871 research outputs found

    Half-Guarding Weakly-Visible Polygons and Terrains

    Get PDF
    We consider a variant of the art gallery problem where all guards are limited to seeing 180degree. Guards that can only see in one direction are called half-guards. We give a polynomial time approximation scheme for vertex guarding the vertices of a weakly-visible polygon with half-guards. We extend this to vertex guarding the boundary of a weakly-visible polygon with half-guards. We also show NP-hardness for vertex guarding a weakly-visible polygon with half-guards. Lastly, we show that the orientation of half-guards is critical in terrain guarding. Depending on the orientation of the half-guards, the problem is either very easy (polynomial time solvable) or very hard (NP-hard)

    A (7/2)-Approximation Algorithm for Guarding Orthogonal Art Galleries with Sliding Cameras

    Full text link
    Consider a sliding camera that travels back and forth along an orthogonal line segment ss inside an orthogonal polygon PP with nn vertices. The camera can see a point pp inside PP if and only if there exists a line segment containing pp that crosses ss at a right angle and is completely contained in PP. In the minimum sliding cameras (MSC) problem, the objective is to guard PP with the minimum number of sliding cameras. In this paper, we give an O(n5/2)O(n^{5/2})-time (7/2)(7/2)-approximation algorithm to the MSC problem on any simple orthogonal polygon with nn vertices, answering a question posed by Katz and Morgenstern (2011). To the best of our knowledge, this is the first constant-factor approximation algorithm for this problem.Comment: 11 page

    Grid-Obstacle Representations with Connections to Staircase Guarding

    Full text link
    In this paper, we study grid-obstacle representations of graphs where we assign grid-points to vertices and define obstacles such that an edge exists if and only if an xyxy-monotone grid path connects the two endpoints without hitting an obstacle or another vertex. It was previously argued that all planar graphs have a grid-obstacle representation in 2D, and all graphs have a grid-obstacle representation in 3D. In this paper, we show that such constructions are possible with significantly smaller grid-size than previously achieved. Then we study the variant where vertices are not blocking, and show that then grid-obstacle representations exist for bipartite graphs. The latter has applications in so-called staircase guarding of orthogonal polygons; using our grid-obstacle representations, we show that staircase guarding is \textsc{NP}-hard in 2D.Comment: To appear in the proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017
    • …
    corecore