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Abstract 

Motivated by the release of the UK Biobank data and the lack of documented gene-

environment (GxE) and gene-gene (GxG) interactions in myopia, I sought to apply 

various statistical tools to provide a quantitative assessment of the interplay between 

environmental and genetic risk factors shaping refractive error. 

 
The comparison between the two different risk measurement scales with which GxE 

interactions can be identified suggested that the additive risk scale can lead to a more 

informative perspective about refractive error aetiology.  

 
The evaluation of two indirect methods for detecting genetic variants affecting 

refractive error via interaction effects suggested the enrichment of GxG and GxE 

among the variants that display marginal SNP effects. 

 
For genetic variants already known from prior GWAS studies to influence refractive 

error, genetic effect sizes were highly non-uniform; individuals from the tails of the 

refractive error distribution (i.e. high myopes and hyperopes) displayed much larger 

effects compared to individuals in the middle of the distribution (i.e. emmetropes).  

 
Prediction of refractive error using GxE interactions indicated that although some of 

the variance of refractive error could be explained by a risk score constructed using 

interaction effects, the contribution of GxE was already accounted for by a risk score 

constructed using marginal SNP effects only. 

 
Although a handful of candidate genes were identified using multifactor 

dimensionality reduction technique, none displayed compelling evidence of 

involvement in a GxG interaction. There was, however, suggestive evidence that the 

candidate genes constitute a genetic interaction network which is regulated by hub 

gene ZMAT4. 
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In summary, the analyses reported in this thesis provide further support for the 

challenging nature of definitively identifying loci involved in GxE and GxG interactions. 

The thesis provides several guidelines that future studies could take into account to 

obtain more insightful results regarding the extent of interactions in refractive error.
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Chapter 1  

Introduction to myopia and interactions 
 
1.1. Myopia 

1.1.1. Definition and classification 

Myopia, also known as short-sightedness or near-sightedness, is among the most 

common eye disorders in the world (Rudnicka et al., 2016). Figure 1.1. illustrates the 

contribution from most common eye disorders leading to visual impairment. In healthy 

patients with clear vision, distant objects focus directly on or near the photoreceptors, 

whereas in myopic eyes the image of distant objects is focused in front of the retina 

before the light reaches the photoreceptors (Morgan et al., 2012). This leads to a 

blurred image which cannot be brought back into focus by the variable power of the 

lens (accommodation), thereby causing visual impairment. The larger the distance 

between the image focusing point and the retina, the more myopic the individual will 

become.  

 
Several distinct mechanisms can lead to an imbalance between the axial length of the 

eye and the eye’s optical power. Most commonly, myopia arises as a result of greater 

than normal elongation of the eye (Morgan and Rose, 2019). In some cases, changes 

in the cornea can lead to the development of myopia, as is the case in keratoconus 

(Gordon-Shaag et al., 2015), an eye disorder characterised by a progressive thinning of 

the cornea. In some rare cases, cataract-associated myopia can arise as a result of the 

development of a small central zone that increases the refractive index (Iribarren, 

2015). From a biological perspective, myopia is thought to result from a failure of 

‘emmetropisation’ (see section 4.4.), which is characterised by a light-dependent 

retina-to-sclera signalling cascade that ties together various mechanisms such as 

retinal cell physiology, light processing, rod-and-cone bipolar synaptic 
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neurotransmission, anterior-segment morphology and angiogenesis (Tedja et al., 

2018).  

 
Refractive error is defined in terms of spherical equivalent (SE) and is expressed in 

measurement units called dioptres (D) (Morgan et al., 2012). Although the range of 

refractive error can vary considerably, in practice, the frequency distribution is typically 

leptokurtic (Cook and Glasscock, 1951). Refractive error can change substantially 

during one’s lifetime. For example, at birth, refractive error is approximately normally 

distributed with a mean level in the low hyperopic range. However, by one or two years 

of age, the distribution narrows and refractive errors become concentrated in the 

range of +1.00 to +2.00 D (Morgan et al., 2012). This active process leading the change 

in refractive error distribution is known as ‘emmetropisation’ (Morgan et al., 2012). At 

older ages, the rate of change depends on the susceptibility to different risk factors 

(discussed in section 1.1.3). 

 
Given the continuous nature of refractive error measurement, there has been 

confusion regarding the best criterion by which to define myopia. Suggestions have 

been made to group individuals based on myopia aetiology (e.g. hereditary, 

degenerative) (Saw et al., 1996), time of development (e.g. juvenile-onset, adult-onset) 

(Grosvenor, 1987), severity (e.g. low, medium, high) and with or without degenerative 

changes (e.g. physiological, pathological) (Tano, 2002). Thresholds used to define 

myopia vary considerably across studies (Holden et al., 2016). For example, based on 

a systematic review of myopia literature (Holden et al., 2016), 1.7% of studies defined 

high-myopia as -3.00 D or less, and 1.7% as -8.00 D or less. The heterogeneity of 

classification can have a large impact on meta-analyses and can lead to reduced power, 

e.g. the inability to identify associations. One recently published paper has outlined a 

set of standards for defining and classifying myopia (Flitcroft et al., 2019). These 

authors proposed to classify myopia based on presumed aetiology, age at onset, 

progression pattern, amount of myopia and structural complications. For each of these 

categories, a list of descriptive terms was assigned. For example, if epidemiologists 

describe myopia as permanently progressive, progressive high, stationary or 

temporarily progressive, then this type of myopia belongs to the classification based 

on progression pattern. In addition, they proposed four quantitative definitions of 
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myopia: pre-myopia defined as < -0.50 D and ≤ +0.75 D; myopia ≤ -0.50 D; low myopia 

≤ -0.50 D and > -6.00 D and high myopia as ≤ -6.00 D. 

 
As discussed in section 1.1.4., correction measures to halt myopia progression are 

available. However, if left untreated, a range of complications can arise. Highly myopic 

individuals are more likely to develop other eye disorders such as cataracts, myopic 

macular degeneration, glaucoma and chorioretinal abnormalities, which can result in 

irreversible vision loss (Saw et al., 2005; Morgan and Rose, 2019). The Blue Mountains 

Eye Study reported a maculopathy prevalence of 0.42% in myopes of less than -5.00 D 

and 25% for myopes greater than -5.00 D (Vongphanit et al., 2002). In addition to 

health problems, myopic patients report lower quality of life, especially those with a 

high degree of myopia (Rose et al., 2000). It is also important to consider the economic 

burden of myopia, given that half of the population is estimated to be myopic within 

the next 30 years and 10% are expected to be highly-myopic (Chua and Foster, 2019). 

 

Figure 1.1. Major causes of visual impairment in the year 2010. The figure was copied from 

http://www.who.int/blindness/GLOBALDATAFINALforweb.pdf. Accessed: 29 October 2019. 

Abbreviations: RE - refractive error, AMD - age-related macular degeneration, CO - corneal 

opacity, DR - diabetic retinopathy. 

 

 

1.1.2. Demographics of myopia prevalence 

The prevalence of myopia varies widely across geographical regions (Rudnicka et al., 

2016). Figure 1.2. provides an overview of myopia prevalence rates for different parts 
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of the world. It is worth noting that the calculation of prevalence rates is sensitive to 

the threshold used to classify myopia. For example, using a random sample of 1,985 

individuals from the 1958 British cohort and shifting the threshold towards 0.00 D 

changed prevalence from 28% to 47% (Cumberland et al., 2018). Nevertheless, a 

common feature across the countries is that the number of individuals with myopia is 

expected to increase. It is estimated that by the year 2050, approximately half of the 

population will become myopic and approximately one billion individuals (10%) will be 

highly-myopic (Figure 1.3.) (Holden et al., 2016). The region with the highest 

prevalence rates includes East and Southeast Asia. More specifically, it is the ‘school 

myopia’ seen in young adults in developed parts of this region that is of greatest 

concern. For example, up to 90% of teenagers and young adults in mainland China and 

96.5% of 19-year-old men in Seoul are myopic compared to only 10-20% sixty years 

ago (Dolgin, 2015). Similar rates (70-90%) are observed in Hong-Kong, Taiwan, 

Singapore, Japan and the Republic of North Korea (Morgan et al., 2018). 

 
A large, high quality meta-analysis carried out by Rudnicka et al. investigated trends in 

the prevalence of childhood myopia (1 to 18 years) in 42 different countries (Rudnicka 

et al., 2016). The combined meta-analysis comprised of 374,349 individuals. In total, 

74,847 (20%) individuals were considered to be myopic (defined as < -0.50 D). Although 

the number of individuals with refractive error assessment for meta-analysis was large, 

sufficient data were only available for whites, East Asians and South Asians. After 

accounting for confounding factors such as age and environmental setting (i.e. urban, 

rural or combined), they observed an increase in prevalence only in East Asians (OR 

1.23, 95% Credible Interval 1.00 to 1.55). The highest prevalence was observed for 18-

year old children from Singapore (92%), about 87% in children from Hong Kong and 

Taiwan and 72% in children from China. The lowest rates were observed for 5-year old 

children in rural Mongolia (0.3%). Rates across all studies were the lowest in 

Mongolians from rural areas irrespective of the age group. The same study did not find 

convincing evidence to suggest that prevalence rates vary between Europe, USA and 

Oceania, although a trend of increasing prevalence was noticeable. An interesting 

observation was made for South Asian migrant children residing in Australia, England 

or Singapore. At the age of 15 years-old, the South Asian migrant children were five 

times more likely to be myopic compared to their counterparts from Nepal or India 
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who had not migrated and were living in South Asia at the time the study was 

conducted: the myopia prevalence was 40% in migrants vs. 9% in South Asians who 

had not migrated (Rudnicka et al., 2016).  

