4 research outputs found

    Polygenic approaches to detect gene-environment interactions when external information is unavailable

    No full text
    [[abstract]]The exploration of 'gene-environment interactions' (G x E) is important for disease prediction and prevention. The scientific community usually uses external information to construct a genetic risk score (GRS), and then tests the interaction between this GRS and an environmental factor (E). However, external genome-wide association studies (GWAS) are not always available, especially for non-Caucasian ethnicity. Although GRS is an analysis tool to detect G x E in GWAS, its performance remains unclear when there is no external information. Our 'adaptive combination of Bayes factors method' (ADABF) can aggregate G x E signals and test the significance of G x E by a polygenic test. We here explore a powerful polygenic approach for G x E when external information is unavailable, by comparing our ADABF with the GRS based on marginal effects of SNPs (GRS-M) and GRS based on SNP x E interactions (GRS-I). ADABF is the most powerful method in the absence of SNP main effects, whereas GRS-M is generally the best test when single-nucleotide polymorphisms main effects exist. GRS-I is the least powerful test due to its data-splitting strategy. Furthermore, we apply these methods to Taiwan Biobank data. ADABF and GRS-M identified gene x alcohol and gene x smoking interactions on blood pressure (BP). BP-increasing alleles elevate more BP in drinkers (smokers) than in nondrinkers (nonsmokers). This work provides guidance to choose a polygenic approach to detect G x E when external information is unavailable

    Genome-Wide Gene-Environment Interaction Analysis Using Set-Based Association Tests

    Get PDF
    The identification of gene-environment interactions (G × E) may eventually guide health-related choices and medical interventions for complex diseases. More powerful methods must be developed to identify G × E. The “adaptive combination of Bayes factors method” (ADABF) has been proposed as a powerful genome-wide polygenic approach to detect G × E. In this work, we evaluate its performance when serving as a gene-based G × E test. We compare ADABF with six tests including the “Set-Based gene-EnviRonment InterAction test” (SBERIA), “gene-environment set association test” (GESAT), etc. With extensive simulations, SBERIA and ADABF are found to be more powerful than other G × E tests. However, SBERIA suffers from a power loss when 50% SNP main effects are in the same direction with the SNP × E interaction effects while 50% are in the opposite direction. We further applied these seven G × E methods to the Taiwan Biobank data to explore gene× alcohol interactions on blood pressure levels. The ADAMTS7P1 gene at chromosome 15q25.2 was detected to interact with alcohol consumption on diastolic blood pressure (p = 9.5 × 10−7, according to the GESAT test). At this gene, the P-values provided by other six tests all reached the suggestive significance level (p < 5 × 10−5). Regarding the computation time required for a genome-wide G × E analysis, SBERIA is the fastest method, followed by ADABF. Considering the validity, power performance, robustness, and computation time, ADABF is recommended for genome-wide G × E analyses

    Gene-environment and gene-gene interactions in myopia

    Get PDF
    Motivated by the release of the UK Biobank data and the lack of documented gene-environment (GxE) and gene-gene (GxG) interactions in myopia, I sought to apply various statistical tools to provide a quantitative assessment of the interplay between environmental and genetic risk factors shaping refractive error. The comparison between the two different risk measurement scales with which GxE interactions can be identified suggested that the additive risk scale can lead to a more informative perspective about refractive error aetiology. The evaluation of two indirect methods for detecting genetic variants affecting refractive error via interaction effects suggested the enrichment of GxG and GxE among the variants that display marginal SNP effects. For genetic variants already known from prior GWAS studies to influence refractive error, genetic effect sizes were highly non-uniform; individuals from the tails of the refractive error distribution (i.e. high myopes and hyperopes) displayed much larger effects compared to individuals in the middle of the distribution (i.e. emmetropes). Prediction of refractive error using GxE interactions indicated that although some of the variance of refractive error could be explained by a risk score constructed using interaction effects, the contribution of GxE was already accounted for by a risk score constructed using marginal SNP effects only. Although a handful of candidate genes were identified using multifactor dimensionality reduction technique, none displayed compelling evidence of involvement in a GxG interaction. There was, however, suggestive evidence that the candidate genes constitute a genetic interaction network which is regulated by hub gene ZMAT4. In summary, the analyses reported in this thesis provide further support for the challenging nature of definitively identifying loci involved in GxE and GxG interactions. The thesis provides several guidelines that future studies could take into account to obtain more insightful results regarding the extent of interactions in refractive error
    corecore