirichlet process (Ferguson, 1973, DP) is a two-parameter distribution

with scale parameter αβ and base distribution G0. It can be represented using

Chinese restaurant process (Pitman, 2002, CRP), as well as a stick-breaking pro-

cess (Sethuraman, 1994). We are going to explain these two representations in the

rest of this section.

6.2.1 Chinese Restaurant Process

One of the common representations for the Dirichlet process is the Chinese

restaurant process (Aldous, 1985). It does not refer to the sample G ∼ G0 directly,
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but models draws from G instead. Imaging a Chinese restaurant with possibly

unbounded number of tables, each of which could fit possibly infinite number of

customers. The metaphor refers to the process of customers constantly walking into

the restaurant. The first customer sits at the first table with probability 1. For

every new customer, he chooses to sit either on the table proportional to the number

of customers already sitting on that table, or sit on a new unoccupied table with

probability αβ. The Chinese restaurant process exhibits a clustering property. This

metaphor has turned out to be useful in considering various generalizations of the

Dirichlet process (Pitman, 2002) and many applications of Bayesian nonparametric

methods (Teh et al., 2006).

6.2.2 Stick-breaking Process

Another way to express Dirichlet process is via the stick-breaking process,

since the draws from a DP are composed of a weighted sum of point masses.

Sethuraman (1994) made this precisely by providing a constructive definition of the

DP, called the stick-breaking construction. This construction is also significantly

more straightforward than many past approaches to construct DPs (Ferguson, 1973;

Pitman, 2002).

A drawG from DP(αβ, G0)—under the stick-breaking construction—is modeled

with a series draws from a Beta distribution,

b1, . . . , bi, . . . ∼ Beta(1, αβ), ρ1, . . . , ρi, . . . ∼ G0.noteot (6.5)
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These individual draws from a Beta distribution are the foundation for the stick-

breaking construction of the DP (Sethuraman, 1994). Each breaking point bi models

how much probability mass remains. These break points combine to form an “infinite”

multinomial,

βi ≡ bi

i−1∏
j=1

(1− bj), G ≡
∑
i

βiδρi , (6.6)

where the weights βi give the probability of selecting any particular atom ρi from

the base distribution.

The stick-breaking process prior can be understood metaphorically as follows.

Starting with a stick of unit length, we break it at b1, assigning β1 to be the length of

stick we just broke off. Now recursively break the other portion to obtain β2, β3 and

so forth. The stick-breaking distribution over β is often written as β ∼ GEM(αβ)1.

Due to its simplicity, the stick-breaking construction has led to a variety of extensions

as well as novel inference techniques for the Dirichlet process.

6.2.3 Generalization of Dirichlet Process

The Dirichlet process is a canonical distribution over probability measures and

can be generalized to the Pitman-Yor process (Pitman & Yor, 1997, PY) to model

data exhibiting power-law properties (Goldwater et al., 2006; Teh et al., 2006).

A draw Hc ≡ (πc, zc) from the Pitman-Yor process is formed by the stick-

breaking process (Sudderth & Jordan, 2008, PYGEM) parametrized by scale pa-

1The distribution is named after initials of Griffiths, Engen and McCloskey.
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rameter a, discount factor b, and base distribution Gc:

π′k ∼Beta(1− b, a+ kb), zk ∼Gc,

πk ≡π′k
∏k−1

j=1(1− π′j), H ≡
∑

k πkδzk . (6.7)

Similar to Dirichlet process, the distribution Hc is a discrete reconstruction of the

atoms sampled from Gc—hence, reweights Gc—but exhibits power-law behavior.

The Pitman-Yor process reduces to the Dirichlet process when b = 0. The various

representations of the DP, including the Chinese restaurant process (Section 6.2.1)

and the stick-breaking construction (Section 6.2.2), have similar analogues for the

Pitman-Yor process.

6.2.4 Application of Dirichlet Process

The Dirichlet process and its generalization Pitman-Yor process have been

widely used in many Bayesian nonparametric models. For example, they have been

applied as a Bayesian nonparametric prior in Gaussian mixture models (Rasmussen,

2000; Blei & Jordan, 2005; Wood & Black, 2008) and sequential models (Beal et al.,

2002; Fox et al., 2008; Paisley & Carin, 2009) to model the number of latent mixture

components or states. In the field of computer vision, they have been used in

modeling the number of image segments (Sudderth et al., 2005). They have also

been applied in Bayesian hierarchical models, such as topic models (Teh et al., 2006;

Wang et al., 2011) and language modeling (Teh, 2006; Johnson et al., 2007; Liang

et al., 2007).
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6.3 Truncation-Free Variational Inference

The variational inference for Dirichlet process and Pitman-Yor process is

particularly challenging, due to the infinite support. Variational inference algorithms

for Bayesian nonparametric models do not operate in an unbounded latent space.

One common method to inference the variational parameters in Dirichlet process and

Pitman-Yor process is to “truncate” the stick-breaking process to a distribution with

finite supports (Blei & Lafferty, 2005). This certainly reduces the model complexity

to a manageable scale during the inference.

As noted in previous section, variational inference methods usually truncate

the variational distributions to maintain tractable. This is particularly limiting in

the online setting, where we hope for a Bayesian nonparametric posterior seamlessly

adapting its model complexity to an endless stream of data.

Wang & Blei (2012) develop a truncation-free stochastic variational inference

algorithm for nonparametric Bayesian models. It lets us more easily apply Bayesian

nonparametric data analysis to massive and streaming data, which is our main focus

in this dissertation. When applied to Bayesian nonparametric models, it does not

require truncations and gives a principled mechanism for adapting the truncation

level or model complexity of the variational distributions on the fly.

In the following chapters, we apply this method and propose the online hybrid

inference framework. We use this framework to explore different parameter space and

infer the latent parameters for Bayesian nonparametric models in the online setting.

In Chapter 7, we propose a novel online topic model with infinite vocabulary, which
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significantly differs from all past approaches in a way that it allows the vocabulary

to grow over time. In Chapter 8, we apply the online hybrid inference framework on

an existing Bayesian nonparametric model—adaptor grammars.
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Chapter 7

Online Latent Dirichlet Allocation with Infinite Vocabulary

Following the discussion in Chapter 1, a common strategy to scale up topic

models—other than the parallelization approach introduced in Chapter 3—is con-

verting batch algorithms into streaming algorithms that only make one pass over

the data. In this chapter, we focus on the online streaming approach to scale up

topic models. We propose a novel online LDA which supports possibly unbounded

vocabulary. Our model significantly differs from all past online approaches in the

way that our model allows the vocabulary to change and evolve throughout time,

which is a challenge, but often overlooked problem. We derive online hybrid inference

for our proposed model. We further demonstrate our model is able to incorporate

new words into vocabulary and effectively refine topics over time.

Online learning of general Bayesian statistical models relies on update the

model parameters in an incremental fashion. One common approach for online

MCMC methods is known as sequential Monte Carlo (SMC) methods, also referred

as particle filters, which are fundamentally similar to the method of importance

sampling (Doucet et al., 2001). The basic idea is to approximate a distribution of

interest using a swarm of weighted, sequentially updated samples, commonly referred

as particles. SMC methods have been successfully applied to perform inference in

LDA (Canini et al., 2009). However, a näıve implementation of this method may
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lead to a large variance in the resulting samples, which may require extra steps of

resampling.

There are other online LDA approaches using MCMC methods as well.Song

et al. (2005) extend the batch mode Gibbs sampler into an online algorithm—also

referred as “o-LDA” in Banerjee & Basu (2007)—by sampling the topic distribution

conditioning only on the topics of the words up to the end of the previous document,

rather than all previous words. The algorithm requires a batch initialization and

incrementally samples all the subsequent topics without resampling old topics. Canini

et al. (2009) later discover that the performance of o-LDA method depends critically

on the accuracy of the topics inferred during its batch initialization phase, and

subsequently propose an incremental Gibbs sampler with rejuvenation to avoid the

batch initialization step. AlSumait et al. (2008) introduce the idea of evolutionary

matrix to model the change of the distribution over words per topic over a sliding

window at any time. Although it offers the dynamics to detecting emerging trends

in text streams and track their drift over time, it alters the underlying generative

process of LDA and may not be easily generalized to other Bayesian statistical

models.

Compared to MCMC, the online updates for variational inference can be

viewed as a classical online learning problem (Bottou, 1998). Hoffman et al. (2010)

extend LDA to online settings. However, this and later online topic models (Wang

et al., 2011; Mimno et al., 2012) make the same simple assumption. The namesake

topics, distributions over words that evince thematic coherence, are always modeled

as multinomials drawn from a finite Dirichlet distribution. This assumption precludes
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additional words being added over time. Particularly for streaming algorithms, this

is neither reasonable nor appealing. There are many reasons immutable vocabularies

do not make sense: words are invented (“crowdsourcing”) or words cross languages

(“Gangnam”). To be flexible, online topic models must be able to capture the

addition and invention of new terms in the data stream.

Allowing models to expand vocabulary to include additional words requires

changing the underlying statistical formalism. Instead of assuming that topics

come from a finite Dirichlet distribution, we assume that they come from a Dirichlet

process (Ferguson, 1973)—which we discussed in Section 6.2—with a base distribution

over all possible words, of which there are an infinite number. Bayesian nonparametric

tools like the Dirichlet process allow us to reason about distributions over infinite

supports. We review N -gram models of latent variable models in Section 7.1. In

Section 7.2, we propose the infinite vocabulary topic model, which uses Bayesian

nonparametric to go beyond fixed vocabularies.

In Section 7.3, we derive approximate hybrid inference for our model. We use the

truncation-free variation inference approach—which was discussed in Section 6.3—to

dynamically expand the vocabulary. Since emerging vocabulary are most important

in non-batch settings, in Section 7.4, we extend inference to online streaming settings.

We compare the coherence and effectiveness of our infinite vocabulary topic model

against models with fixed vocabulary in Section 7.5.

Figure 7.1 shows how a topic evolves during online inference, which is a

successful application of our model. The algorithm processes documents in subsets

we call minibatches ; after each minibatch, online hybrid inference updates our model’s
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T = 20K
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αβ = 5000
U = 20
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κ = 0.6

Figure 7.1: The evolution of a single “comic book” topic from the 20 newsgroups
corpus. Each column is a ranked list of word probabilities after processing a minibatch
(numbers preceding words are the exact rank). The box below the topics contains
words introduced in a minibatch. For example, “hulk” first appeared in minibatch
10, was ranked at 9659 after minibatch 17, and became the second most important
word by the final minibatch. Colors help show words’ trajectories.

parameters. This shows that out of vocabulary words can enter topics and eventually

become high probability words in corresponding topics.

7.1 N-gram Models in Latent Variable Models

A strength of the probabilistic formalism is the ability to embed specialized

models inside more general models. The problem of part-of-speech (POS) induc-

tion (Goldwater & Griffiths, 2007) uses morphological regularity within part of speech

classes (e.g., verbs in English often end with “ed”) to learn a character n-gram model
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for parts of speech (Clark, 2003). This has been combined within the latent variable

HMM via a Chinese restaurant process (Blunsom & Cohn, 2011).