 

Figure 1.2. Summary of myopia prevalence in different parts of the world. The numbers in 
brackets represent prevalence rates. The figure was copied from 
https://www.myopiainstitute.org/prevalence.html. Accessed: 29 October 2019.  
 
 

In conclusion, the prevalence rates around the globe are not uniform and some 

regions, such as East Asia, display substantially higher rates.  In these regions, the 

incidence rate of myopia is the highest in teenagers and young adults. Collectively, this 

information can provide some insight as to what causes myopia. Given that predictions 

anticipate continued steady rise in new myopia cases, it is important to develop 

effective management strategies. 

 
1.1.3. Risk factors associated with myopia 

Fifty years ago, myopia was believed to be mostly caused by genetic determinants, 

with only minor environmental influences (Sorsby, 1962). However, during the 

following years it became apparent that the sharp increase in myopia prevalence in 

urbanised regions of East and Southeast Asia could not be explained by genetic 

changes on their own. As a result, there has been a shift from viewing myopia as being 

predominantly genetically determined to predominantly environmentally controlled. 
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Now it is accepted that both  genetic and environmental risk factors and the interplay 

between the two are involved in shaping myopia’s development and progression. 

 

 

Figure 1.3. Global myopia and high-myopia prevalence rates from year 2000 to 2050. The 

projection for next 30 years is based on the meta-analysis of 145 studies that reported  

prevalence rates for myopia or refractive error in different parts of the world. Error bars 

represent the 95% confidence intervals. The figure is copied from Holden et al., 2016. 

 

 
One of the most compelling pieces of evidence regarding environmental cues comes 

from the studies examining educational attainment. Observational studies have 

consistently shown that individuals who spend more time in education tend to have a 

more negative refractive error (Tay et al., 1992; Au Eong et al., 1993; Morgan and Rose, 

2013; Williams and Hammond, 2014; Nickels et al., 2019). For instance, in Asian 

populations, individuals aged 40 years or older with a university education are nearly 

four times more likely to have myopia compared with those with primary or no formal 

education (Pan et al., 2012). The low prevalence of myopia in African populations has 

been attributed to low literacy rates given that most children among the countries 

investigated do not start formal education until the age of 6-8 years (Rudnicka et al., 

2016). Several studies have suggested a causal relationship between refractive error 

and educational attainment (Cuellar-Partida et al., 2016; Mountjoy et al., 2018). For 

example, Mountjoy et al. performed a Mendelian Randomization (MR) analysis 
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suggesting that one additional year spent in education was associated with -0.27 D 

change in refractive error (95% CI -0.37 to -0.17, p = 4 x 10-8) (Mountjoy et al., 2018). 

No evidence of reverse causality was observed. Frequently, instead of using 

educational attainment as a risk factor, highly correlated proxies such as socio-

economic status (SES), intelligence and near-work activities have been explored to test 

for association with myopia (Parssinen, 1987; Rosner and Belkin, 1987; Teasdale and 

Goldschmidt, 1988; Saw et al., 2000). Generally, there is a tendency for higher SES, 

longer time spent reading and having a higher IQ to be associated with more negative 

refractive error, however, the effects of these risk factors vary across studies. An 

additional confounding factor is likely to be the steady rise in the use of modern 

electronic devices over the past three decades (Wojciechowski, 2011). Because the 

aforementioned environmental risk factors are correlated, it is difficult to tease apart 

their individual effects. For example, educational attainment has shown to have a 

causal effect on refractive error; however, this might be mediated either through the 

amount of time an individual spends outdoors or the amount of time performing near-

work tasks. 

 
As mentioned above, another environmental factor known to influence refractive error 

is time spent outdoors (Mutti et al., 2002; Jones et al., 2007; Guggenheim et al., 2012). 

This risk factor has been shown to have a protective effect; thus, a shorter time spent 

outdoors is associated with a more negative refractive error. The strongest evidence 

for a protective effect of time outdoors comes from randomised controlled trials, in 

which the intervention was an extra 20-80 minutes outdoors during the school day 

during a 1-3 year period (Wu et al., 2013; He et al., 2015). The light stimulation of 

retinal dopamine, which discourages axial elongation, has been proposed as the 

mechanism through which time outdoors controls the rate of incident myopia (Read 

et al., 2014).  

 
Another line of evidence to support an environmental basis for myopia comes from 

studies of form deprived or lens-induced myopia in animal models (Morgan et al., 

2013). In juvenile animals from a wide range of species, covering one or both eyes with 

a frosted diffuser or a ‘minus’ power spectacle lens induces an accelerated rate of axial 

elongation leading to myopia. As regards lens-induced myopia, the accelerated rate of 
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eye growth in response to the imposed defocus continues until the eye reaches an 

optimal ‘compensated’ state, where the light is focused on the retina with the 

spectacle lens in place. 

 
Many other environmental risk factors not mentioned here have been associated with 

myopia and include birth order (Guggenheim et al., 2013a), number of myopic parents 

(Kurtz et al., 2007), diet (Lim et al., 2010) and smoking (Iyer et al., 2012).  

 
The first line of evidence of a genetic contribution towards myopia came from twin 

studies, where a greater concordance of refractive error was observed in monozygotic 

compared to dizygotic twins (Sorsby, 1962). Indeed, the first ever ‘classical’ twin study 

was an investigation of myopia (Liew et al., 2005). Subsequently, estimates for ‘broad 

sense’ heritability across populations were consistently found to be high (Guggenheim 

et al., 2000; Hammond et al., 2001; Lyhne et al., 2001; Dirani et al., 2006). For example, 

Dirani et al. studied 345 monozygotic and 267 dizygotic twin pairs aged 18-88 years 

and concluded that heritability of spherical equivalent was 88% in men and 75% in 

women (Dirani et al., 2006).  

 
It has been noted that myopia accompanies syndromic refractive errors with a known 

genetic predisposition. These include X-linked and autosomal recessive congenital 

stationary night blindness (Zeitz et al., 2015), X-linked retinitis pigmentosa 

(Parmeggiani et al., 2016), X-linked Bornholm eye disease (Schwartz et al., 1990), 

Marfan syndrome (Verstraeten et al., 2016) and Stickler syndrome (Snead and Yates, 

1999). According to the Online Mendelian Inheritance in Man 

(www.ncbi.nlm.nih.gov/omim, accessed: 29 October 2019), there are a total of 100-

200 rare genetic disorders, where myopia is described as a secondary feature. There is 

also evidence to suggest that non-syndromic forms of early-onset myopia are under 

genetic control (Hornbeak and Young, 2009; Morgan and Rose, 2019). For example, Cai 

et al. provide a list of 25 monogenic forms of myopia or high myopia (categorized as 

MYP1 - MYP25) that have been discovered using linkage analysis (Cai et al., 2019). 

More recently, the Consortium for Refractive Error And Myopia (CREAM) has 

conducted the largest meta-analysis to date (Tedja et al., 2018). The analysis of 

160,420 individuals from European and Asian populations identified 161 genomic loci, 

demonstrated a high degree of genetic overlap between Europeans and Asians, and 
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highlighted light-induced signalling as a driver mechanism for refractive errors. In 

addition, the heritability explained by common genetic variants (SNP-heritability) was 

found to be 0.17-0.21% in Europeans, while it was much lower in the Asian sample 

(0.05%). Note that this is substantially lower than the typical 80-90% estimated in twin 

studies. The discrepancy between the two could be due to shared environmental 

effects, a larger number of variants with smaller effects, rare and structural variants or 

interactions, and lack of statistical power to detect loci of small effect (Manolio et al., 

2009). In general, linkage studies and genome-wide association studies (GWAS) of 

myopia have pinpointed different set of genes. An explanation for this is that common 

single nucleotide polymorphisms (SNPs) with small effects are typically identified in 

GWAS analyses, whereas linkage studies focus on high-myopia and find loci that have 

large effects. In addition, several whole-exome sequencing experiments for early-

onset high-myopia (eoHM) have been conducted (Mordechai et al., 2011; Jiang et al., 

2015; Wan et al., 2018). Mutations in genes such as LRPAP1 were found to influence 

eoHM (Aldahmesh et al., 2013; Jiang et al., 2015). However, other genes, such as SCO2 

await further validation. Although different study designs used to investigate myopia 

have discovered different sets of genes, thus making the interpretation of the genetic 

component more difficult to understand, these various study designs provide a more 

comprehensive overview of the heterogenous nature of myopia.  

 
The age at which GWAS-identified variants exert their effects is not known. One study 

examined the age-of-onset correlation between refractive error and 39 GWAS-

identified variants in 5,200 children from the Avon Longitudinal Study of Parents and 

Children (ALSPAC) (Fan et al., 2016). The children had their refractive error 

measurements taken from ages 7 to 15 years. Many differences between specific SNPs 

and their effects during childhood were observed. For example, 5 SNPs displayed early-

onset effects and showed progressively stronger effects during later childhood, 10 

SNPs demonstrated early-onset effects with stable effects through childhood, while 11 

SNPs had later onset in childhood.  

 
Relatively few examples of gene-environment (GxE) interactions have been described 

for myopia. A study by Chen et al. explored the possibility of GxE interactions through 

two rounds of selective breeding of White Leghorn chicks treated with monocular form 
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deprivation (Chen et al., 2011a). Although the genes responsible were not identified, 

susceptibility to this environmentally induced type of myopia found to be heritable (h2 

= 0.50). GxE interaction involving APLP2 gene in mice has been identified and 

subsequently replicated in humans (Tkatchenko et al., 2015). In the Tkatchenko et al. 

study, interaction of the risk variant rs188663068 with age revealed that individuals 

carrying the risk allele “A” experienced more rapid, age-dependent progression 

towards myopia. At age 8, children with genotypes GG and GA were emmetropic (~0 

D), whereas when measured at 15 years of age, the same children had refractive 

error -0.75 D and -1.25 D for the GG and GA genotypes, respectively.  A model with a 

3-way SNP × Age × Time spent reading interaction was found to be significant in 

children who spent >1.0 hrs/day reading. Amongst ‘heavy’ readers, children with the 

GA genotype were on average one dioptre more myopic compared to children with GG 

genotype at the age of 15 years (-1.4 D vs. -2.5 D). This demonstrates that the refractive 

error trajectory of children during the 8 - 15 age period depends on the genotype they 

carry, and that this trajectory can be modified by the amount of reading done per day. 

