266 research outputs found

    Parametric Polytope Reconstruction, an Application to Crystal Shape Estimation

    Full text link

    A new isosurface extraction method on arbitrary grids

    Get PDF
    The development of interface-capturing methods (such as level-set, phase-field or volume of fluid (VOF) methods) for arbitrary 3D grids has further highlighted the need for more accurate and efficient interface reconstruction procedures. In this work, we propose a new method for the extraction of isosurfaces on arbitrary polyhedra that can be used with advantage for this purpose. The isosurface is extracted from volume fractions by a general polygon tracing procedure, which is valid for convex or non-convex geometries, even with non-planar faces. The proposed method, which can be considered as an extension of the marching cubes technique, produces consistent results even for ambiguous situations in polyhedra of arbitrary shape. To show the reproducibility of the results presented in this work, we provide the open source library isoap, which has been developed to implement the proposed method and includes test programs to demonstrate the successful extraction of isosurfaces on several grids with polyhedral cells of different types. We present results obtained not only for isosurface extraction from discrete volume fractions resulting from a volume of fluid method, but also from data sets obtained from implicit mathematical functions and signed distances to scanned surfaces. The improvement provided by the proposed method for the extraction of isosurfaces in arbitrary grids will also be very useful in other fields, such as CFD visualization or medical imaging.The authors gratefully acknowledge the support of the Spanish Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación and FEDER through projects DPI2017-87826-C2-1-P and DPI2017-87826-C2-2-P

    Adaptive Mesh Reconstruction in X-Ray Tomography

    Get PDF
    International audiencehis paper presents an X-ray tomographic reconstruction method based on an adaptive mesh in order to directly obtain the typical gray level reconstructed image simultaneously with its segmentation. It also leads to reduce the number of unknows throughout the iterations of reconstruction and accelerates the process of algebraic algorithms. The process of reconstruction is no more based on a regular grid of voxels but on a mesh composed of non regular tetraedra that are progressively adapted to the content of the image. Each iteration is composed by two main steps that successively estimate the values of the mesh elements and segment the sample in order to make the grid adapted to the content of the image. The method was applied on numerical and experimental data. The results show that the method provides reliable reconstructions and leads to drastically reduce the memory storage compared to usual reconstructions based on pixel representation

    Optimum Slice Reduction Algorithm For Fast Surface Reconstruction From Contour Slices

    Get PDF
    Tesis ini memfokus kepada pembinaan semula permukaan daripada siri hirisan kontur, dengan tujuan mempercepatkan proses pembinaan semula di samping mengekalkan kualiti output pada tahap yang boleh diterima. This thesis is concerned with the reconstruction of surface from a series of contour slices, with the aim to speed up the reconstruction process while preserving the output quality at an acceptable level

    Refining the 3D surface of blood vessels from a reduced set of 2D DSA images

    Get PDF
    International audienceNumerical simulations, such as blood flow or coil deployment in an intra-cranial aneurism, are very sensitive to the boundary conditions given by the surface of the vessel walls. Despite the undisputable high quality of 3D vascular imaging modalities, artifacts and noise still hamper the extraction of this surface with enough accuracy. Previous studies took the a priori that a homogeneous object was considered to make the reconstruction from the Xray images more robust. Here, an active surface approach is described, that does not depend on any particular image similarity criterion and grounds on high speed computation of the criterion derivatives. Mean square error and normalized cross-correlation are used to successfully demonstrate our algorithm on real images acquired on an anthropomorphic phantom. Preliminary results of coil deployment simulation are also given

    Automatic G1 Parametric Fitting Of Curves And Surfaces To Outlines Of Images

    Get PDF
    Rapid advancement in imaging technologies produces massive amount of data which can be harnessed for information and knowledge gathering. Mathematical representations of objects of interest from these images are amenable to manipulation of shapes and sizes, thus aiding analysis and design. As a process in reverse engineering, we aim to automatically reproduce a mathematical outline of a 2D contour based image of an object. Next we will reconstruct a 3D object (surface) from its cross-sectional images. It is our objective to have a representation which is reliable, reasonably fast and with flexible accuracy

    Optimum Slice Reduction Algorithm For Fast Surface Reconstruction From Contour slices [QA571. T164 2007 f rb].

    Get PDF
    Tesis ini memfokus kepada pembinaan semula permukaan daripada siri hirisan kontur, dengan tujuan mempercepatkan proses pembinaan semula di samping mengekalkan kualiti output pada tahap yang boleh diterima. Teknik yang dicadangkan dalam tesis ini memproses hirisan-hirisan kontur sebelum pembinaan semula permukaan. This thesis is concerned with the reconstruction of surface from a series of contour slices, with the aim to speed up the reconstruction process while preserving the output quality at an acceptable level. The proposed technique in this thesis, preprocesses the slices of contour prior to surface reconstruction

    Model-based Tomographic Reconstruction Literature Search

    Full text link
    corecore