We also view latent clusters of words (topics) as a nonparametric distribution

with a character n-gram base distribution, but to better support streaming data

sets, we use online variational inference; previous approaches used Monte Carlo

methods (Neal, 1993). Variational inference is easier to distribute (Chapter 3) and

amenable to online updates (Hoffman et al., 2010).

Within the topic modeling community, there are different approaches to deal

with changing word use. Dynamic topic models (Blei & Lafferty, 2006) discover

evolving topics by viewing word distributions as n-dimensional points undergoing

Brownian motion. These models reveal compelling topical evolution; e.g., physics

moving from studies of the æther to relativity to quantum mechanics. However, the

models assume fixed vocabularies; we show that our infinite vocabulary model

discovers more coherent topics (Section 7.5.2).

An elegant solution for large vocabularies is the “hashing trick” (Weinberger

et al., 2009), which maps strings into a restricted set of integers via a hash function.

These integers become the topic model’s vocabulary. While elegant, words are no

longer identifiable, since multiple words might be hashed to exactly the same integer

value. However, our infinite vocabulary topic model retains identifiability and better

models datasets (Section 7.5.3).
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7.2 Infinite Vocabulary Topic Model

The model we develop uses a base distribution over all possible words, and each

topic is a draw from the Dirichlet process (Section 6.2). This approach is inspired by

unsupervised models that induce parts-of-speech.

Our generative process is identical to LDA’s (Chapter 2) except that topics

are not drawn from a finite Dirichlet. Instead, topics are drawn from a DP with

base distribution G0 over all possible words:

1: for each topic k do

2: Draw words ρkt, (t = {1, 2, ...}) from G0.

3: Draw bkt ∼ Beta(1, αβ), (t = {1, 2, . . . }).

4: Set stick weights βkt = bkt
∏

s<t(1− bks).

5: end for

6: for each document d in a corpus D do

7: Choose distribution θd over topics from a Dirichlet distribution θd ∼ Dir(αθ).

8: for each of the n = 1, . . . , Nd word indexes do

9: Choose a topic zn from the distribution over topics of current document

zn ∼ Mult(θd).

10: Choose a word wn from the appropriate topic’s distribution over words

p(wn|βzn).

11: end for

12: end for
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Figure 7.2: Plate representation for latent Dirichlet allocation with infinite vocabu-
lary (left) and its variational distribution (right).

7.2.1 A Distribution over Words

An intuitive choice for G0 is a conventional character language model. However,

such a näıve approach is unrealistic and is biased to shorter words; preliminary

experiments yielded poor results. Instead, we define G0 as the following distribution

over strings

1: Choose a length l ∼ Mult(ζ).

2: Generate character ci ∼ p(ci|ci−n,...,i−1).

This is similar to the classic n-gram language model, except that the length is

first chosen from a multinomial distribution over all lengths. Estimating conditional

n-gram probabilities is well-studied in natural language processing (Jelinek & Mercer,

1985).

The full expression for the probability of a word ρ consisting of the characters

c1, c2, . . . under G0 is

G0(ρ) ≡ pWM(l = |ρ| | ζ)
∏|ρ|

i=1 p(ci|ci−n,...,i−1),
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where |ρ| is the length of the word. To avoid length bias, we chose the multinomial

ζ that minimizes the average discrepancy between word corpus probabilities pC and

the probability in our word model

ζ ≡ arg minζ
∑

ρ |pC(ρ)− pWM(ρ| ζ)|2, s.t.
∑

l ζl = 1.

The n-gram statistics are estimated from an English dictionary which need not

be very large, since it is a language model over characters, not words.

7.3 Variational Approximation

For a corpus of D documents where the d-th document contains Nd words, the

joint distribution is

p(W ,ρ,β,θ, z) =
∏K

k=1

[∏∞
t=1 p(ρkt|G0) · p(βkt|αβ)

]
·
[∏D

d=1 p(θd|αθ)
∏Nd

n=1 p(zdn|θd)p(ωdn|zdn,βzdn)
]
.

Let us denote the latent variables Z ≡ {corpus-level stick proportions β,

document topic distributions θ and word topic assignments z}. We turn to variational

inference (Section 2.3.1) to optimize the latent variables Z, and then select a simpler

family of distributions q.

Unlike mean-field approaches (Blei et al., 2003), which assume q is a fully

factorized distribution, we integrate out the word-level topic distribution vector θ:

q(zd | η) is a single distribution over KNd possible topic configurations rather than
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a product of Nd multinomial distributions over K topics. Combined with a beta

distribution q(bkt|ν1
kt, ν

2
kt) for stick-breaking points, the variational distribution q is

q(Z) ≡ q(β, z) =
∏

D q(zd | η)
∏

K q(bk |ν1
k ,ν

2
k). (7.1)

However, we cannot explicitly represent a distribution over all possible strings,

so we truncate our variational stick-breaking distribution q(b |ν) to a finite set.

7.3.1 Truncation Ordered Set

Variational methods typically cope with infinite dimensionality of nonparamet-

ric models by truncating the distribution to a finite subset of all possible atoms that

nonparametric distributions consider (Blei & Jordan, 2005; Kurihara et al., 2006;

Boyd-Graber & Blei, 2009). This is done by selecting a relatively large truncation

index Tk, and then stipulating that the variational distribution uses the rest of the

available stick at that index, i.e., q(bTk = 1) ≡ 1. As a consequence, β is zero in

expectation under q beyond that index.

However, directly applying such a technique is not feasible here, as truncation

is not just a search over dimensionality but also over atom strings and their ordering.

This is often a problem for nonparametric models, and the truncation that solves the

problem matches the underlying probabilistic model: for mixture models, it is the

number of components (Blei & Jordan, 2005); for hierarchical topic models, it is a

tree (Wang & Blei, 2009); for natural language grammars, it is grammatons (Cohen

et al., 2010). Similarly, our truncation is not just a fixed vocabulary size; it is a
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truncation ordered set (TOS), which imposes an ordering over all the atoms

in the truncation set. The ordering is important because the Dirichlet process

is a size-biased distribution; words with lower indices are likely to have a higher

probability than words with higher indices.

Each topic has a unique TOS Tk of limited size that maps every word type

w to an integer t; thus t = Tk(w) is the index of the atom ρkt that corresponds to

w. We defer how we choose this mapping until Section 7.3.3. More pressing is how

we compute the two variational distributions of interest. For q(z | η), we use local

collapsed MCMC sampling (Mimno et al., 2012) and for q(b | ν) we use stochastic

variational inference (Hoffman et al., 2010). We describe both in turn.

7.3.2 Stochastic Inference

We are going to infer the latent parameters using the hybrid MCMC varia-

tional inference (Section 4.2). In our model, the conditional distribution of a topic

assignment of a word with TOS index t = Tk(wdn) is

q(zdn = k|z−dn, t = Tk(wdn)) ∝
(∑Nd

m=1
m 6=n

Izdm=k + αθk

)
exp

{
Eq(ν) [log βkt]

}
. (7.2)

We iteratively sample from this conditional distribution to obtain the empirical

distribution φdn ≡ q̂(zdn) for latent variable zdn, which is fundamentally different

from mean-field approach (Blei et al., 2003).

There are two cases to consider for computing Eqn. (7.2)—whether a word wdn

is in the TOS for topic k or not. First, we look up the word’s index t = Tk(wdn). If
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this word is in the TOS, i.e., t ≤ Tk, the expectations are straightforward (Mimno

et al., 2012)

q(zdn = k) ∝
(∑Nd

m=1
m 6=n

φdmk + αθk

)
· exp{Ψ(ν1

kt) +
∑s<t

s=1 Ψ(ν2
ks)−

∑s≤t
s=1 Ψ(ν1

ks + ν2
ks)}

(7.3)

It is more complicated when a word is not in the TOS. We use the truncation-

free updates discussed in Section 6.3. The conditional distribution of an unseen word

(t > Tk) is

q(zdn = k) ∝
(∑Nd

m=1
m 6=n

φdmk + αθk

)
· exp{

∑s≤t
s=1 (Ψ(ν2

ks)−Ψ(ν1
ks + ν2

ks))}. (7.4)

This is different from finite vocabulary topic models that set vocabulary a

priori and ignore OOV words.

7.3.3 Refining the Truncation Ordered Set

In this section, we describe heuristics to update the TOS inspired by MCMC

conditional equations, a common practice for updating truncations. One component

of a good TOS is that more frequent words should come first in the ordering. This

is reasonable because the stick-breaking prior induces a size-biased ordering of the

clusters. This has previously been used for truncation optimization for Dirichlet

process mixtures and admixtures (Kurihara et al., 2007).

Another component of a good TOS is that words consistent with the underlying
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base distribution should be ranked higher than those not consistent with the base

distribution. This intuition is also consistent with the conditional sampling equations

for MCMC inference (Müller & Quintana, 2004); the probability of creating a new

table with dish ρ is proportional to αβG0(ρ) in the Chinese restaurant process, which

we discussed in Section 6.2.2.

Thus, to update the TOS, we define the ranking score of word t in topic k as

R(ρkt) = p(ρkt|G0)
D∑
d=1

Nd∑
n=1

φdnkδωdn=ρkt , (7.5)

sort all words by the scores within that topic, and then use those positions as the

new TOS. In Section 7.4.1, we present online updates for the TOS.

7.4 Online Inference

Online variational inference seeks to optimize the ELBO L by stochastic gra-

dient optimization. Because gradients estimated from a single observation are noisy,

stochastic inference for topic models typically uses “minibatches” of S documents

out of D total documents (Hoffman et al., 2010).

An approximation of the natural gradient of L with respect to ν is the product

of the inverse Fisher information and its first derivative (Sato, 2001)

∆ν1
kt = 1 + D

|S|
∑

d∈S
∑Nd

n=1 φdnkδωdn=ρkt − ν1
kt,

∆ν2
kt = αβ + D

|S|
∑

d∈S
∑Nd

n=1 φdnkδωdn>ρkt − ν2
kt, (7.6)
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which leads to an update of ν,

ν1
kt = ν1

kt + ε ·∆ν1
kt,

ν2
kt = ν2

kt + ε ·∆ν2
kt (7.7)

where εi = (τ0 + i)−κ defines the step size of the algorithm in minibatch i. The

learning rate κ controls how quickly new parameter estimates replace the old;

κ ∈ (0.5, 1] is required for convergence. The learning inertia τ0 prevents premature

convergence. We recover the batch setting if S = D and κ = 0.

7.4.1 Updating the Truncation Ordered Set

A nonparametric streaming model should allow the vocabulary to dynamically

expand as new words appear (e.g., introducing “vuvuzelas” for the 2010 World Cup),

and contract as needed to best model the data (e.g., removing “vuvuzelas” after

the craze passes). We describe three components of this process, expanding the

truncation, refining the ordering of TOS, and contracting the vocabulary.

Determining the TOS Ordering This process depends on the ranking score

of a word in topic k at minibatch i, Ri,k(ρ). Ideally, we would compute R from all

data. However, only a single minibatch is accessible. We have a per-minibatch rank

estimate

ri,k(ρ) = p(ρ|G0) · D
|Si|
∑

d∈Si

∑Nd

n=1 φdnkδωdn=ρ
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which we interpolate with our previous ranking

Rik(ρ) = (1− ε) ·Ri−1,k(ρ) + ε · rik(ρ). (7.8)

We introduce an additional algorithm parameter, the reordering delay U .