Another example of a GxE interaction comes from a study were individuals from 

several Asian countries were assessed for gene × education interaction (Fan et al., 

2014). The authors explored 40 candidate SNPs that have been previously associated 

with refractive error. They identified three variants that conferred an increased risk of 

becoming myopic in the ‘high education’ group (i.e. high schoolers, diploma holders or 

university graduates) compared to those who completed lower secondary education, 

primary education or had no formal education. The strongest interaction effect was 

observed for rs2969180 variant near SHISA6-DNAH9 genes (βGxE = −0.28 ± 0.08 D). In 

the replication analysis, only the GDJ2 gene showed evidence of interaction with 

education. A variant nearby another gene, TJP2, displayed significant interaction only 

in Europeans (p = 6.91 × 10−3). 

 
To date, no compelling evidence to support the involvement of gene-gene (GxG) 

interactions in myopia has been observed.  

 
Overall, the evidence suggests the environmental influences to be the major driver in 

refractive error variation between populations and different ethnic groups. 

Environmental risk factors are often confounded (e.g. education and intelligence, 
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occupation and near-work), making it difficult to unravel individual environmental 

effects. The prevalence of myopia seems to depend on where children grow up and 

the environments to which they are exposed, rather than aspects of genetic ancestry 

(Morgan et al., 2012). While genetics cannot explain the rapid increase in myopia over 

the last few decades in high prevalence parts of the world, variation within populations 

is likely to have an important genetic contribution (Wojciechowski, 2011).  

 
1.1.4. Methods used to control myopia development 

Currently, there is no strategy to stop myopia progression completely. However, 

intervention approaches have been proposed that aim to either slow down 

progression or to delay myopia onset. Given the fact that the environment plays a 

major role in determining refractive error, it seems reasonable to assume that 

prevention focused on regulating (i.e. increasing or decreasing) exposure time to an 

environmental risk factor, would be a good first step to control myopia development 

and progression. As discussed in the previous section, time spent outside has a 

protective effect. Hence, strategies encouraging children to spend more time outdoors 

during school hours would be beneficial (He et al., 2015). For example, the addition of 

40 minutes of outdoor activity was found to reduce the incidence rate of myopia over 

a 3-year period by 10% among 6-year olds in China (He et al., 2015). Attempts to 

increase the time children spend outdoors, however, have had little success 

(Verkicharla et al., 2017). 

 
Myopic patients need to wear spectacles or contact lenses to see clearly in the 

distance. Figure 1.4. lists several types of specialist lens that can be used not only to 

correct the defocus of myopic children but also to slow their myopia progression. For 

example, orthokeratology involves wearing rigid gas-permeable lenses overnight to 

flatten the cornea. The use of these lenses was shown to lead to a consistent reduction 

in myopia progression of approximately 45% over a two-year period and 30% over five 

years (Si et al., 2015). Additionally, pharmaceuticals such as the antimuscarinic agents 

pirenzepine, and atropine have also shown promising results. Use of 0.01% atropine is 

the most common treatment regimen for the management of myopia in children in a 

number of Asian countries, such as Singapore, Taiwan and China (Wu et al., 2019).  
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Figure 1.4. Summary of different treatment strategies to reduce myopia onset and 

progression. This figure was copied from (Wolffsohn et al., 2016). 

 

 

1.2. Gene-environment interactions 

1.2.1. Introduction to gene-environment interaction 

Over recent years, advancements in sequencing technologies have made genotyping 

more accessible and cost-effective, allowing researchers to study entire genomes in a 

hypothesis-generating fashion. The rapid adoption of genome-wide association studies 

(GWAS) superseded previous methodologies such as linkage and candidate gene 

studies of complex traits and led to several, now well established and robust 

conclusions. Some of the key findings include a high degree of polygenicity for common 

complex traits, very small effect sizes for common genetic variants and a high degree 

of genetic overlap across different traits (Visscher et al., 2017). Although there is 

undeniable evidence that large-scale genomic studies have provided valuable insight 

regarding the genetic architecture of common traits (Visscher et al., 2012; Visscher et 

al., 2017), many challenges remain to be resolved (Manolio et al., 2009; Parker et al., 

2009; Platt et al., 2010; Korte and Farlow, 2013; Tam et al., 2019). For example, some 

have argued that the majority of the currently used tools are too simplistic and do not 

accurately capture the relationship between the phenotype and the genotype due to 

the failure to account for the effect of biologically plausible mechanisms such as 
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epigenetics or post-transcriptional modification (Nelson et al., 2013). Consequently, a 

step in this direction has been made by utilising -omics and next-generation 

sequencing data (Ritchie et al., 2015; Ritchie et al., 2017). Since it is well accepted that 

complex traits are influenced by a multitude of genetic and environmental factors (Dick 

et al., 2015), an intuitive approach is to build statistical models that estimate the joint 

effect of genetic variants and environmental exposures.  

 
From a statistical point of view, gene-environment (GxE) interaction is characterized 

by the lesser or greater joint effect of environmental exposure and genetic 

susceptibility compared to the expected effect of each risk factor if they were studied 

independently. In this context, the environment can refer to a wide range of exposures, 

including biological (e.g. virus and disease vectors), chemical (e.g. pesticides and 

persistent organic pollutants), physical (e.g. radiation and temperature), behavioural 

(e.g. late age at first pregnancy) or some kind of life event (e.g. injury and job loss) 

(Ottman, 1996).  

 
Some of the best-characterized evidence of GxE interaction comes from studies of 

Mendelian disorders, where the phenotype is influenced by the action of one or a few 

genes that have a strong effect on the phenotype. For example, phenylketonuria (PKU) 

is a metabolic disorder that arises as a consequence of a defect in the enzyme that 

metabolises the amino acid phenylalanine (Pietz et al., 1999). Affected children display 

intellectual and developmental disability. However, the condition can be reversed by 

monitoring diet and limiting the intake of phenylalanine. Ritz et al. provide a 

comprehensive list of disorders that are amenable and preventable by the 

environmental intervention (Ritz et al., 2017). In summary, the authors suggest that 

the most compelling evidence of the successful discovery of GxE interaction to date 

comes from the studies of proteins that have enzymatic or metabolic functions. 

However, evidence of GxE interaction in common complex traits is scarce (Risch et al., 

2009; Karg et al., 2011; Dick et al., 2015). 

 
When considering GxE interaction, a question regarding the direction of its effect arises 

(Dick et al., 2015). There are several points to consider. First, it might be of interest to 

understand whether genetic susceptibility predisposes to enhanced effects of the 

environmental exposure or whether environmental exposure leads to greater changes 
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in the phenotype, for example, through the altered gene expression (Gauderman et 

al., 2017). This is important if the goal is to understand the biological mechanism by 

which GxE interaction exerts an effect on the phenotype. Ottman has described five 

biologically plausible mechanisms (Ottman, 1990, 1996). For example, model A in 

Figure 1.5. represents a situation where the genotype of an individual modifies the risk 

of environmental exposure. An example of this type of mode of action is PKU, as 

mentioned above. In model B, the effect of genotype is exerted in individuals who are 

exposed to an environmental risk factor. Certain statistical tests, such as case-only 

analysis (discussed below), have been tailored to detect this specific type of GxE 

interaction. An example of this type of interaction is xeroderma pigmentosum 

(Ottman, 1996). Affected individuals lack the enzyme that repairs DNA damage after 

exposure to ultra-violet radiation. In model C, the effect that the genotype has on a 

trait is exacerbated by environmental exposure. In this case, individuals who carry a 

low-risk genotype do not show a change in the phenotype upon being exposed. An 

example of this mode of action can be seen in individuals with porphyria variegata, an 

autosomal dominant disorder affecting the skin. Exposure to barbiturates can lead to 

paralysis and even death. Model D represents a situation, where both genetic and 

environmental risk factors are required to observe an effect (i.e. no effect is seen 

when only one risk factor is present). A classic example is glucose-6-phosphate 

dehydrogenase (G6PD) deficiency. Individuals with this condition are asymptomatic 

until they eat fava beans, which leads to haemolytic anaemia. In contrast, individuals 

without G6PD deficiency do not display adverse effects upon eating fava beans. 

Model E represents a scenario where both genetic and environmental risk factors 

have a certain effect on the phenotype. However, the effect of the two is greater or 

lesser only if both factors are present. An example would be chronic obstructive 

pulmonary disease (COPD). The risk of developing COPD is increased in non-smokers 

with hereditary α1-antitrypsin deficiency and smokers without α-1-antitrypsin 

deficiency. 
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In general, the actual biological mechanisms underlying GxE interactions can be 

explored by functional studies. Since the underlying relationship between the 

interaction effect and the trait of interest is rarely known, several types of statistical 

interpretation have been described (Figure 1.6.). For example, a quantitative 

interaction (Figure 1.6. left panel) is described by a change in effect magnitude of one 

exposure in the presence of another (Hutter et al., 2013). This type of interaction might 

be of interest if the goal is to identify a group of individuals at highest risk and the 

majority of methods discussed in section 1.2.3. are developed to detect this type of 

interaction. On the other hand, a qualitative interaction (also known as crossover 

interaction) (Figure 1.6. right panel) is defined by the reversal of one exposure’s effect 

by the other (Hutter et al., 2013) and a method to detect this type of interaction using 

a likelihood ratio test has been proposed (Gail and Simon, 1985). 

Figure 1.5. Summary of five different biologically plausible GxE interaction 

mechanisms by which genetic and environmental risk factors can produce changes 

in the phenotype (copied from Ottman, 1996). 
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Dempfle et al. provide a detailed discussion regarding different types of interactions 

(Dempfle et al., 2008). Typically, environmental variables are considered as binary 

factors. Taking, for example, university education, we could represent a group of 

individuals who have a university degree as E = 1 or E = 0. Although the difference in 

coding does not affect the significance of the interaction effect, the magnitude and 

direction of effect can change, and this arbitrary choice of coding will determine the 

interpretation of interaction coefficients (Gauderman et al., 2017). To avoid the 

confusion due to arbitrary classification, variable coding should always be stated 

explicitly (VanderWeele and Knol, 2014).  

 

Figure 1.6. Statistical interpretation of plausible GxE interaction effects on the 

phenotype. An example is shown for GxE interaction involving a biallelic genotype and 

a binary environmental exposure. The left panel shows concordant direction of GxE 

interaction (i.e. the effect of interaction increases with additional copy of B allele in 

both exposed and unexposed individuals) and divergent effect magnitude (i.e. the risk 

is greater in individuals that have a BB genotype and are exposed to an environmental 

risk factor compared to unexposed and BB genotype carriers). In the right panel, I show 

a scenario where GxE interaction has an opposite effect in BB genotype carriers.  

 

 

 

The focus of this thesis revolves around the statistical detection of interaction 

effects. In other words, I utilise available bioinformatics approaches to identify 

genetic variants that show a departure from additivity and do not take into account 

the mechanism by which GxE interaction influences refractive error. Where 
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appropriate, I use functional annotation tools to provide biological interpretation 

for newly-discovered associations. 

 
1.2.2. Motivation for studying gene-environment interactions 

There are several reasons to consider GxE interactions. First, it is essential to 

understand the interplay between genetic and environmental risk factors because they 

operate together to influence changes in the phenotype. For example, studying GxE 

interaction could provide novel insight into the biology of disease beyond that offered 

by studying marginal SNP effects (McAllister et al., 2017). The greatest benefit would 

be obtained in the case where the genetic variants that are involved in GxE interaction 

are distinct from those that show marginal association with the trait of interest. This is 

an example of so called pure interaction (Hutter et al., 2013). Additionally, novel 

environmental exposures that mediate the changes in the phenotype could be 

identified (Patel and Ioannidis, 2014; Patel and Manrai, 2015). Collectively, such 

information could lead to improved treatment and prognosis of patients. Second, GxE 

interaction could be used to identify a high-risk subgroup of individuals that is at 

greater risk of developing the disease (Figure 1.6. left panel). This could arise as a 

consequence of increased genotype-specific or increased environmental-specific risk. 

Such information can influence decisions regarding treatment strategy. For example, 

suppose a limited dose of medication is available. We would prefer to administer drugs 

to individuals who are at the greatest risk (VanderWeele and Knol, 2014). In the 

pharmacogenomics setting, GxE interaction information can guide the decision behind 

the development of tailored treatment for each patient (Ritz et al., 2017). In the case 

of continuous traits, such as refractive error, the rate of change in the phenotype could 

be exacerbated by GxE interaction. For example, in a longitudinal study, where 

relevant information is collected at different time points, we could observe a faster 

rate of disease progression that is caused by innate genetic susceptibility or by more 

prolonged exposure to adverse a specific environmental condition. In any case, this 

would provide motivation for developing early treatment strategies before the 

manifestation of serious complications. Third, current studies fail to provide accurate 

phenotype prediction in independent samples. It has been argued that the inclusion of 

interactions leads to better prediction of extreme phenotypes in model organisms 

(Forsberg et al., 2017). However, whether this is also true in humans remains to be 
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determined. Lastly, Mendelian Randomization (MR) has gained popularity in recent 

years (Davies et al., 2018; Grover et al., 2018; Bowden and Holmes, 2019; Lor et al., 

2019) and become a standard method of choice to strengthen causal inference.  

However, MR is prone to biases that can arise by virtue of several assumptions that 

need to be satisfied in order to obtain valid measures of causality (Hemani et al., 2018). 

For example, SNPs must associate with the phenotype through a particular exposure 

but not by a direct association with the trait or via an unmeasured confounding factor. 

It has been suggested that inclusion of GxE interaction could detect and correct for 

pleiotropic bias (i.e. one gene many functions) in MR studies (Spiller et al., 2019). 

 
1.2.3. Methods for detecting gene-environment interactions 

Recent years have seen a large increase in the number of distinct analytical 

methodologies to study GxE interaction in large-scale studies. This section provides an 

overview of the available modelling strategies. I begin by describing simple regression-

based methods and finish with a discussion of more complicated approaches. 

 
The simplest method includes a standard logistic or linear regression method that 

takes into account a GxE interaction term. In this context, interaction is assessed using 

the multiplicative risk scale (see Chapter 3 for more details). An exhaustive search for 

interaction is typically performed for all genotyped and imputed genetic variants. 

These models can be extended to estimate relative risks in cohorts (Breslow et al., 

1987), or hazard rate ratios for time-to-disease data (Kalbfleisch and Prentice, 2011). 

In addition, environmental exposure does not have to be restricted to binary 

classification and can be specified as continuous, ordinal or categorical (Tchetgen 

Tchetgen and Kraft, 2011). A common feature for all these methods is that the null 

hypothesis being tested is H0: βGxE = 0. A two degree of freedom (2-df) approach could 

be used to test the joint effect of a SNP’s main and interaction effect (H0: βG = βGxE = 0) 

(Kraft et al., 2007; Aschard et al., 2010; Manning et al., 2011; Dai et al., 2012b; Hancock 

et al., 2012). Piegorsch et al. suggested using a case-only analysis when both G and E 

are binary (Piegorsch et al., 1994), which was shown to be a more powerful method 

compared to logistic regression. However, this method has a few limitations. First, a 

case-only design cannot estimate the main effects of βG and βE (Gauderman et al., 

2017). To resolve this issue, methods that use controls, instead of cases, to estimate 
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main effects have been developed (Umbach and Weinberg, 1997; Chatterjee and 

Carroll, 2005). Second, the estimates for βGxE will be biased if there is a gene-

environment correlation (rGE) (Albert et al., 2001). To partially address this issue, an 

empirical Bayes approach (Mukherjee and Chatterjee, 2008; Chen et al., 2009a) and 

Bayesian model averaging (Li and Conti, 2009) have been proposed. These methods 

provide more flexible modelling that exploit properties of both case-only and case-

control analyses. To further increase the statistical power of GxE interaction tests, 

several two-step methods have been proposed (Murcray et al., 2008; Gauderman et 

al., 2010; Pare et al., 2010; Murcray et al., 2011; Dai et al., 2012a; Hsu et al., 2012; 

Gauderman et al., 2013; Zhang et al., 2016). Generally, two-step methods involve the 

following two stages. First, an exhaustive interaction search is performed using one of 

the previously described methods for all M available genetic variants. Next, only m 

SNPs that pass a given threshold (e.g. p < 0.05) are selected, and GxE interaction 

discovery is carried out in this smaller subset of variants that passed the initial 

screening stage. These methods are statistically more powerful because the 

significance threshold in stage two is adjusted by the fewer number of SNPs (i.e. m < 

M). In essence, two-step methods resemble candidate gene approach, where a few 

SNPs, within or nearby a gene, are selected for testing based on the previous evidence 

of their association with the phenotype. Alternatively, a prioritization strategy for the 

second stage could include a selection of variants that are known to be associated with 

environmental factors or variants located in the functional regions of the genome 

(Ritchie et al., 2017). A key assumption for any two-step method is that each stage 

should be independent. In other words, the calculation of test statistic in the second 

stage should not be influenced by the results from stage one. One complication arises 

when selecting a threshold used to prioritize variants for the second stage. If this 

threshold is too stringent, pure interactions will be missed. If the threshold is closer to 

nominal significance, statistical power will be reduced. 

 
A different category of GxE interaction tests includes methods that use multiple SNPs 

within a biologically defined set (e.g. gene, pathway) (Tzeng et al., 2011; Jiao et al., 

2013; Lin et al., 2013; Jiao et al., 2015; Zhao et al., 2015; Lin et al., 2016; Liu et al., 2016; 

Su et al., 2016). In other words, a single interaction test between environmental 

exposure and multiple SNPs is performed. The motivation behind this strategy is that 
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when SNPs display only weak interaction effects individually, the signal could be much 

stronger when multiple SNPs are considered in aggregate. Set-based methods can be 

broadly classified into three categories: variance component tests, burden tests, and 

their combination. Methods based on variance components are more powerful when 

the magnitude and direction of effect across SNPs are heterogeneous (Lin et al., 2013), 

while burden tests perform better when genetic variants in a set display the same 

effect direction and are causal (Jiao et al., 2013; Liu et al., 2016). Most of the time it is 

unknown which of the two hypotheses regarding the direction of effect is true. 

Therefore, a hybrid method that combines variance component and burden tests that 

may perform well under a range of scenarios has been proposed (Jiao et al., 2015; Lin 

et al., 2016; Su et al., 2016). Another method that utilizes a set of SNPs to find evidence 

of GxE is based on polygenic risk scores (PRS) (Garcia-Closas et al., 2013; Garcia-Closas 

et al., 2014; Lin et al., 2018, 2019). Although similar in spirit (i.e. aggregate effect across 

multiple SNPs being tested), there are key differences that separate it from other set-

based methods. For example, studying SNPs within a gene might yield a more insightful 

view regarding the biological function of the gene, and it can incorporate LD 

information accounting for untyped SNPs. 