We found that reordering after every minibatch (U = 1) was not effective; we explore

the role of reordering delay in Section 7.5. After U minibatches have been observed,

we reorder the TOS for each topic according to the words’ ranking score R in

Eqn. (7.8); Tk(w) becomes the rank position of w according to the latest Rik.

Expanding the Vocabulary Each minibatch contains words we have not seen

before. When we see them, we must determine their relative rank position in the

TOS, their rank scores, and their associated variational parameters. The latter two

issues are relevant for online inference because both are computed via interpolations

from previous values in Eqn. (7.8) and (7.7). For an unseen word ω, previous values

are undefined. Thus, we set Ri−1,k for unobserved words to be 0, ν to be 1, and

Tk(ω) is Tk + 1 (i.e., increase truncation and append to the TOS).

Contracting the Vocabulary To ensure tractability we must periodically prune

the words in the TOS. When we reorder the TOS (after every U minibatches), we

only keep the top T terms, where T is a user-defined integer. A word type ρ will be

removed from Tk if its index Tk(ρ) > T and its previous information (e.g., rank and

variational parameters) is discarded. In a later minibatch, if a previously discarded

word reappears, it is treated as a new word.
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To keep the ranking score of all the words in the vocabulary, our proposed

framework bounds the memory cost to a constant factor of total number of unique

words appeared in the dataset. To accommodate larger corpora, we could always

discard a word’s ranking score information completely, and set to the smallest score

in current Tk if it appears again. Alternatively, Bloom filters (Bloom, 1970; Broder

& Mitzenmacher, 2002; Talbot & Osborne, 2007) are another choice to maintain

these statistics, as they provide a space efficient storage with strict one-sided error.

Pseudo-Code Throughout time, the vocabulary grows continuously in every

iteration. However, the refinement of the vocabulary is executed periodically after a

certain number of iterations in order to stabilize the vocabulary. The detailed online

variational inference algorithm is listed in Algorithm 4.

Algorithm 4 Online Variational Inference

1: for each document d in mini-batch S do
2: for every word n in document d do
3: Empirically sample the variational distribution q(zdn|φdn) using the

truncation-free approach as in Eqn. (7.3) and (7.4) iteratively until converge.
4: end for
5: end for
6: Update variational parameters ν using Eqn. (7.7).
7: Update the ranking score according to Eqn. (7.8).
8: Refine the vocabulary for every topic if necessary (Section 7.4.1).
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Figure 7.3: PMI score on de-news dataset against different settings of DP scale
parameter αβ, truncation level T and reordering delay U . Common parameter
settings: number of topics K = 10, learning rate κ = 0.8 and learning inertia τ0 = 64.
Our model is more sensitive to αβ and less sensitive to T .
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Figure 7.4: PMI score on 20 newsgroups dataset against different settings of DP
scale parameter αβ, truncation level T and reordering delay U . Common parameter
settings: number of topics K = 50, learning rate κ = 0.8 and learning inertia τ0 = 64.
Our model is more sensitive to αβ and less sensitive to T .

7.5 Experimental Evaluation

In this section, we evaluate the performance of our infinite vocabulary topic

model (infvoc) on two corpora: de-news1 and 20 newsgroups.2 Both corpora were

1 A collection of daily news items between 1996 to 2000 in English. It contains 9,756 documents,
1,175,526 word tokens, and 20,000 distinct word types. Available at homepages.inf.ed.ac.uk/

pkoehn/publications/de-news.
2 A collection of discussions in 20 different newsgroups. It contains 18,846 documents and

100,000 distinct word types. It is sorted by date into roughly 60% training and 40% testing data.
Available at qwone.com/~jason/20Newsgroups.
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parsed by the same tokenizer and stemmer with a common English stopword list (Bird

et al., 2009). First, we examine sensitivity to both model parameters and online

learning rates. Having chosen those parameters, we then compare our model with

other topic models with fixed vocabularies.

Evaluation Metric Typical evaluation of topic models is based on held-out likeli-

hood or perplexity. However, creating a strictly fair comparison for our model against

existing topic model algorithms is difficult, as traditional topic model algorithms must

discard words that have not previously been observed. Moreover, held-out likelihood

is a flawed proxy for how topic models are used in the real world (Chang et al.,

2009a). Instead, we use two evaluation metrics: topic coherence and classification

accuracy.

Pointwise mutual information (PMI), which correlates with human perceptions

of topic coherence, measures how words fit together within a topic. Following Newman

et al. (2009), we extract document co-occurrence statistics from Wikipedia and score

a topic’s coherence by averaging the pairwise PMI score (w.r.t. Wikipedia co-

occurrence) of the topic’s ten highest ranked words. Higher average PMI implies a

more coherent topic.

Classification accuracy is the accuracy of a classifier learned from the topic

distribution of training documents applied to testing documents (the topic model

sees both). A higher accuracy means the unsupervised topic model better captures

the underlying structure of the corpus. To better simulate real-world situations,

20-newsgroup’s test/train split is by date (test documents were posted after training
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Figure 7.5: PMI score on two datasets with reordering delay U = 20 against
different settings of decay factor κ and τ0. A suitable choice of DP scale parameter
αβ increases the performance significantly. Learning parameters κ and τ0 jointly
define the step decay. Larger step sizes promote better topic evolution.

documents).

Comparisons We evaluate the performance of our model (infvoc) against three

other models with fixed vocabularies: online variational Bayes LDA (fixvoc-vb,

Hoffman et al. 2010), online hybrid LDA (fixvoc-hybrid, Mimno et al. 2012), and

dynamic topic models (dtm, Blei & Lafferty 2006). Including dynamic topic models

is not a fair comparison, as its inferences requires access to all of the documents in
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the dataset; unlike the other algorithms, it is not online.

Vocabulary For fixed vocabulary models, we must decide on a vocabulary a

priori. We consider two different vocabulary methods: use the first minibatch to

define a vocabulary (null) or use a comprehensive dictionary3 (dict). We use the

same dictionary to train infvoc’s base distribution.

Experiment Configuration For all models, we use the same symmetric docu-

ment Dirichlet prior with αθ = 1/K, where K is the number of topics. Online models

see exactly the same minibatches. For dtm, which is not an online algorithm but

instead partitions its input into “epochs”, we combine documents in ten consecutive

minibatches into an epoch (longer epochs tended to have worse performance; this

was the shortest epoch that had reasonable runtime).

For online hybrid approaches (infvoc and fixvoc-hybrid), we collect 10 samples

empirically from the variational distribution in E-step with 5 burn-in sweeps. For

fixvoc-vb, we run 50 iterations for local parameter updates.

7.5.1 Sensitivity to Parameters

Figure 7.3 and Figure 7.4 show how the PMI score is affected by the DP scale

parameter αβ, the truncation level T , and the reordering delay U . The relatively high

values of αβ may be surprising to readers used to seeing a DP that instantiates dozens

of atoms, but when vocabularies are in tens of thousands, such scale parameters are

necessary to support the long tail. Although we did not investigate such approaches,

3http://sil.org/linguistics/wordlists/english/
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this suggests that more advanced nonparametric distributions (Teh, 2006) or explicitly

optimizing αβ may be useful. Relatively large values of U suggest that accurate

estimates of the rank order are important for maintaining coherent topics.

While infvoc is sensitive to parameters related to the vocabulary, once suitable

values of those parameters are chosen, it is no more sensitive to learning-specific

parameters than other online LDA algorithms (Figure 7.5), and values used for other

online topic models also work well here.

7.5.2 Comparing Algorithms: Coherence

Now that we have some idea of how we should set parameters for infvoc, we

compare it against other topic modeling techniques. We used grid search to select

parameters for each of the models4 and plotted the topic coherence averaged over all

topics in Figure 7.6.

While infvoc initially holds its own against other models, it does better and

better in later minibatches, since it has managed to gain a good estimate of the

vocabulary and the topic distributions have stabilized. Most of the gains in topic

coherence come from highly specific proper nouns which are missing from vocabularies

of the fixed-vocabulary topic models. This advantage holds even against dtm, which

uses batch inference.

4 For the de-news dataset, we select (20 newsgroups parameters in parentheses) minibatch size
S ∈ {140, 245} (S ∈ {155, 310}), DP scale parameter αβ ∈ {1k, 2k} (αβ ∈ {3k, 4k, 5k}), truncation
size T ∈ {3k, 4k} (T ∈ {20k, 30k, 40k}), reordering delay U ∈ {10, 20} for infvoc; and topic chain
variable tcv ∈ {0.001, 0.005, 0.01, 0.05} for dtm.
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Figure 7.6: PMI score on two datasets against different models. Our model infvoc
yields a better PMI score against fixvoc and dtm; gains are more marked in later
minibatches as more and more proper names have been added to the topics. Because
dtm is not an online algorithm, we do not have detailed per-minibatch coherence
statistics and thus show topic coherence as a box plot per epoch.

7.5.3 Comparing Algorithms: Classification

For the classification comparison, we consider additional topic models. While we

need the most probable topic strings for PMI calculations, classification experiments

only need a document’s topic vector. Thus, we also consider hashed vocabulary

schemes. The first, which we call dict-hashing, uses a dictionary for the known words

and hashes any other words into the same set of integers. The second, full-hash, used
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model settings accuracy %

S
=

1
55

τ 0
=

64
κ

=
0.

6

infvoc αβ = 3k T = 40k U = 10 52.683
fixvoc vb-dict 45.514
fixvoc vb-null 49.390
fixvoc hybrid-dict 46.720
fixvoc hybrid-null 50.474
fixvoc vb dict-hash 52.525
fixvoc vb full-hash T = 30k 51.653
fixvoc hybrid dict-hash 50.948
fixvoc hybrid full-hash T = 30k 50.948

dtm-dict tcv = 0.001 62.845
S

=
3
10

τ 0
=

64
κ

=
0.

6
infvoc αβ = 3k T = 40k U = 20 52.317
fixvoc vb-dict 44.701
fixvoc vb-null 51.815
fixvoc hybrid-dict 46.368
fixvoc hybrid-null 50.569
fixvoc vb dict-hash 48.130
fixvoc vb full-hash T = 30k 47.276
fixvoc hybrid dict-hash 51.558
fixvoc hybrid full-hash T = 30k 43.008

dtm-dict tcv = 0.001 64.186

Table 7.1: Classification accuracy based on 50 topic features extracted from 20
newsgroups data. Our model (infvoc) out-performs algorithms with a fixed or hashed
vocabulary but not dtm, a batch algorithm that has access to all documents.

in Vowpal Wabbit,5 hashes all words into a set of T integers.

We train 50 topics for all models on the entire dataset and collect the document

level topic distribution for every article. We treat such statistics as features and train

a SVM classifier on all training data using Weka (Hall et al., 2009) with default

parameters. We then use the classifier to label testing documents with one of the

20 newsgroup labels. A higher accuracy means the model is better capturing the

underlying content.