 
The methods discussed so far assume a linear relationship between the phenotype and 

risk factors. However, this assumption might not hold in cases where the risk of both 

genetic and environmental factors varies with time. For example, the incidence of 

myopia between ages 10 and 15 years was shown to depend on the time spent 

outdoors across the 3 to 9 years age range (Shah et al., 2017). For this reason, non-

linear tests to study GxE interaction have been proposed (Ma et al., 2011; Wu and Cui, 

2013; Wu et al., 2014; Ma and Xu, 2015; Sa et al., 2016). Both single variant and gene-

based tests under this framework are available. Due to their design, these tests can 

only accommodate continuously measured environmental factors.  

 
Finally, a number of non-parametric methods have been proposed. Collectively, these 

approaches can be described as data mining analyses. The advantage of these methods 

lies in their relaxed assumption regarding the genetic model or distribution of effect 

sizes, which leads to improved computational efficiency. Typically, they aim to find a 

combination of genetic or environmental factors that best describe the phenotype. 
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These methods are usually designed to avoid multiple testing; however, they require 

follow-up analysis to obtain the optimal model and a measure of statistical significance 

(Steen, 2012). One popular method is the multifactor dimensionality reduction 

algorithm (Ritchie et al., 2001; Mei et al., 2005; Chen et al., 2014; Yu et al., 2016; Yang 

et al., 2019), which is discussed in more detail in Chapter 6. Other methods are based 

on random forests (Schwarz et al., 2010; Wolf et al., 2010) and pattern recognition 

(Zhang et al., 2014).  

 
Given the large number of tests developed to investigate GxE interaction, one might 

wonder which method is the most appropriate. It is unlikely that any given test will 

perform well under different scenarios and its efficiency will be determined by the 

underlying causal mechanism (Hsu et al., 2012; Gauderman et al., 2013). Factors such 

as study design attributes and the population being studied could also influence the 

decision of which test to use (McAllister et al., 2017). To avoid reporting spurious 

findings, caution should be taken when applying multiple methods. For example, 

replication analysis using an independent sample should be used to confirm the validity 

of newly identified GxE interactions. It should be stressed that the list of GxE 

interaction methods provided in this section is by no means exhaustive. The number 

of available tests is likely to increase in the future, to accommodate the improved 

understanding of biological mechanisms shaping complex phenotypes. 

 
1.2.4. Current challenges related to gene-environment interactions 

Undoubtedly, the biggest challenge and the key explanation for poor detection and 

replication of GxE interaction is low statistical power. There are many factors that 

determine the power of the study. First, GxE effect sizes are hypothesized to be much 

smaller compared to marginal SNP effects (Bureau et al., 2015; Aschard, 2016). Thus, 

larger sample sizes are required to detect an interaction effect compared to a marginal 

effect. Environmental exposure variability may be another explanation for the inability 

to identify GxE interaction (Kraft and Aschard, 2015; Stenzel et al., 2015; Gauderman 

et al., 2017). This is possibly one of the reasons why studies of model organisms, such 

as mouse or Drosophila, have been more successful at identifying interactions 

compared to human observational studies (Aschard et al., 2012b; Mackay, 2014). 

Another explanation for the relative paucity of compelling GxE interaction in human 
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genetic epidemiology could be due to exposure misclassification (Stenzel et al., 2015). 

Measured exposures are rarely etiologically relevant to the trait under consideration 

as these are most often replaced by inexpensive proxies (Kraft and Aschard, 2015). For 

example, in the studies of dietary measures, self-reported questionnaires are typically 

assayed instead of the analysis of a dietary record. Frequently, there is a low 

correlation between the two (Gauderman et al., 2017). The effect of environmental 

exposures might vary considerably throughout human lifespan and might be spatially 

or culturally dependent (Gauderman et al., 2017). It is also apparent that complex traits 

are influenced by multiple environmental factors (e.g. refractive error) and so it might 

be difficult to dissect an individual effect of any given exposure in the case where there 

is a correlation between exposures (Patel and Ioannidis, 2014; Patel and Manrai, 2015). 

Methodological challenges remain regarding the best approach to characterize the 

joint effect of multiple genetic and environmental risk factors. Some studies have used 

a linear model where a term for “Gene x Environment x Environment” interaction was 

examined (Grabe et al., 2012; Fan et al., 2016). For example, Grabe et al. suggested the 

presence of a synergistic effect between childhood abuse and adult traumatic events 

using this statistical framework (Grabe et al., 2012). Moore et al. have developed a 

mixed-model approach that simultaneously includes many environmental exposures 

and ranks them according to their relevance as regards GxE interaction (Moore et al., 

2019). Enthoven created environmental risk score (ERS) using outdoor activity, reading 

time and books read per week and tested the effect of ERS interaction with polygenic 

risk score for myopia (Enthoven et al., 2019). In practice, we do not know how many 

genetic variants and environmental exposures influence changes in the phenotype, nor 

do we know the underlying relationship between these factors (linear vs non-linear). 

The aforementioned examples illustrate a multitude of ways GxE interaction could be 

explored in the future. Measurement error also affects the statistical methods used to 

detect GxE interaction. As a consequence of linkage disequilibrium (LD), the causal 

locus is rarely measured directly, and therefore we rely on marker loci that are 

correlated (Gauderman et al., 2017). It is also likely that model misspecification 

contributes to the failure to detect evidence of GxE interaction (Sitlani et al., 2015; Sun 

et al., 2018; Ueki et al., 2019). As discussed in the previous section, a wide range of 

methods to test for GxE interaction exist, each of which is based on different 

assumptions regarding the biology of the trait. If the method of choice used to discover 
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GxE interaction does not reflect the underlying genetic architecture, the results might 

be enriched for false-positive findings that do not replicate in independent samples. 

On the other hand, standard approaches might not detect evidence of interactions 

with opposite effects (Murcray et al., 2008), leading to false-negative findings. 

Additional considerations regarding statistical power should be made when replication 

and meta-analysis using GxE interaction is performed (McAllister et al., 2017). For 

example, the power in the independent studies will be influenced by differences in the 

distribution of environmental risk factors. In some cases, where a rare disease is being 

studied, or environmental exposure is unique to a specific population, a replication 

sample might not be available (Mechanic et al., 2012). Further complications might 

arise when gene- and pathway-based methods are used to study GxE interaction due 

to the heterogeneous nature of risk factors (Ritchie et al., 2017). All of these 

aforementioned considerations suggest that an increase in statistical power might be 

gained by cost-effective study designs rather than simply by increasing sample size 

(Wong et al., 2003). 

 
Keller argues that it is important to consider interactions not only between genetic and 

environmental risk factors (GxE) but also between genetic factors and confounding 

covariates (GxC) and between an environmental factor and confounding covariates 

(ExC) (Keller, 2014). However, including a statistical term for every possible SNP-

environment-covariate interaction is statistically burdensome due to a large number 

of degrees of freedom used. In other words, a reduction in statistical power will be 

observed in situations where there are no GxC and ExC interaction effects. This, 

coupled with the fact that current sample sizes are rarely large enough to detect 

interaction effects is why this suggestion is often ignored in practice when performing 

a genome-wide environment interaction study (GWEIS). In addition, sometimes it is 

not obvious if adjustment for certain factors is required. For example, in the study of 

gene-diet interaction, adjusting for body mass index (BMI) and including SNP x BMI, 

and diet x BMI may be appropriate but might result in reduced ability to detect SNP x 

diet interaction (Gauderman et al., 2017). 

 
Compared to standard GWAS analyses of marginal SNP effects, GxE interaction studies 

are likely to have additional confounders. One example is gene-environment 
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correlation (rGE) (Avinun, 2019). This phenomenon refers to the situation where 

environmental exposures depend on an individual’s genetic makeup (Jaffee and Price, 

2007; Kendler and Baker, 2007). The evidence for potential bias due to rGE is most 

evident in the case-only type of analysis where independence between the two factors 

needs to be guaranteed. There are three types of rGE: passive, evocative and active. 

An example of passive rGE is when the environment of a child depends on the genetic 

characteristics of the parents. For example, a meta-analysis of educational attainment 

focused on interpreting the effect of non-transmitted SNPs in children and suggested 

that this source of information could explain some of the variation in the child’s 

phenotype (Kong et al., 2018). Evocative rGE arises when heritable characteristics 

evoke an environmental response. An example of this was demonstrated in the study 

of interpersonal behaviour between the mother and the child (Klahr et al., 2013). The 

investigators concluded that maternal control, but not maternal warmth, was 

influenced by rGE. On the other hand, heritable characteristics that influence the 

selection of a particular environment (e.g. friends, activities) leads to an active rGE 

(Goldman et al., 2013).  

 
In summary, analysis of GxE interaction requires additional care when considering the 

joint effect of genetic and environmental risk factors. Some complications described in 

this Chapter and discussed further in later Chapters, e.g. the scale on which interaction 

is measured (VanderWeele and Knol, 2014), make the search for gene-environment 

interactions more difficult compared to marginal SNP testing in a standard GWAS 

setting. 

 

1.3. Gene-gene interactions 

1.3.1. Introduction to gene-gene interactions 

Many arguments raised in the previous section can be easily extrapolated to gene-gene 

interactions (GxG). Therefore, in this section, I aim to discuss additional ideas that are 

unique to interactions across genes.  

 
GxG interaction refers to the situation, where the gene effect is modified by the effect 

of another gene. Similar to GxE interaction, a biological and statistical interpretation 

of this phenomenon has been described. Biological interaction, also known as 
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epistasis, has been characterised by the physical suppression of gene expression at one 

locus by a gene at another locus (Bateson, 1907). A classic example is eye colour 

determination in Drosophila (Tyler et al., 2009). The mutations in scarlet, brown, 

and white genes lead to different eye pigmentation that cannot be explained by the 

effect of each individual gene. On the other hand, statistical interaction was coined by 

Fisher to account for potential departure from his multi-locus additive genetic model 

(Fisher, 1919). The two were shown not to be equivalent (Norton and Pearson, 1976; 

Moore and Williams, 2005). In other words, the presence of biological GxG interaction 

does not necessarily imply the presence of statistical GxG interaction and vice versa 

(Wei et al., 2014). One explanation for this is that a wide range of statistical genetic 

architectures determining gene regulatory network is possible in theory (i.e. there are 

multiple mathematical models which describe how two or more genes could interact 

in gene regulatory network) (Neuman et al., 1992; Gjuvsland et al., 2007; Wirapati et 

al., 2011). For example, Hallgrímsdóttir and Yuster explored 69 unique models that 

could summarize two-locus epistasis (Hallgrímsdóttir and Yuster, 2008). However, 

which of these models are real in practice is yet to be fully understood. Another 

explanation is that some types of statistical GxG interaction are dependent on the 

measurement scale, while biological GxG is not (Cordell et al., 2001). It is crucial to 

realise that biological GxG interaction is best understood by physical interactions at 

the cellular level in an individual whereas statistical GxG interaction relates to 

genotype-phenotype relationship on a population scale (Moore and Williams, 2009). 

 
It has been suggested that GxG interactions are common in human diseases (Moore, 

2003). Several arguments to support this idea have been proposed. First, the ubiquity 

of biomolecular interactions observed in biochemical and metabolic systems indicates 

the importance of biological GxG interaction (Moore and Williams, 2009). Second, poor 

replication rate across independent samples could be potentially attributed to GxG 

interaction (Moore and Williams, 2009). Third, GxG interaction is commonly found in 

model organisms (e.g. Drosophila example above) when properly investigated (Moore 

and Williams, 2009; Hemani et al., 2014; Mackay, 2014). However, it remains a major 

challenge to have a full understanding of GxG interaction networks in humans. For 

example, it is not clear if GxG interaction is equally ubiquitous across common complex 

traits and empirical evidence of transferability of gene networks across populations is 
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lacking (Wei et al., 2014). An evolutionary interpretation has been put forward to 

explain the ubiquitous nature of GxG interaction (Waddington, 1942). This perspective 

is guided by the ability of natural selection to evolve systems to a robust level that is 

resistant to most genetic and environmental perturbations (Gibson, 2009). Therefore, 

destabilization leading to the changes in the phenotype might be a consequence of the 

accumulation of multiple mutations in different parts of a gene network (Moore and 

Williams, 2009). This might explain why analysis of SNPs explain little of the disease 

risk and support the idea that such variation is an emerging property of interaction 

networks (Huang and Mackay, 2016). 

 
1.3.2. Motivation for studying gene-gene interactions 

The advantages of considering GxG interactions are largely the same as for GxE 

interaction. For example, having a well-characterized network of GxG interactions 

could be useful in personalized medicine (Moore and Williams, 2009). Suppose a pair 

of SNPs exert a strong effect on the phenotype so that individuals who inherit an effect 

allele at each locus has a substantially greater risk of developing disease or rate of 

change in the case of a continuous phenotype. This knowledge could influence our 

decision regarding diagnosis and disease management. However, public treatment 

strategies will have to be different compared to those implemented based on the 

knowledge gained from studying GxE interactions. Similarly, the inclusion of GxG 

interaction in the statistical model can aid with the discovery of novel variants that are 

either rare or have negligible marginal SNP effects and empirical evidence to support 

this idea has been provided (Wei et al., 2014).  

 
Analogous to GxE interaction, GxG interaction effects are anticipated to be of several 

magnitudes smaller compared to additive SNP effects. Therefore, in order to take full 

advantage of GxG interactions, an extensive characterization of genome-wide 

interactive networks is required. This will provide a more insightful view of the genetic 

homeostasis and thus would solve some of the outstanding questions concerning the 

genetic architecture of complex traits (Waddington, 1942; Gibson, 2009). For example, 

classical quantitative genetics theory suggests that epistatic variance (Vi) is relatively 

small as GxG interactions contribute towards additive genetic variance (Hill et al., 

2008), while the more recent analysis, using alternative parameterization scheme, 
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proposes that Vi could be much greater (Huang and Mackay, 2016). Although the 

disparity between the two is purely theoretical, this information could potentially have 

direct implications for phenotypic prediction (Forsberg et al., 2017), refined breeding 

programs tailored to maximise response to natural selection (Mackay, 2014) and could 

be used to highlight mechanisms responsible for speciation (Ayala and Fitch, 1997). 

 
1.3.3. Methods for detecting gene-gene interactions 

Regression-based methods described in section 1.2.3. can be extended to find GxG 

interactions and the software such as PLINK (Purcell et al., 2007) and CASSI  (URL: 

http://www.staff.ncl.ac.uk/richard.howey/cassi/, accessed: 29 October 2019) provide 

a good starting point for performing an exhaustive or two degrees of freedom tests. 

However, as discussed in the following section, if applied on a genome-wide scale, 

these methods lead to high computational and statistical burdens. Therefore, most of 

the new methods that are being developed rely on certain shortcuts that make the 

search for statistical GxG interactions more manageable. In general, these methods 

use shortcuts to either filter out redundant SNPs before the analysis of GxG interaction 

(Zhang et al., 2008; Greene et al., 2009; Dorani and Hu, 2018; El-Rashidy, 2019) or 

utilise efficient algorithms that are based on different classification rules (Zhang and 

Liu, 2007; Tang et al., 2009; Schwarz et al., 2010; Zhang et al., 2011b; Knights et al., 

2013). Wei et al. provide a comprehensive summary of different methods that can be 

used to detect GxG interactions (Wei et al., 2014).  

 
1.3.4. Current challenges related to gene-gene interactions 

There are many challenges associated with reliably detecting and confirming GxG 

interactions on a genome-wide scale. Nowadays, a typical GWAS analysis uses in excess 

of one million genotyped and imputed genetic variants. To test for SNP x SNP 

interaction means to test every possible combination between a pair of SNPs. For a 

study that assays one million variants, this requires a total of 5 x 1011 comparisons. In 

general, the number of resulting combinations between a pair of SNPs can be 

calculated using 𝐶𝑘
𝑛, where n is the number of genetic variants used in the study and k 

is the degree of interaction (e.g. k = 2 for SNP x SNP interaction, k = 3 for SNP x SNP x 

SNP interaction etc.). Given that sequencing costs will decrease in the future (Levy and 

Myers, 2016), this problem will only become more difficult to solve. First, the large 

http://www.staff.ncl.ac.uk/richard.howey/cassi/
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number of possible GxG interaction combinations requires stringent adjustment for 

multiple comparisons. It has been proposed that the threshold defining significant GxG 

interaction should be set to 1.00 x 10-13 (Wei et al., 2014). Therefore, the power to 

detect GxG interaction association with the trait is low a priori.  

 
Second, the exhaustive search for interactions is computationally time-consuming. 

Methods that select a subset of SNPs or rely on strategies that use efficient algorithms 

and parallelize GxG interaction test into multiple batch jobs could reduce the 

computational time (Moore and Williams, 2002; Moore and Ritchie, 2004). However, 

even in such cases, the anticipated increase in the available genetic data can make this 

problem intractable. This is evident if the higher-order interactions (i.e. k > 2) are 

considered. If complex traits are influenced by large genetic networks, as seems to be 

the case, higher-order interactions will have to be considered in order to gain a 

meaningful representation of genetic interactome. The issue of computational burden 

can be further exacerbated if non-parametric methods, such as multifactor-

dimensionality reduction, are used, that rely on expensive cross-validation and 

permutation procedures to evaluate the significance of GxG interaction (Ritchie et al., 

2001).  

 

Another layer of complexity stems from the fact that in the case of two loci, four 

different interaction terms (additive-by-additive (AxA), additive-by-dominant (AxD), 

dominant-by-additive (DxA) and dominant-by-dominant(DxD)) are possible (Wei et al., 

2014). Similarly, this can be extended to higher-order interactions. Currently, this 

concern remains theoretical. Typically, studies in humans do not distinguish between 

different modes of inheritance and explore additive-by-additive coding. In situations 

where dense genotyping, or high-quality imputed genotypes are not available, the 

selection of coding has a direct consequence on the amount of variance explained (Wei 

et al., 2014). In other words, the proportion of variance depends on LD (r) and will on 

average decrease by r4 for AxA, r6 for AxD and r8 for DxD (Wei et al., 2014). As a 

consequence of increased dependence on LD, replication of epistasis is expected to be 

substantially lower than that for marginal SNP effects (Hemani et al., 2014). 

Furthermore, from studies of marginal SNP effects, it is known that statistical power 

depends on the allele frequency (Myles et al., 2009). Therefore, when testing for GxG 
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interaction, the frequency at each locus will determine the success of identifying GxG 

interaction. 

 
In summary, the detection of GxG interaction is challenging due to large computational 

and statistical demands. Incredibly large samples are required to detect GxG 

interaction effects that are equivalent to those observed for marginal SNP effects, and 

dense sequence data are needed in order to address the issues related to model 

complexity and replication. The vast number of available methods to detect GxG 

interactions aim to discover a combination of SNPs that best describe the phenotype 

but do not provide biological interpretation for this association. As a result, studies of 

GxG interactions will have to supplement the findings with biologically derived 

information from publicly curated databases.  