Our model infvoc captures better topic features than online LDA fixvoc (Ta-

ble 7.1) under all settings.6 This suggests that in a streaming setting, infvoc can

5hunch.net/~vw/
6Parameters were chosen via cross-validation on a 30%/70% dev-test split from the following

parameter settings: DP scale parameter α ∈ {2k, 3k, 4k}, reordering delay U ∈ {10, 20} (for infvoc
only); truncation level T ∈ {20k, 30k, 40k} (for infvoc and fixvoc full-hash models); step decay
factors τ0 ∈ {64, 256} and κ ∈ {0.6, 0.7, 0.8, 0.9, 1.0} (for all online models); and topic chain variable
tcv ∈ {0.01, 0.05, 0.1, 0.5} (for dtm only).
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better categorize documents. However, the batch algorithm dtm, which has access to

the entire dataset performs better because it can use later documents to retrospec-

tively improve its understanding of earlier ones. Unlike dtm, infvoc only sees early

minibatches once and cannot revise its model when it is tested on later minibatches.

7.5.4 Qualitative Example

Figure 7.1 shows the evolution of a topic in 20 newsgroups about comics as

new vocabulary words enter from new minibatches. While topics improve over

time (e.g., relevant words like “seri(es)”, “issu(e)”, “forc(e)” are ranked higher),

interesting words are being added throughout training and become prominent after

later minibatches are processed (e.g., “captain”, “comicstrip”, “mutant”). This is not

the case for standard online LDA—these words are ignored and the model does not

capture such information. In addition, only about 60% of the word types appeared

in the SIL English dictionary. Even with a comprehensive English dictionary, online

LDA could not capture all the word types in the corpus, especially named entities.

7.6 Summary

We proposed an online topic model that, instead of assuming vocabulary is

known a priori, adds and sheds words over time. While our model is better able

to create coherent topics, it does not outperform dynamic topic models (Blei &

Lafferty, 2006; Wang et al., 2008) that explicitly model how topics change. It

would be interesting to allow such models to—in addition to modeling the change of
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topics—also change the underlying dimensionality of the vocabulary.

Another possible extension is to adopt a two level hierarchical topic distribution:

have one DP for the vocabulary and then another DP for each topic. This might

be a better model. However, there are several challenges in doing online variational

inference in this model. One approach is to have a degenerate top level distribution

(Liang et al., 2007), but it is not intuitive to obtain a close form online update.

Another approach is to have an indicator to connect atoms between the two levels

(Wang et al., 2011), however, it is trickier in such case as atoms are identifiable since

they are connected to specific strings.

To keep the ranking score of all the words in the vocabulary, our proposed

framework bounds the memory cost to a linear factor of total number of unique

words appeared in the database. To accommodate larger corpus, we could always

discard a word’s ranking score information completely, and set to the smallest score

in current Tk if it appears again. Alternatively, Bloom filter (Bloom, 1970; Broder &

Mitzenmacher, 2002; Talbot & Osborne, 2007) is another choice to maintain these

statistics, as it provides a space efficient storage with strict one-sided error.

Topic models are only one example of probabilistic Bayesian models that can

benefit from online inference. In the next chapter, we apply online inference to

an expensive modeling framework—adaptor grammars (Johnson et al., 2007)—to

capture many Bayesian nonparametric probabilistic models. We extend our online

inference approach to adaptor grammars, and scale it up to handle much larger

datasets.
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Chapter 8

Online Adaptor Grammars with Hybrid Inference

In this chapter, we focus on adaptor grammars (Johnson et al., 2007), which

are Bayesian nonparametric models based on probabilistic context-free grammars

(PCFG). We propose a new online hybrid inference method for adaptor grammars.

Our inference method is able to expand, adjust and prune the set of adapted grammar

rules over time, which obviates the need for expensive preprocessing required by

previous approaches. We show that our method yields significant speed-up over

past approaches. This method can also be viewed as a generalization of online

hybrid inference framework we proposed in Chapter 7 to a broader class of Bayesian

nonparametric models.

PCFGs make a substantive assumption about the language’s underlying

structures, i.e., the context-free grammar rules are statistically independent of each

other. When generating a new instance according to the PCFG, its structure is

built up by applying a sequence of context-free grammar rules, where each rule in

the sequence is selected independently at random. Therefore, the generative process

of PCFG expands a symbol by completely ignoring the fact of a particular symbol

has been rewritten in the past. It does not take into consideration of the information

about what and how frequent a symbol has been rewritten into in the past. Adaptor

grammars weaken such a strong statistical independence assumptions that PCFGs
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make.

The weaker statistical independence assumptions that adaptor grammars make

come at the cost of expensive inference. A common approach to address this

computational bottleneck is through variational inference (Wainwright & Jordan,

2008). One of the advantages of variational inference is that it can be easily

parallelized (Chapter 3) or transformed into an online algorithm (Chapter 7), which

often empirically converges faster than batch variational inference.

Past variational inference techniques for adaptor grammars require a preprocess-

ing step which looks at all available data to establish the support of these Bayesian

nonparametric distributions (Cohen et al., 2010) before starting inference. This

preprocessing step becomes a critical bottleneck to scaling the algorithm to large

datasets. In addition, because these past approaches require all data to be available

upfront, they are not directly amenable to online inference.

Markov chain Monte Carlo (MCMC) inference (Johnson et al., 2007), an

alternative to variational inference, does not have this disadvantage. MCMC is

easier to implement, and it discovers the support of nonparametric distributions

during inference rather than assuming it a priori.

We apply hybrid inference (Section 4.2) to adaptor grammars to get the best of

both worlds. The method interleaves MCMC sampling inside variational inference

(Section 8.2). We propose the online hybrid inference in Section 8.3, which processes

examples in small batches taken from a data stream. Our algorithm dynamically

extends the set of adapted grammar rules as more data are observed. This obviates

the need for expensive preprocessing which is a necessary step to create an online
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algorithm for adaptor grammars. Our online hybrid inference approach also scales

adaptor grammars up to datasets that cannot be examined exhaustively due to their

size, e.g., terabytes of social media data appear every second.

We show our approach’s scalability and flexibility by applying our inference

framework in Section 8.4 on two tasks: unsupervised word segmentation and infinite-

vocabulary topic modeling.

8.1 PCFGs and Adaptor Grammars

In this section, we review probabilistic context-free grammars and adaptor

grammars.

8.1.1 Probabilistic Context-free Grammars

Probabilistic context-free grammars (PCFG) define probability distributions

over derivations of a context-free grammar. We define a PCFG G to be a tuple

〈W ,N ,R, S,θ〉: a set of terminals W , a set of nonterminals N , productions R,

start symbol S ∈ N and a vector of rule probabilities θ. The rules that rewrite

nonterminal c is R(c).

PCFGs typically use nonterminals with a syntactic interpretation. A se-

quence of terminals (the yield) is generated by recursively rewriting nonterminals

as sequences of child symbols (either a nonterminal or a symbol). This builds a

hierarchical phrase-tree structure for every yield.

For example, given the set of terminals W ≡ {a, . . . , z} and the set of non-
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terminals N ≡ {Char, Chars, Word, Words, Sent} with the start symbol

S = Sent. The productions R and their corresponding probabilities are

Sent 7→ Words 1.0

Words 7→ Word Words 0.75

Words 7→ Word 0.25

Word 7→ Chars 1.0

Chars 7→ Char Chars 0.72

Chars 7→ Char 0.28

Char 7→ a 0.11

. . .

Char 7→ z 0.01

The nonterminal Word represents a word. It gets rewritten to Chars, which can be

subsequently rewritten into a sequence of nonterminals Chars,Char using different

production rules according to their probabilities. The rewriting process terminates

when the derivation has reached a terminal symbol such as “a”.

We assume an unsupervised setting, in which only terminals are observed. Our

goal is to infer the underlying phrase-structure tree.

Adaptor grammars require that the PCFG does not have self-recursive adapted

nonterminals, i.e., there cannot be a path in a derivation from a given adapted

nonterminal to a second appearance of that adapted nonterminal.1 Using the above

grammar as an example, the nonterminal Word captures the exactly same patterns

as the nonterminal Chars does, but without any self-recursion. Therefore, it can be

used as an adapted nonterminal, but Chars can not.

1There cannot be a path in a derivation from a given nonterminal to a second appearance of
that nonterminal (see Cohen et al. (2010) for discussion).
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8.1.2 Adaptor Grammars

PCFGs assume that the rewriting operations are independent given the non-

terminal. This context-freeness assumption often is too strong for modeling natural

language.

Adaptor grammars break this independence assumption by transforming a

PCFG’s distribution over trees Gc rooted at nonterminal c into a richer distribution

Hc over the trees headed by a nonterminal c, which is often referred to as the

grammaton.

A Pitman-Yor Adaptor grammar (PYAG)2 forms the adapted tree distributions

Hc using a Pitman-Yor process (Pitman & Yor, 1997, PY), which we discussed

in Section 6.2.3. A draw Hc ≡ (πc, zc) is formed by the stick-breaking process as

Equation 6.7, with scale parameter a, discount factor b, and base distribution Gc.

Intuitively, the distribution Hc is a discrete reconstruction of the atoms sampled from

Gc—hence, reweights Gc. Grammaton Hc assigns non-zero stick-breaking weights

π to a countably infinite number of parse trees z. We describe learning these

grammatons in Section 8.2.

More formally, a PYAG is a quintuple A = 〈G,M ,a, b,α〉 with: a PCFG

G; a set of adapted nonterminals M ⊆N ; Pitman-Yor process parameters ac, bc at

each adaptor c ∈M and Dirichlet parameters αc for each nonterminal c ∈N . We

also assume an order on the adapted nonterminals, c1, . . . , c|M | such that cj is not

reachable from ci in a derivation if j > i.3

2Adaptor grammars, in their general form, do not have to use the Pitman-Yor process but have
only been used with the Pitman-Yor process.

3This is possible because we assume that recursive nonterminals are not adapted.
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Algorithm 5 describes the generative process of an adaptor grammar on a set of

D observed sentences x1, . . . , xD. The generative process starts with a set of PCFG

rules G. The PCFG G specifies a distribution over all possible derivation trees under

each nonterminal. For example, the nonterminal Word has a distribution GWord

over derivation trees according to G:

GWord

Word

a

Word

a a

Word

a a a

Word

a a a a

. . .

3.08e-2 2.439e-3 1.932e-4 1.530e-5 . . .

For every adapted nonterminal c, we reweight its distribution according to Pitman-

Yor process, i.e., Hc ∼ PYGEM(ac, bc, Gc). In this case, the distribution under the

adapted nonterminal Word has been reweighted to

HWord

Word

a

Word

a d a p t

Word

a i d

Word

b e

. . .

4.72e-3 2.54e-3 3.82e-3 4.39e-5 . . .

For each observation in the dataset, we then generate it by recursively rewriting

nonterminals according to the set of rules specified by PCFG G and Hc’s until

terminals.

Given a PYAG A, the joint probability for a set of sentences X and its

collection of trees T is

p(X,T ,π,θ, z|A) =
∏

c∈M p(πc|ac, bc)p(zc|Gc) ·
∏

c∈N p(θc|αc)
∏

xd∈X p(xd, td|θ,π, z),

where xd and td represent the dth observed string and its corresponding parse.
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Algorithm 5 Generative process of adaptor grammar.