 

1.4. Description of UK Biobank data 
 
In this thesis, I utilize information provided by the UK Biobank project, which recruited 

approximately 500,000 UK based individuals aged 40 to 70 years-old (2006-2010) 

(Sudlow et al., 2015), who were registered with the UK National Health Service and 

living within a 25 mile radius of one of the 22 study assessment centres. Ethical 

approval for the UK Biobank was granted by the National Health Service National 

Research Ethics Service (Ref 11/NW/0382). Written informed consent was provided by 

all participants. DNA was extracted and genotyped, from a blood sample of each 

participant, using either the UK BiLEVE Axiom array or the UK Biobank Axiom Array 

(Bycroft et al., 2018). Refractive error measurement was carried out using non-

cycloplegic autorefraction (Tomey RC 5000 auto refkeratometer; Tomey GmbH 

Europe, Erlangen-Tennenlohe, Germany). Refractive error was defined as the sum of 

the sphere power plus half the cylinder power, and then averaged between the two 

eyes. Up to 10 measurements of each eye were taken and the most representative 

result automatically recorded. All participants completed a touchscreen questionnaire, 

reporting on demographic, socio-economic and medical factors (Cumberland et al., 

2015), followed by a face-to-face interview where additional information such as the 

age of onset of spectacle wear, ocular history (described in section 1.1.2.), family 
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history of diseases and early life events was recorded. Participants provided 

information regarding their education level. 

 
A comparison of the UK Biobank data to the UK Census 2011 data (URL: 

https://www.nomisweb.co.uk/census/2011, accessed: 29 October 2019) showed 

similar ethnic composition (90% White, 3.8% Asian/Asian British including 0.5% 

Chinese, 3.5% Black/Black British, 0.9% of Mixed and 1.5% Other ethnicity) 

(Cumberland et al., 2015). However, the UK Biobank data is enriched in older, more 

affluent individuals who have higher educational qualifications, who live in less 

socioeconomically deprived areas, are less likely to be obese, to smoke, and to drink 

alcohol  on a daily basis (Fry et al., 2017). There were fewer males than females. 

 
1.4.1.     Inferring refractive error 

Only approximately 25% of participants, from England and Wales, underwent 

refractive error measurement as a result of an ophthalmic assessment not being 

introduced until the latter stages of UK Biobank recruitment, presence of eye infection 

during recruitment or due to having undergone an eye surgery in the preceding 4 

weeks of recruitment (Cumberland et al., 2015). Hence, to increase statistical power, I 

selected as the discovery sample the (bulk of) UK Biobank participants who did not 

undergo the ophthalmic assessment, but who did answer a questionnaire item asking 

the age of onset of spectacle (or contact lens) wear. The mean spherical equivalent 

(MSE) refractive error of participants who reported their age-at-onset of spectacle 

wear (AOSW), but who did not undergo autorefraction was imputed as follows. First, 

a statistical model was derived for participants who did undergo autorefraction and 

who reported their AOSW. Then, this model was used to predict the “AOSW-inferred 

MSE” of individuals who did not undergo autorefraction. The statistical model took the 

form: 

 
          𝑀𝑆𝐸𝑖 = 𝜇 + (𝛼 × 𝑆𝑒𝑥𝑖) + 

                                  (
1

× 𝐴𝑔𝑒𝑖) + (
2

× 𝐴𝑔𝑒𝑖
2) + ….  + (

𝑗
× 𝐴𝑔𝑒𝑖

𝑗
) + 

                                  (𝛿1 × 𝐴𝑂𝑆𝑊𝑖) + (𝛿2 × 𝐴𝑂𝑆𝑊𝑖
2) +  … . +  (𝛿𝑘 × 𝐴𝑂𝑆𝑊𝑖

𝑘) (𝐸𝑞. 1) 

Where, 𝑀𝑆𝐸𝑖  is the autorefraction-measured refractive error of individual i, 𝑆𝑒𝑥𝑖 is a 

binary variable indicating the gender of individual i, 𝐴𝑔𝑒𝑖  is the age in years of 
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individual i when autorefraction was performed, 𝐴𝑂𝑆𝑊𝑖 is the age-at-onset of 

spectacle wear in years of individual i. 

 
To optimize the model fit, the sample of participants who self-reported as white-

British, did not have ocular history (see section 1.4.2.), who had autorefraction 

measurement taken and who reported their AOSW was split into a training sample (n 

= 49,435) and a test sample (n = 49,435). Polynomials (j, k) of increasing order were fit 

using the training sample until the model fit showed no improvement. Specifically, 

nested models with polynomial order j vs. j + 1 (or k vs. k + 1) were compared using a 

likelihood ratio test (LRT), and polynomial order was increased until the LRT test 

suggested no improvement (LRT test, p > 0.05). The performance of the final model 

was assessed by calculating the adjusted R2 between autorefraction-measured MSE 

and AOSW-inferred MSE in the test sample. The AOSW phenotype yielded an adjusted 

R2 = 0.30. Moreover, inclusion of interaction terms did not improve model fit, nor did 

models using year-of-birth in place of Age. Models fit in samples with truncated upper 

age or AOSW ranges also produced similar performance. 

 
AOSW (or, more specifically, age-at-onset of myopia) has been previously shown to 

have a strong genetic correlation to refractive error (Wojciechowski and Hysi, 2013) as 

well as strong phenotypic correlation with refractive error (Williams et al., 2013). 

Furthermore, age-at-onset of myopia has been used previously as a proxy phenotype 

in a meta-analysis with refractive error (Tedja et al., 2018). To evaluate the genetic 

overlap between the AOSW-inferred refractive error phenotype and autorefraction-

measured refractive error, I carried out a genome-wide association study (GWAS) 

analysis for each trait (discussed in sections 2.3.1., 2.3.2., 3.3.2. and 3.3.3.) and then 

performed LD score regression (Bulik-Sullivan et al., 2015) (discussed in section 3.3.2.). 

Approximately one million ‘high-confidence’ genetic variants (discussed in section 

1.4.2.) were used to estimate the genetic correlation for marginal SNP effects. A high 

degree of overlap between the two traits was found (genetic correlation rg = 0.93, 95% 

CI 0.88 to 0.97, p < 2.2 x 10-16). This confirmed that the AOSW-inferred refractive error 

phenotype was a suitable surrogate for refractive error in UK Biobank participants who 

did not undergo autorefraction. 
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1.4.2.      Sample quality control for Chapters 2,3 and 6 

Of 488,363 individuals with genetic information available, samples were excluded due 

to: withdrawal of consent (n = 68), self-report of non-white-British ethnicity (n = 

78,661) and outlying level of genetic heterozygosity (beyond ±4 standard deviations 

from the mean; n = 731). Relatedness was determined by the UK Biobank (Bycroft et 

al., 2018). To select unrelated participants amongst those who had at least one related 

member, a genetic relationship matrix (GRM) was created. This GRM was created using 

a linkage disequilibrium (LD)-pruned set of well-imputed variants (IMPUTE2 r2 > 0.9), 

minor allele frequency (MAF) > 0.005, missing genotype rate ≤ 0.01, and variants with 

‘rs’ ID prefix). LD-pruning was accomplished by using the --indep-pairwise 50 5 0.1 

command in PLINK v2 (Chang et al., 2015). From a subset of participants with at least 

one related member, unrelated individuals were inferred using a genomic relatedness 

cut-off of less than 0.025 in PLINK (Purcell et al., 2007). This sample was combined with 

participants who did not have any related members according to the UK Biobank. The 

final ‘unrelated’ sample had 336,258 individuals from which further exclusions were 

made due to: AOSW-inferred refractive error measurement not available (n = 118,122) 

and ocular history (n = 20,170), which included individuals who self-reported any of 

the following eye disorders: cataracts, “serious eye problems”, “eye trauma”, a history 

of cataract surgery, corneal graft surgery, laser eye surgery, or other eye surgery in the 

past 4 weeks. Individuals whose hospital records (ICD10 codes) indicated a history of 

the following were also excluded: cataract surgery, eye surgery, retinal surgery, or 

retinal detachment surgery. This resulted in a final ‘discovery sample’ of 197,966 

individuals used in this study. An illustration of the above quality control steps is 

provided in Figure 1.7. 

 
As a ‘replication sample’, I used individuals who had their refractive error measured 

using non-cycloplegic autorefraction. The same sample selection procedure as for the 

discovery sample (see above) was performed, except for an additional step to exclude 

individuals who did not have a refractive error measurement taken (Figure 1.7.). The 

final replication sample was comprised of 73,174 individuals. 

 
In the discovery sample of 197,966 unrelated, white-British participants whose 

genotype data passed quality control and had phenotype information predicted from 
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the age of onset of spectacle wear (AOSW), the mean ± SD “AOSW-inferred refractive 

error” was -0.36 ± 1.5 dioptres (D) and the average age was 57.7 ± 7.5 years, while in 

the replication sample of 73,174 unrelated, white-British participants with 

autorefraction-measured refractive error, the mean ± SD refractive error was -0.26 ± 

2.7 dioptres (D) and the average age was 57.7 ± 7.9 years. More detailed demographics 

for the discovery and replication samples and their comparisons are presented in Table 

1.1. For continuous variables such as age and BMI, comparisons between discovery 

and replication samples were made using non-parametric Mann-Whitney U test, while 

variables representing proportions such as prevalence of university education were 

assessed using two-proportion z-test. All comparisons showed a significant difference 

at the nominal significance threshold (p < 0.05). These observed demographic 

differences could reflect geographic UK region differences since autorefraction was 

measured in only 6 out of the 22 UK Biobank assessment centres (due to the late 

introduction of the eye assessment component into the UK Biobank protocol). The late 

introduction of the eye measurements component of the UK Biobank study would also 

have resulted in a small “cohort effect” such that participants who underwent 

autorefraction had a slightly later year-of-birth (the mean age was 57.8 vs 57.7 years, 

P = 6.26 x 10-11, in the replication vs. discovery samples, respectively). 