1: For nonterminals c ∈N , draw rule probabilities θc ∼ Dir(αc) for PCFG G.
2: for adapted nonterminal c in c1, . . . , c|M | do
3: Draw grammaton Hc ∼ PYGEM(ac, bc, Gc) according to 6.7, where Gc is

defined by the PCFG rules R.
4: end for
5: For i ∈ {1, . . . , D}, generate a phrase-structure tree tS,i by constantly sampling

grammar rule from set of PCFG rules R(e) at non-adapted nonterminal e and
the grammatons Hc at adapted nonterminals c.

6: The yields of trees t1, . . . , tD are observations x1, . . . , xD.

The multinomial PCFG parameter θc is drawn from a Dirichlet distribution at

nonterminal c ∈N . At each adapted nonterminal c ∈M , the stick-breaking weights

πc are drawn from a PYGEM (Equation 6.7). Each weight has an associated atom

zc,i from base distribution Gc, a subtree rooted at c. The probability p(xd, td |θ,π, z)

is the PCFG likelihood of yield xd with parse tree td.

8.2 Hybrid Variational-MCMC Inference

Discovering the latent variables of the model—trees, adapted probabilities, and

PCFG rules—is a problem of posterior inference given observed data. Previous

approaches use MCMC (Johnson et al., 2007) or variational inference (Cohen et al.,

2010).

MCMC discovers the support of nonparametric models during the inference,

but does not scale to larger datasets (due to tight coupling of variables). Variational

inference, however, is inherently parallel and easily amendable to online inference,

but requires preprocessing to discover the adapted productions. We combine the

best of both worlds and propose a hybrid variational-MCMC inference algorithm
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for adaptor grammars.

Variational inference—as introduced in Section 2.3.1—posits a variational

distribution over the latent variables in the model; this in turn induces an “evidence

lower bound” (ELBO, L) as a function of a variational distribution q, a lower bound

on the marginal log-likelihood. Variational inference optimizes this objective function

with respect to the parameters that define q.

In this section, we derive coordinate-ascent updates for these variational pa-

rameters. A key mathematical component is taking expectations with respect to the

variational distribution q. We strategically use MCMC sampling to compute the

expectation of q over parse trees z. Instead of explicitly computing the variational

distribution for all parameters, one can sample from it (Section 4.2). This produces

a sparse approximation of the variational distribution, which benefits both scalability

and performance Mimno et al. (2012). Moreover, because the sparse representa-

tion can flexibly adjust the support for the Pitman-Yor process, it is a necessary

prerequisite to online inference (Section 8.3).

8.2.1 Variational Lower Bound

We posit a mean-field variational distribution:

q(π,θ,T |γ,ν,φ) =
∏

c∈M
∏∞

i=1 q(π
′
c,i|ν1

c,i, ν
2
c,i) ·

∏
c∈N q(θc|γc)

∏
xd∈X q(td|φd),

(8.1)
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where π′c,i is drawn from a variational Beta distribution parametrized by ν1
c,i, ν

2
c,i; and

θc is from a variational Dirichlet prior γc ∈ R|R(c)|
+ .4 Index i ranges over a possibly

infinite number of adapted rules. The parse for the dth observation, td is modeled by

a multinomial φd, where φd,i is the probability generating the ith phrase-structure

tree td,i.

The variational distribution over latent variables induces the following ELBO

on the likelihood:

L(z,π,θ,T ,D;a, b,α) = H[q(θ,π,T )] +
∑

c∈N Eq[log p(θc|αc)] (8.2)

+
∑

c∈M
∑∞

i=1 Eq[log p(π′c,i|ac, bc)] +
∑

c∈M
∑∞

i=1 Eq[log p(zc,i |π,θ)]

+
∑

xd∈X Eq[log p(xd, td |π,θ, z)],

where H[•] is the entropy function.

To make this lower bound tractable, we truncate the distribution over π to a

finite set (Blei & Jordan, 2005) for each adapted nonterminal c ∈M , i.e., π′c,Kc
≡ 1

for some index Kc. Because the atom weights πk are deterministically defined by

Equation 6.7, this implies that πc,i is zero beyond index Kc. Each weight πc,i is

associated with an atom zc,i, a subtree rooted at c. We call the ordered set of zc,i the

truncated nonterminal grammaton (tng). Each adapted nonterminal c ∈M has its

own tngc. The ith subtree in tngc is denoted tngc(i).

4Note that the variable φ and γ are different from the notation we used in all previous chapters.
In the context of LDA, γ refers to the variational Dirichlet parameters for topic distribution per
document, and φ refers to the variational multinomial parameters for topic distribution of each
word in a documents. In the context of adaptor grammars, γ refers to the variational Dirichlet
parameters for PCFG, and φ refers to the variational multinomial parameters for the parse trees.
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In the rest of this section, we describe approximate inference to maximize

L. The most important update is φd,i, which we update using stochastic MCMC

inference (Section 8.2.2). Past variational approaches for adaptor grammars (Cohen

et al., 2010) rely on a preprocessing step and heuristics to define a static tng. In

contrast, our model dynamically discovers trees. The tng grows as the model sees

more data, allowing online updates (Section 8.3).

The remaining variational parameters are optimized using expected counts of

adaptor grammar rules. These expected counts are described in Section 8.2.3, and

the variational updates for the variational parameters excluding φd,i are described in

Section 8.2.4.

8.2.2 Stochastic MCMC Inference

Each observation xd has an associated variational multinomial distribution

φd over trees td that can yield observation xd with probability φd,i. Holding all

other variational parameters fixed, the coordinate-ascent update (Mimno et al., 2012;

Bishop, 2006) for φd,i is

φd,i ∝ exp{E¬φd
q [log p(td,i|xd,π,θ, z)]}, (8.3)

where φd,i is the probability generating the ith phrase-structure tree td,i and E¬φd
q [•]

is the expectation with respect to the variational distribution q, excluding the value

of φd,i.

Instead of computing this expectation explicitly, we turn to stochastic varia-
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tional inference (Section 4.2) to sample from this distribution. This produces a set

of sampled trees σd ≡ {σd,1, . . . , σd,k}. From this set of trees we can approximate

our variational distribution over trees φ using the empirical distribution σd, i.e.,

φd,i ∝ I[σd,j = td,i,∀σd,j ∈ σd]. (8.4)

This leads to a sparse approximation of variational distribution φ.5

Sampling requires a derived PCFG G′ that approximates the distribution

over tree derivations conditioned on a yield. It includes the original PCFG rules

R = {c → β} that define the base distribution and the new adapted productions

R′ = {c⇒ z, z ∈ tngc}. Under G′, the probability θ′ of adapted production c⇒ z

is

log θ′c⇒z =


Eq[log πc,i], if tngc(i) = z

Eq[log πc,Kc ] + Eq[log θc⇒z], otherwise

(8.5)

where Kc is the truncation level of tngc and πc,Kc represents the left-over stick

weights in the stick-breaking process for adaptor c ∈M . Variable θc⇒z represents

the probability of generating tree c⇒ z under the base distribution.

The expectation of the Pitman-Yor multinomial πc,i under the truncated

variational stick-breaking distribution is

Eq[log πa,i] = Ψ(ν1
a,i)−Ψ(ν1

a,i + ν2
a,i) +

∑i−1
j=1(Ψ(ν2

a,j)−Ψ(ν1
a,j + ν2

a,j)), (8.6)

5In our experiments, we use ten samples.
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S→AB
B→{a,b,c}
A→B

B
a

B
b

Grammar Seating Assignments 
(nonterminal A)

Yield Parse Counts

ca
B cA

S B a

New Seating

B
a

B

b

B

c

h(A →c) +=1
g(B →c) +=1
g(B →a) +=1

ab
B aA

S B b
B
a

B

b

B

a

h(A →a) +=1
g(B →a) +=1
g(B →b) +=1

ba
B bA

S B a
B
a

B

b f(A →b) +=1
g(B →a) +=1

Figure 8.1: Given an adaptor grammar, we sample derivations given an approximate
PCFG and show how these affect counts. The sampled derivations can be understood
via the Chinese restaurant metaphor (Johnson et al., 2007). Existing cached rules
(elements in the tng) can be thought of as occupied tables; this happens in the case
of the yield “ba”, which increases counts for unadapted rules g and for entries in
tngA, f . For the yield “ca”, there is no appropriate entry in the tng, so it must use
the base distribution, which corresponds to sitting at a new table. This generates
counts for g, as it uses the unadapted rule and for h, which represents entries that
could be included in the tng in the future. The final yield, “ab”, shows that even
when compatible entries are in the tng, it might still create a new table, changing
the underlying base distribution.

and the expectation of generating the phrase-structure tree a⇒ z based on PCFG

productions under the variational Dirichlet distribution is

Eq[log θa⇒z] =
∑

c→β∈a⇒z
(
Ψ(γc→β)−Ψ(

∑
c→β′∈Rc

γc→β′)
)

(8.7)

where Ψ(•) is the digamma function, and c → β ∈ a ⇒ z represents all PCFG

productions in the phrase-structure tree a⇒ z.

This PCFG can compose arbitrary subtrees and thus discover new trees that

better describe the data, even if those trees are not part of the tng. This is
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equivalent to “creating a new” table in MCMC inference and provides truncation-

free variational updates (Wang & Blei, 2012) by sampling a unseen subtree with

adapted nonterminal c ∈M at the root. This frees our model from preprocessing to

initialize truncated grammatons in Cohen et al. (2010). This stochastic approach

has the advantage of creating sparse distributions (Wang & Blei, 2012): few unique

trees will be represented.

8.2.3 Calculating Expected Rule Counts

For every observation xd, the hybrid approach produces a set of sampled trees,

each of which contains three types of productions: adapted rules, original PCFG

rules, and potentially adapted rules. The last set is most important, as these are new

rules discovered by the sampler. These are explained using the Chinese restaurant

metaphor in Figure 8.1. The multiset of all adapted productions is M(td,i) and the

multiset of non-adapted productions that generate tree td,i is N(td,i). We compute

three counts:

1: f is the expected number of productions within the tng. It is the sum over

the probability of a tree td,k times the number of times an adapted production

appeared in td,k,

fd(a⇒ za,i) =
∑

k

(
φd,k |a⇒ za,i : a⇒ za,i ∈M(td,k)|︸ ︷︷ ︸

count of rule a⇒ za,i in tree td,k

)
.
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2: g is the expected counts of PCFG productions R that defines the base distribu-

tion of the adaptor grammar,

gd(a→ β) =
∑

k (φd,k |a→ β : a→ β ∈ N(td,k)|) .

3: Finally, a third set of productions are newly discovered by the sampler and not

in the tng. These subtrees are rules that could be adapted, with expected counts

hd(c⇒ zc,i) =
∑

k (φd,k |c⇒ zc,i : c⇒ zc,i /∈M(td,k)|) .

These subtrees—lists of PCFG rules sampled from Equation 8.5—correspond to

adapted productions not yet present in the tng. Once these rules are added to

the tng, their h counts become f counts.

8.2.4 Variational Updates

Given the sparse vectors φ sampled from the hybrid MCMC step, we update

all variational parameters using gradient descent:

γa→β =αa→β +
∑

xd∈X gd(a→ β) +
∑

b∈M
∑Kb

i=1 n(a→ β, zb,i),

ν1
a,i =1− ba +

∑
xd∈X fd(a⇒ za,i) +

∑
b∈M

∑Kb

k=1 n(a⇒ za,i, zb,k),

ν2
a,i =aa + iba +

∑
xd∈X

∑Ka

j=1 fd(a⇒ za,j) +
∑

b∈M
∑Kb

k=1

∑Ka

j=1 n(a⇒ za,j, zb,k),
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where n(r, t) is the expected number of times production r is in tree t, collected

during sampling. For the detailed derivations of all variational parameters, please

refer to Appendix A.

Hyperparameter Update We update our PCFG hyperparameter α, PYGEM

hyperparameters a and b as in Cohen et al. (2010).

8.3 Online Variational Inference

Online inference for probabilistic models requires us to update our posterior

distribution as new observations arrive. Unlike batch inference algorithms, we do not

assume we always have access to the entire dataset. Instead, as stated in Chapter 7,

we assume that observations arrive in small groups called minibatches. The advantage

of online inference is threefold: a) it does not require retaining the whole dataset

in memory; b) each online update is fast; and c) the model often converges faster

empirically (Hoffman et al., 2010). All of these make adaptor grammars scalable to

larger datasets.

Our approach is based on the stochastic variational inference for topic mod-

els (Hoffman et al., 2013). This inference strategy uses a form of stochastic gradient

descent (Bottou, 1998): using the gradient of the ELBO, it finds the sufficient

statistics necessary to update variational parameters (which are mostly expected

counts calculated using the inside-outside algorithm), and interpolates the result

with the current model.

We assume data arrive in minibatches B (a set of sentences). We accumulate
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expected counts

f̃ (l)(a⇒ za,i) =(1− ε) · f̃ (l−1)(a⇒ za,i) + ε · |X|
|Bl|

∑
xd∈Bl

fd(a⇒ za,i), (8.8)

g̃(l)(a→ β) =(1− ε) · g̃(l−1)(a→ β) + ε · |X|
|Bl|

∑
xd∈Bl

gd(a→ β), (8.9)

with decay factor ε ∈ (0, 1) to guarantee convergence. We set it to ε = (τ+l)−κ, where

l is the minibatch counter. The decay inertia τ prevents premature convergence,

and decay rate κ controls the speed of change in sufficient statistics (Hoffman et al.,

2010). We recover batch variational approach when B = D and κ = 0.

The variables f̃ (l) and g̃(l) are accumulated sufficient statistics of adapted and

unadapted productions after processing minibatch Bl. They update the approximate

gradient. The updates for variational parameters become

γa→β =αa→β + g̃(l)(a→ β) +
∑
b∈M

Kb∑
i=1

n(a→ β, zb,i), (8.10)

ν1
a,i =1− ba + f̃ (l)(a⇒ za,i) +

∑
b∈M

Kb∑
k=1

n(a⇒ za,i, zb,k), (8.11)

ν2
a,i =aa + iba +

∑Ka

j=1 f̃
(l)(a⇒ za,j) +

∑
b∈M

∑Kb

k=1

∑Ka

j=1 n(a⇒ za,j, zb,k), (8.12)

where Ka is the size of the tng at adaptor a ∈M .

8.3.1 Refining the Truncation

As we observe more data during inference, our tngs need to change to capture

more patterns, since the expected number of total adapted rules for any adapted
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nonterminal under the Pitman-Yor process is proportional to the log value of the

total data. This is one of the critical differences of our online hybrid inference

technique to the batch mode variational inference method (Cohen et al., 2010). By

allowing the tngs to grow, our approach does not require the preprocessing step,

instead, it is able to adjust the supports of the Pitman-Yor process over time based

on the data. In additional to adding new rules to tng, we also need to remove

useless rules to prevent the tng growing unbounded, and update the derivations for

existing rules over time. In this section, we describe heuristics for performing each

of these operations.

Adding Productions Sampling can identify productions that are not adapted

but were instead drawn from the base distribution. These are candidates for the

tng. For every nonterminal a, we add these potentially adapted productions to

tnga after each minibatch. The count associated with candidate productions is now

associated with an adapted production, i.e., the h count contributes to the relevant

f count. This mechanism dynamically expands tnga.

Sorting and Removing Productions Our model does not require a preprocess-

ing step to initialize the tngs, rather, it constructs and expands all tngs on the fly.

To prevent the tng from growing unwieldy, we prune tng after every u minibatches.

As a result, we need to impose an ordering over all the parse trees in the tngs to

establish a ranking on how useful each adapted rule is and to remove the less useful

rules. The underlying PYGEM distribution implicitly places an ranking over all the
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atoms according to their corresponding sufficient statistics (Kurihara et al., 2007), as

shown in 8.8. It measures the “usefulness” of every adapted production throughout

inference process.

In addition to accumulated sufficient statistics, Cohen et al. (2010) add a

secondary term to discourage short constituents (Mochihashi et al., 2009). We

impose a reward term for longer phrases in addition to f̃ and sort all adapted

productions in tnga using the ranking score

Λ(a⇒ za,i) = f̃ (l)(a⇒ za,i)× log(ε · |s|+ 1),

where |s| is the number of yields in production a⇒ za,i. Because ε decreases each

minibatch, the reward for long phrases diminishes. This is similar to an annealed

version of Cohen et al. (2010) – where the reward for long phrases is fixed, see

also Mochihashi et al. (2009). After sorting, we remove all but the top Ka adapted

productions.

Rederiving Adapted Productions For MCMC inference, Johnson & Goldwa-

ter (2009) observe that atoms already associated with a yield may have trees that do

not explain their yield well. They propose table label resampling to rederive yields.

When dealing with hierarchical grammars, e.g, collocation grammars, the adaptor

grammar sampler itself maintains a hierarchy of Chinese Restaurant Processes or

Pitman-Yor Processes, one per adapted nonterminal, to cache the adapted rules,

each of which is a derivation tree. The idea of table label resampling is to resample
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these derivation trees in these adaptors—table labels in the restaurant metaphor. It

potentially changes the analysis of many sentences at once.

For example, each Colloc in the collocation grammar can occur in many

Sent, and each Word can occur in many Colloc. There are many possible

derivation trees available for Colloc 7→ “bethere”. The current derivation of this

collocation is

Colloc

Word

b e t

Word

h e r e

(8.13)

Table label resampling may alter the structure of this derivation tree, e.g.,

Colloc

Word

b e

Word

t h e r e

(8.14)

It can subsequently change the way it is analyzed into Word, thus changing the

analysis of all of the Sent containing that Colloc.

In our approach this is equivalent to “mutating” some derivations in a tng.

After pruning rules every u minibatches, we perform table label resampling for
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Algorithm 6 Online inference for adaptor grammars
1: Random initialize all variational parameters.
2: for minibatch of l = 1, 2, . . . do
3: Construct approximate PCFG θ′ of A as in Eq. 8.5.
4: for input sentence d = 1, 2, . . . , Dl do
5: Accumulate inside probabilities from approximate PCFG θ′.
6: Sample phrase-structure trees σ and update the tree distribution φ (Equation 8.4).
7: end for
8: For every adapted nonterminal c, append adapted productions to tngc.
9: Accumulate sufficient statistics (Equation 8.8 and 8.9).

10: Update γ, ν1, and ν2 (Equation 8.10-8.12).
11: Refine and prune the truncation every u minibatches.
12: end for

adapted nonterminals from general to specific (i.e., a topological sort). This provides

better expected counts n(r, •) for rules used in phrase-structure subtrees. Empirically,

we find table label resampling only marginally improves the word-segmentation result.

Initialization Our inference begins with random variational Dirichlets and empty

tngs, which obviates the preprocessing step in Cohen et al. (2010). Our model

constructs and expands all tngs on the fly. It mimics the incremental initialization

of Johnson & Goldwater (2009). Algorithm 6 summarizes the pseudo-code of our

online approach.

8.3.2 Complexity

Inside and outside algorithm calls dominate execution time for adaptor grammar

inference. Comparing to both MCMC sampling and hybrid inference approaches—

which only need to compute the inside algorithm and then sample parse trees out of

the distribution—the variational approach needs to compute inside-outside algorithms

and estimate the expected counts for every possible tree derivation (Cohen et al.,

2010). For a dataset with D observations, variational inference requires O
(
DI
)

calls
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to inside-outside algorithm, where I is the number of iterations, typically in the tens.

In contrast, MCMC only needs to accumulate inside probabilities, and then

sample a tree derivation (Chappelier & Rajman, 2000). The sampling step is

negligible in processing time compare to the inside algorithm. MCMC inference

requires O
(
DI
)

calls to the inside algorithm—hence every iteration is much faster

than variational approach—but I is usually on the order of thousands.

Likewise, our hybrid approach also only needs the less expensive inside algo-

rithm to sample trees. Comparing to the batch mode variational inference (Cohen

et al., 2010) which requires the complete inside-outside algorithm, our online hybrid

inference only inside algorithm. In addition, our approach can achieve reasonable

results with only a single pass through the data. And thus only requires O(D) calls

to the inside algorithm.

Because the inside-outside algorithm is fundamental to each of these algorithms,

we will use it as a common basis for comparison across different implementations.

This is over-generous to variational approaches, as the full inside-outside computation

is more expensive than the inside probability computation required for sampling.
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Figure 8.2: Word segmentation accuracy measured by word token F1 scores on
brent corpus of three approaches against number of inside-outside function call using
unigram (upper) and collocation (lower) grammars in Table 8.1.7

Unigram
Sent 7→ Words
Words 7→ Word Words
Word 7→ Chars
Chars 7→ Char Chars
Chars 7→ Char

Collocation
Sent 7→ Colloc Collocs
Sent 7→ Colloc
Colloc 7→ Word Words
Colloc 7→ Words
Words 7→ Word Words
Word 7→ Word
Word 7→ Chars
Chars 7→ Char Chars
Chars 7→ Char

Infinite LDA
Sent 7→ Docj j = 1, . . . , D
Docj 7→ −j Topici j = 1, . . . , D;

i = 1, . . . ,K
Topici 7→ Word i = 1, . . . ,K
Word 7→ Chars
Chars 7→ Char Chars
Chars 7→ Char

Table 8.1: Grammars used in our experiments. For all grammars, the nonterminal
Char is a non-adapted rule that expands to all characters used in the data. For
Chinese segmentation, all Chinese character; for topic modeling, all Latin characters.
Following Johnson & Goldwater (2009), we underline adapted nonterminals. For
the topic model grammar, D is the total number of strings and K is the number of
topics.

8.4 Experiments and Discussion

We implement our online adaptor grammar model (online) in Python8 and

compare it against both MCMC (Johnson & Goldwater, 2009, MCMC) and the

variational inference (Cohen et al., 2010, variational). We use the released

implementation of MCMC sampler for adaptor grammars,9 and simulate variational

approach using our implementation by setting the minibatch size B = D and

7 Our online settings are batch size B = 20, decay inertia τ = 128, decay rate κ = 0.6 for
unigram grammar; and minibatch size B = 5, decay inertia τ = 256, decay rate κ = 0.8 for
collocation grammar. tngs are refined at interval u = 50. Truncation size is set to KWord = 1.5k
and KColloc = 3k. The settings are chosen from cross validation. We observe similar behavior under
κ = {0.7, 0.9, 1.0}, τ = {32, 64, 512}, B = {10, 50} and u = {10, 20, 100}.

8Implementation available at http://www.umiacs.umd.edu/~zhaike/.
9http://web.science.mq.edu.au/~mjohnson/code/py-cfg-2013-02-25.tgz
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κ = 0.10 For MCMC approach, we use the best settings reported in Johnson &

Goldwater (2009) with incremental initialization and table label resampling.

We examine our online adaptor grammar on two different aspects—the scala-

bility and flexibility. In Section 8.4.1, we look into the scalability of our proposed

approach, and compare it against other batch learning techniques. In Section 8.4.2,

we use the online topic models with infinite vocabulary—which we discussed in

Chapter 7—as an example, and demonstrate how to use our online adaptor gram-

mars to quickly prototype it.11 This can be easily applied to other online Bayesian

nonparametric models without loss of generality.

8.4.1 Word Segmentation

We evaluate our online adaptor grammar on the task of word segmentation,

which focuses on identifying word boundaries from a sequence of characters. This

is especially the case for Chinese, since characters are written in sequence without

word boundaries.

We first evaluate all three models on the standard Brent version of the Bernstein-

Ratner corpus (Bernstein-Ratner, 1987; Brent & Cartwright, 1996, brent). The

dataset contains 10k sentences, 1.3k distinct words, and 72 distinct characters. We

compare the results on both unigram and collocation grammars listed in Table 8.1

10Note that this is not exactly the same as the variational inference approach proposed by Cohen
et al. (2010), instead, we are using hybrid inference, i.e., only compute the inside algorithm during
parsing, and approximate the variational distribution by taking samples of parse trees.

11The main purpose of this section is to demonstrate the flexibility of our proposed online adaptor
grammars, in terms of quickly prototyping or validating a particular Bayesian nonparametric model,
without spending time on deriving the inference. The adaptor grammar approach is slower than
the method we discussed in Chapter 7, but it is much easier to get running without going through
the parameter derivation process.

131



introduced in Johnson & Goldwater (2009).

Figure 8.2 illustrates the word segmentation accuracy in terms of word token

F1-scores on brent against the number of inside-outside function calls for all three

approaches using unigram and collocation grammars. In both cases, our online

approach converges faster than MCMC and variational approaches, yet yields

comparable or better performance when seeing more data.

In addition to the brent corpus, we also evaluate three approaches on three

other Chinese datasets compiled by Xue et al. (2005) and Emerson (2005):12

• Chinese Treebank 7.0 (ctb7 ): 162k sentences, 57k distinct words, 4.5k distinct

characters;

• Peking University (pku): 183k sentences, 53k distinct words, 4.6k distinct

characters; and

• City University of Hong Kong (cityu): 207k sentences, 64k distinct words, and

5k distinct characters.

We compare our inference method against other approaches on F1 score. While

other unsupervised word segmentation systems are available (Mochihashi et al. (2009),

inter alia),13 our focus is on a direct comparison of inference techniques for adaptor

grammar, which achieve competitive (if not state-of-the-art) performance.

Table 8.2 shows the word token F1-scores and negative likelihood on held-out

test dataset of our model against MCMC and variational approach. For held-out

test data, we randomly sample 30% of the sentences for testing and the rest for

12We use all punctuation as natural delimiters (i.e., words cannot cross punctuation).
13Their results are not directly comparable: they use different subsets and assume different

preprocessing.
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training. We compute the held-out likelihood of the most likely sampled parse trees

out of each model.14 Our online approach consistently better segments words than

variational and achieves comparable or better results than MCMC.

For MCMC, Johnson & Goldwater (2009) discovered that incremental initial-

ization—or online updates in general—results in more accurate word segmentation,

even though the trees have lower posterior probability. Similar to that, our online

approach initializes and learns them on the fly, instead of initializing the grammatons

and parse trees for all data upfront as for variational. This uniformly outperforms

batch initialization on the word segmentation tasks.

14Note that this is only an approximation to the true held-out likelihood, since it is impossible to
enumerate all the possible parse trees and hence compute the likelihood for a given sentence under
the model.
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8.4.2 Infinite Vocabulary Topic Modeling

Many topic models can be represented using a PCFG. Nonparametric models

such as adaptor grammars can be used to capture extensions such as topical colloca-

tions and sticky topics (Johnson, 2010). Still, there is a strong limitation to all these

models—the vocabulary is assumed to be fixed, even with online algorithms (Hoffman

et al., 2010).

In Chapter 7, we argue that this is a strong constraint that violates the

fundamental assumption in online algorithms: new words are introduced as more

data are streamed to the algorithm. We also introduce an inference framework,

InfVoc, to discover words from a Dirichlet process with a character n-gram base

distribution.

We take the best of both worlds, and model a similarly flexible vocabulary

using our online adaptor grammar inference algorithm. Our extension to InfVoc

generalizes the static character n-gram model (Section 7.2.1), learning the base

distribution (i.e., how words are composed from characters) from data.

This is an attractive testbed for our online inference. Within a topic, we can

verify that the words we discover are relevant to the topic and that new words

rise in importance in the topic over time if they are indeed relevant. For these

experiments, we treat each token (with its associated document pseudo-word −j) as

a single sentence, and each minibatch contains only one sentence (token).

16For online inference, we parallelize each minibatch with four threads with settings: batch size
B = 100 and tng refinement interval u = 100. online approach runns for two passes over datasets.
variational runs fifty iterations, with the same truncation level as in online. For negative
log-likelihood evaluation, we train the model on a random 70% of the data, and hold out the rest
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Figure 8.3: The average coherence score of topics on de-news datasets against
InfVoc approach and other inference techniques (MCMC, variational) under
different settings of decay rate κ and decay inertia τ using the InfVoc LDA grammar
in Table 8.1. The horizontal axis shows the number of passes over the entire dataset.18
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Figure 8.4: The evolution of one topic—concerning tax policy—out of five topics
learned using online adaptor grammar inference on the de-news dataset. Each
minibatch represents a word processed by this online algorithm; time progresses from
left to right. As the algorithm encounters new words (bottom) they can make their
way into the topic. The numbers next to words represent their overall rank in the
topic. For example, the word “pension” first appeared in mini-batch 100, was ranked
at 229 after minibatch 400 and became one of the top 10 words in this topic after
2000 minibatches (tokens).20

for testing. We observe similar behavior for our model under κ = {0.7, 0.9} and τ = {64, 256}.
18We train all models with 5 topics with settings: tng refinement interval u = 100, truncation

size KTopic = 3k, and the mini-batch size B = 50. We observe a similar behavior under κ ∈ {0.7, 0.9}
and τ ∈ {64, 256}.

20The plot is generated with truncation size KTopic = 2k, mini-batch size B = 1, truncation
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Quantitatively, we evaluate three different inference schemes and the InfVoc

approach21 on a collection of English daily news snippets (de-news).22 We used

the InfVoc LDA grammar as shown in Table 8.1. For all approaches, we train the

model with five topics, and evaluate how coherent the topics are. This is measured

using coherence score (Newman et al., 2009), which correlates well with human

understanding about topic interpretability (Chang et al., 2009a). We collect the

co-occurrence counts from Wikipedia and compute the average pairwise pointwise

mutual information (PMI) score between the top 10 ranked words of every topic.

Figure 8.3 illustrates the PMI score for both approaches. Our approach yields

comparable or better results against all other approaches under most conditions.

Qualitatively, Figure 8.4 shows an example of a topic evolution using online

adaptor grammar for the de-news dataset. The topic is about “tax policy”. The topic

improves over time; words like “year”, “tax” and “minist(er)” become more prominent.

More importantly, the online approach discovers new words and incorporates them

into the topic. For example, “schroeder” (former chancellor of Germany) first

appeared in minibatch 300, was successfully picked up by our model and became

one of the top ranked words in the topic.

pruning interval u = 50, decay inertia τ = 256, and decay rate κ = 0.8. All PY hyper-parameters
are optimized.

21Implementation available at http://www.umiacs.umd.edu/~zhaike/.
22The de-news dataset is randomly selected subset of 2.2k documents from http://homepages.

inf.ed.ac.uk/pkoehn/publications/de-news/. It contains 6.5k unique types and over 200k
word tokens. Tokenization and stemming provided by nltk (Bird et al., 2009).
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8.5 Summary

Probabilistic modeling, particularly generative models, are a useful tool in

understanding unstructured data or data where the structure is latent, like language.

However, developing these models is often a difficult process, requiring significant

machine learning expertise.

In this chapter, we focus on the application of adaptor grammars, which are

an expensive but flexible Bayesian nonparametric modeling framework. They offer a

flexible tool to quickly prototype and test new models. Despite expensive inference,

adaptor grammars have been used for topic modeling (Johnson, 2010), discovering

perspective (Hardisty et al., 2010), segmentation (Johnson & Goldwater, 2009), and

grammar induction (Cohen et al., 2010).

In this chapter, we presented an online, hybrid inference scheme for adaptor

grammars. Unlike previous approaches, it does not require extensive preprocessing. It

is also able to faster discover useful structure in text; with further development, these

algorithms could further speed the development and application of new nonparametric

models to large datasets.

We have explored the effectiveness and efficiency of online learning on topic

models (Chapter 7) and adaptor grammars (Chapter 8). It provides one other

popular solution—in addition to parallelization approach (Chapter 3)—to scale up

probabilistic Bayesian models. In next chapter, we will discuss a few possible future

research directions in both modeling and scaling.
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Chapter 9

Conclusion

In this dissertation, we show several approaches of scaling up topic models and

related probabilistic models. While topic models (Chapter 2) provide an unsupervised

way to scan through a collection of unstructured documents, it comes at a price of slow

inference. Two popular solutions to speed up inference process are parallelization and

online updates. This dissertation focuses on how to apply these two methods to topic

models and adaptor grammars. In Section9.1, we recap our contributions throughout

this dissertation, and discuss some of the possible future works in Section 9.2. In

Section 9.3, we summarize the generalizable knowledge from this dissertation.

9.1 Contributions

In Chapter 3, we parallelize an existing topic model in MapReduce—Mr.

LDA.1 Our implementation relies on previously proposed variational inference

method and takes advantage of the independent structure during inference. We show

that our implementation is scalable to large datasets and yields better performance

than Mahout. We also demonstrate the flexibility of our implementation using two

different extensions—informed prior to incorporate human prior knowledge into

topics and polylingual LDA to model topics in multilingual environment.

1This work has been previously published in Zhai et al. (2012).
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Chapter 5 focuses on the area modeling topics in mulitlingual environment.

We propose novel polylingual tree-based topic models and develop three different

inference schemes to infer the latent parameters.2 Unlike past approaches which only

use monolingual information in multilingual data, our model discovers meaningful

topic out of multilingual corpus. We scale up our model using MapReduce and

evaluate our model using a downstream task of statistical machine translation. We

show significant improvement of 1.2 BLEU on the translation performance.

In addition to the parallelization approach, we also explore the online updating

approach to scale up topic models and related Bayesian models. In Chapter 7, we

focus on the online streaming approach to scale up topic models and propose a

novel online LDA which supports possibly infinite vocabulary.3 Unlike all past

approaches, our model addresses a challenge, but often overlooked problem—the

vocabulary is constantly changing and evolving throughout time in online setting.

We propose online hybrid inference to correct the inconsistency between the data

and variational inference method. We demonstrate our proposed model is able to

effectively incorporate new words into vocabulary and discovers more meaningful

topics over time.

In Chapter 8, we generalize our online hybrid inference method to adaptor

grammars—originally proposed by Johnson et al. (2007)—which are a broader class

of Bayesian nonparametric models.4 We develop online hybrid inference for adaptor

grammars. We show that our implementation is able to scale up to much larger

2This work has been previously published in Hu et al. (2014).
3This work has been previously published in Zhai & Boyd-Graber (2013).
4This work has been previously published in Zhai et al. (2014).
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datasets than all past approaches.

9.2 Future Work

While we explore the effectiveness and efficiency of both parallelization and

online updating inference approaches on topic models and adaptor grammars, there

are many other interesting extensions toward this direction, both on scalability and

modeling. For example, on scaling up other Bayesian models, these two different

approaches are not mutually exclusive, instead, they can be jointly applied to achieve

more significant speed-ups. On the modeling side, although adaptor grammars

provide us a quick and easy way to prototype new Bayesian nonparametric models,

one could further extend the model to encode much richer hierarchies. This promotes

Bayesian nonparametric probabilistic models to capture more latent information

and structures of the data in a completely data-driven fashion. In this chapter, we

expand these ideas and discuss a few possible directions for future extensions.

Distributed Online Learning Two approaches we discussed to scale up an

algorithm—parallelization and online learning—have their relative merits and draw-

backs, but they are not mutually exclusive. These two methods address different

aspects of a Bayesian statistical model. The former one emphasizes on the indepen-

dent structure and implementation framework, while the latter one focuses more on

the internal update mechanism of the model itself. They can be jointly apply to

achieve more speed-up Bayesian statistical models. Applying these two approaches

together can possibly scale up more complicated Bayesian models (Hu et al., 2012;
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Zhai & Williams, 2014) to much larger datasets.

Hierarchical Infinite Vocabulary Topic Models Although the online ap-

proach we discussed in Chapter 7 relaxes the assumption of fixed vocabulary in

topic models, it uses a static base distribution which is approximated using a lan-

guage model. Hence, the base distribution is not adaptive as new data come. In

addition to explicitly modeling the change of topics over time, it is also possible

to model additional structure within a topic. Rather than a fixed, immutable base

distribution, modeling each topic with a hierarchical character n-gram model would

capture regularities in the corpus that would, for example, allow certain topics to

favor different orthographies (e.g., a technology topic might prefer words that start

with “i”). While some past topic models have attempted to capture orthography for

multilingual applications (Boyd-Graber & Blei, 2009), our approach would be more

robust and scalable to larger datasets.

Nonparametric Topic Models Latent Dirichlet allocation (Blei et al., 2003,

LDA) assumes a fixed number of topics as well as a pre-defined vocabulary. A few

past works have been proposed in relaxing the first constraint and extending LDA

into a nonparametric Bayesian model, e.g., Dirichlet process mixture models (Blei &

Jordan, 2005) and hierarchical Dirichlet process (Teh et al., 2006; Wang et al., 2011,

HDP). In Chapter 7, we relax the second constraint and are able to dynamically

expand or contract the vocabulary on the fly. It is interesting to introduce another

level of hierarchy into the model, and extend HDP into a fully nonparametric model.
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This additional level of hierarchy further extends the topic distributions as a mixture

of possibly infinite number of words, given by the character level N -gram model. By

doing this, the underlying topic models are able to infer not only the distribution

over words per topic, but also how many topics are presented in the data.

Jointly Model Adaptor Grammar with Infinite PCFG As discussed in

Chapter 8, adaptor grammar (Johnson et al., 2007) extends the classic PCFG

framework to Bayesian nonparametric. It imposes a Dirichlet process prior on the

number of grammar rules, which allows the program to discover new grammar

rules. Another alternative approach to “nonparametricfy” PCFG is the infinite

PCFG (Liang et al., 2007) framework. It imposes a Dirichlet process prior on the

categories of non-terminals, which potentially allows infinite number of non-terminals.

As we combine the idea of adaptor grammars and infinite PCFG, we are allowing

not only the number of rules to expand, but also the types of the non-terminals to

increase. This well connects to the previous discussion about nonparametric topic

models, as a completely nonparametric topic models would allow both the number

of topics as well as the vocabulary size to expand.

9.3 Summary

As hackneyed as the term “big data” has become, researchers and industry

alike require algorithms that are scalable and efficient. Bayesian probabilistic models

are no different. In summary, this dissertation discusses two different approaches—

parallelization and online update—to scale up complicated Bayesian probabilistic
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models to large datasets.

On the parallelization approach, we argue that variational inference methods

for Bayesian probabilistic models are inherently easier to distribute than MCMC

approaches. This is due to variational methods break dependencies among latent

variables in the model, hence reduce the information to be shared and minimize

message synchronization across different machines in the cluster.

In the setting of online streaming approach, data are assumed to arrive con-

stantly over time, which is a common setting for many industrial applications. Due

to the nature of data, many Bayesian probabilistic models become nonparametric.

For example, in batch mode, topic models usually assume the vocabulary is fixed,

since all data are available prior to the inference. Therefore, the models are paramet-

ric—parameter space does not change. However, in online case, such a parametric

assumption makes less sense, and the models become nonparametric due to the

nature of data. All past variational approaches ignore this natural characteristic

either by making the parametric assumption (e.g., a constant vocabulary for topic

models) or reducing the problem to finite dimension (e.g., the preprocessing step for

adatpor grammars).

In online inference case, as a result, the underlying model should match the

charasteristic of data. We propose a online hybrid inference framework which

ensures the inference assumptions are met by the model. Our method corrects the

inconsistency between the data and many past approaches, i.e., our online hybrid

inference is able to “preserve” such the nonparametric nature of data. In addition,

our method can be generalized to many other Bayesian probabilistic models as well.
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We use topic models and adaptor grammars as examples to demonstrate the

effectiveness and efficiency of these two approaches, but the methods can be easily

generalized to other models as well. We believe these are appealing approaches to

both industrial and academia applications.
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Appendix A

Variational Inference for Adaptor Grammars

A.1 Evidence Lower Bound

Recall Equation 8.3, the variational distribution over latent variables induces

the following ELBO on the likelihood:

L(z,π,θ,T ,D;a, b,α) =
∑
c∈M

Hq [q(θc)] +
∑
c∈M

∞∑
i=1

Hq

[
q(π′c,i)

]
︸ ︷︷ ︸

Entropy Terms

+
∑
c∈N

Eq [log p(θc |αc)]︸ ︷︷ ︸
PCFG rules

+
∑
c∈M

∞∑
i=1

Eq
[
log p(π′c,i | ac, bc)

]︸ ︷︷ ︸
PY stick

+
∑
c∈M

∞∑
i=1

Eq [log p(zc,i |π,θ)]︸ ︷︷ ︸
PY atoms

+
∑
d∈D

Eq [log p(xd, td |π,θ)]︸ ︷︷ ︸
Observations

(A.1)

where H[•] is the entropy function. We expand each term in the ELBO as following:

PCFG Rule Each nonterminal has a distribution over rules θc; the ELBO term

associated with this multinomial is

Eq [log p(θc|αc)] = log Γ
(∑

c→β∈Rc
αc→β

)
−

∑
c→β∈Rc

log Γ (αc→β)

+
∑

c→β∈Rc

(αc→β − 1)Eq [log θc→β] , (A.2)
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which can be further expanded using the expectation of a Dirichlet,

Eq [log θc→β] = Ψ (γc→β)−Ψ
(∑

c→β′∈Rc
γc→β′

)
(A.3)

PY Stick The Pitman-Yor distribution has two components, a weighting over

atoms and the atoms themselves. The ELBO term corresponding to the distribution

over atom weights, π, is

Eq
[
log p(π′c,i | ac, bc)

]
= log Γ (1− bc + ac + ibc)− log Γ (1− bc)− log Γ (ac + ibc)

− bcEq
[
log π′c,i

]
+ (ac + ibc − 1)Eq

[
log(1− π′c,i)

]
(A.4)

PY Atoms The atoms weighted by the Pitman-Yor distribution in the ELBO

term

Eq [log p(zc,i|π,θ)] =
∑

b→β∈N(zc,i)

g(b→ β, zc,i)Eq [log θb→β]

+
∑

b⇒zb,k∈M(zc,i)

f(b⇒ zb,k, zc,i)Eq [log πb,k] . (A.5)

Observations Finally, observed trees are described by both adapted and un-

adapted rules which contribute to the ELBO,

Eq [log p(xd, td |θ,π,Z)] =
∑
b⇒zb,k

Eq [log p(πb,k)] +
∑
b→β

Eq [log p(θb→β)] (A.6)
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Entropy Terms Entropy terms for Dirichlet distribution

Hq [θc |γc] =− log Γ
(∑

c→β∈Rc
γc→β

)
+

∑
c→β∈Rc

log Γ (γc→β)

−
∑

c→β∈Rc

(γc→β − 1)Eq [log θc→β] (A.7)

Entropy term for Pitman-Yor process

Hq

[
π′c,i | νc,i

]
=− log Γ

(
ν1
c,i + ν2

c,i

)
+ log Γ

(
ν1
c,i

)
+ log Γ

(
ν2
c,i

)
− (ν1

c,i − 1)Eq
[
log π′c,i

]
− (ν2

c,i − 1)Eq
[
log(1− π′c,i)

]
(A.8)

A.2 Update for Global Variational Parameters

By taking the derivative of L with respect to the corresponding variational

parameters, we would be able to optimize the global variational parameters in turn

using gradient descent. These are exactly the same updates as Cohen et al. (2010).

Optimize γ The update for the variational parameter governing the probability

over unadapted rules is

γc→β = αc→β︸ ︷︷ ︸
prior

+
∑
d∈D

gd(c→ β)︸ ︷︷ ︸
rules in data

+
∑
b∈M

Kb∑
i=1

|c→ β : c→ β ∈ N(zb,i)|︸ ︷︷ ︸
rules in adapted rules

. (A.9)
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Optimize ν The update for the variational parameter governing the stick-breaking

weight for the i-th atom associated with nonterminal a is

ν1
c,i =

∑
b∈M

Kb∑
k=1

|c⇒ zc,i : c⇒ zc,i ∈M(zb,k)|︸ ︷︷ ︸
Adapted rules of nonterminal c used in b’s rules

+
∑
d∈D

fd(c⇒ zc,i)− bc + 1︸ ︷︷ ︸
Adapted rules in corpus

(A.10)

ν2
c,i =

∑
b∈M

Kb∑
k=1

Kc∑
j=1

|c⇒ zc,j : c⇒ zc,j ∈M(zb,k)| (A.11)

+
∑
d∈D

Kc∑
j=1

fd(c⇒ zc,j) + ac + ibc. (A.12)
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