 

1.4.3.      Sample quality control for Chapters 4 and 5 

The sample used for conditional quantile regression (Chapter 4) and for polygenic 

interaction score (Chapter 5) analyses differed slightly. Genetic variants were imputed 

to the haplotype reference consortium panel (the Haplotype Reference et al., 2016) by 

Bycroft et al. (Bycroft et al., 2018). Exclusion of participants was due to history of ocular 

condition (n = 48,145), withdrawal of consent (n = 8), self-report of non-white British 

ethnicity (n = 69,938), outlying level of genetic heterozygosity (n = 648), or refractive 

error not measured (n = 283,352). From the remaining sample of 86,286 participants, 

one of each pair of relatives was removed, as follows. For the subset of participants 

with at least one relative present, unrelated individuals were inferred using genomic 

relatedness cut-off of less than 0.025 in PLINK (Purcell et al., 2007).  In total, the final 

sample size comprised of 72,985 unrelated, white-British individuals. An illustration of 

quality control steps for this analysis is provided in Figure 1.8. In the final sample 

comprising of 72,985 unrelated, white-British participants with autorefraction-
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measured refractive error, the mean ± SD refractive error was -0.25 ± 2.67 dioptres (D) 

and the average age was 57.8 ± 7.8 years. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7. Diagram summarising quality control steps performed to obtain the discovery and 

replication samples. These samples were used in the comparison of risk scales (Chapter 2), 

vQTL analysis (Chapter 3) and MDR analysis (Chapter 6). 

UKB participants with genotype 
data available 
(n=488,363) 

Participants after removal of 
those withdrawing consent 

(n=488,295) 

Participants after removal of 
non-white British 

(n=409,634) 

Participants after removal 
heterozygosity and missingness 

outliers 
(n=408,903) 

Participants with at least one 
relative 

 (n=132,159) 

Maximum-sized sample of 
participants inferred to be 

unrelated 
 (n=59,514) 

Full unrelated sample 
(n=336,258) 

Unrelated participants 
(n=276,744) 

No self-reported or hospital-
recorded ocular pathology 

(n=271,140) 

Discovery sample with known 
age of onset of spectacle wear 

(n=197,966) 

Replication sample with known 
refractive error 

(n=73,174) 

Known age of onset of spectacle 
wear or autorefraction measured 

avMSE 
(n=291,310) 
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Figure 1.8. Diagram summarising quality control steps used to obtain a sample of unrelated 

white-British individuals with measured refractive error. The final sample of 72,985 

individuals was used for conditional quantile regression analysis (Chapter 4) and assessment 

of polygenic interaction scores (Chapter 5). 

 

 

 

 

 

 
 
 

UKB participants with genotype 
data available 
(n=488,377) 

No self-reported or hospital-
recorded ocular pathology 

 (n=440,232) 

Participants after removal of 
those withdrawing consent 

 (n=440,224) 

Participants after removal of 
non-white British 

 (n=370,286) 

Participants after removal of 
genetic heterozygosity outliers  

(n=369,638) 

Participants after removal of 
related individuals 

 (n=72,985) 

Known autorefraction measured 
avMSE 

(n=86,286) 
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Table 1.1. Demographic characteristics of the discovery and replication samples. 

 

Figure 1.9. The left panel shows the distribution of AOSW-inferred refractive error 

for all individuals in the discovery sample (red) and the distribution of 

autorefraction-measured refractive error for all individuals in the replication 

sample (blue). The right panel shows the distribution of age of onset of spectacle 

wear in those classified as myopic in the discovery sample (AOSW-inferred 

refractive error blue  -0.75 D; red) and replication sample (autorefraction-

measured refractive error  -0.75 D; blue).

Characteristic Discovery sample Replication sampleb P-value 

Sample size 197,966 73,174 - 

Female (%) 108,133 (54.6%) 38,583 (52.7%) 1.6 x 10-18 

Age (95% C.I.); years 57.73 (57.7 to 57.8) 57.84 (57.8 to 57.9) 6.26 x 10-11 
BMI (95% C.I.) 27.26 (27.22 to 27.29) 27.42 (27.4 to 27.44) 2.04 x 10-16 

TDI (95% C.I.) 7.27 (7.26 to 7.28) 7.56 (7.54 to 7.58) 3.46 x 10-210 

Autorefraction measured 
refractive error (95% C.I.); D 

- -0.26 (-0.27 to -0.23) 
1.55 x 10-187 

AOSW-inferred 
refractive error (95% C.I.); D 

-0.36 (-0.37 to -0.35) - 

AOSW (95% C.I.); years 32.2 (32.2 to 32.3) 32.4 (32.3 to 32.5) 4 x 10-3 

Myopica (%)  69,296 (35.0%) 21,817 (29.8 %) 3.6 x 10-142 
University education (%) 62,814 (31.7 %) 25,989 (35.5 %) 1.33 x 10-77 

Age completed full-time 
education 
 

13-15 years, N = 45,468 
0.17 (0.16 to 0.18) 

13-15 years, N = 13,499 
0.7 (0.67 to 0.74) 

2.57 x 10-218 

16 years, N = 43,227 
-0.28 (-0.29 to 0.02) 

16 years, N = 16,599 
-0.02 (-0.05 to 0.02) 

4.96 x 10-84 

17-20 years, N = 41,206 
-0.49 (-0.51 to -0.48) 

17-20 years, N = 16,357 
-0.43 (-0.48 to -0.38) 

3.7 x 10-34 

21-25 years, N = 68,065 
-0.69 (-0.70 to -0.67) 

21-25 years, N = 26,719 
-0.76 (-0.81 to -0.70) 

5.82 x 10-25 

a Myopia was defined as a refractive error  -0.75 D. 
b Descriptive characteristics of the sample used in Chapter 4 and 5 were very similar. 
Abbreviations: AOSW = age-of-onset of spectacle wear; D = dioptre; BMI - body mass index (kg/m2 ); TDI - 
Townsend deprivation index.  
For continuous variables, comparisons between discovery and replication samples were made using non-
parametric Mann-Whitney U test, while binary variables were assessed using two-proportion z-test. 



37 

 

 

Chapter 2 

Comparison of multiplicative and additive risk scales for 
discovering gene-environment interactions in refractive error 

 
2.1. Introduction 
 

In the early years of genome-wide association studies (GWAS), sample sizes were far 

too small to detect genetic variants with evidence of gene-environment interaction 

(GxE) effects. Continued effort to genotype more participants led to larger studies, 

focusing on datasets comprising approximately one million individuals (Jansen et al., 

2018; Yengo et al., 2018). Given that the sample sizes used in GWAS are likely to 

increase further still in the future, it is reasonable to anticipate that the interest in 

studying GxE will only increase. To date, susceptibility to myopia has been shown to be 

determined by both genetic and environmental factors (section 1.1.3.). Despite this, 

the interplay between the two determinants has not been exhaustively studied 

previously, and only a handful of GxE for refractive error has been documented (Chen 

et al., 2011a; Fan et al., 2013; Tkatchenko et al., 2015; Fan et al., 2016). 

 
The vast majority of epidemiological studies that conduct genome-wide environment 

interaction study (GWEIS) analyses consider a multiplicative scale of interaction (Beaty 

et al., 2011; Rask-Andersen et al., 2017; Arnau-Soler et al., 2019). An explanation for 

this is that adding a multiplicative interaction term in the linear or logistic regression is 

a simple extension to the standard GWAS approach that tests for association between 

a phenotype and a main or marginal effect of a genetic marker. This facilitates a 

straightforward interpretation of an interaction effect. For example, in the case of a 

binary phenotype denoting disease status, GxE can be measured using odds ratios: 

𝑂𝑅11

𝑂𝑅01𝑂𝑅10
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Where 𝑂𝑅11represents the joint effect of genetic and environmental factors, 𝑂𝑅01is 

the effect of the genetic factor and 𝑂𝑅10 is the effect of the environmental factor. If 

𝑂𝑅11/(𝑂𝑅01𝑂𝑅10) > 1, the multiplicative interaction is said to be positive (i.e. both 

genetics and environment act as risk factors). If 𝑂𝑅11/(𝑂𝑅01𝑂𝑅10) < 1, the 

multiplicative interaction is said to be negative (i.e. both genetics and environment act 

as preventative factors). If the ratio is 1, the product of a genetic and an environmental 

factor equals the joint effect of two factors (VanderWeele and Knol, 2014). An 

interaction measured on the additive scale is less easily understood intuitively. 

Assuming that the risk ratio approximates the odds ratio, as is the case when the 

phenotype is rare, an interaction on the additive scale can be estimated as follows: 

𝑂𝑅11 −  𝑂𝑅01 −  𝑂𝑅10 −  𝑂𝑅00 

Where 𝑂𝑅00 is the effect of not being exposed to either the genetic or the 

environmental factor and all the other estimates are the same as before. This quantity 

is known as a relative excess risk due to interaction (RERI). Other measures of the 

additive interaction are derived from RERI and include the synergy index (Rothman, 

1974, 1976), which measures the extent to which the effect of both exposures exceeds 

1, and the attributable proportion (VanderWeele, 2013), which measures the 

proportion of the risk in the doubly exposed group of individuals that is due to the 

interaction itself (VanderWeele and Knol, 2014). Some additional considerations have 

to be taken into account when studying interactions on the additive risk scale and are 

discussed in the following sections. 

 
The goal of this chapter was to comprehensively assess the extent to which GxE 

interactions influence refractive error development from the perspective of both risk 

scales. Post-GWAS analyses were performed in order to gain insight into the functional 

effects of GxE interactions. 

 

2.2. Methods 
 
2.2.1.      Sample and SNP quality control 

A discovery sample (N = 197,966) and a non-overlapping replication sample (N = 

73,174) of UK Biobank participants were studied. The selection of these two samples 

is outlined in Section 1.4.2. The optimized model described in Section 1.4.1. was used 
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to derive the “AOSW-inferred refractive error” phenotype for participants in the 

discovery sample. Autorefraction-measured refractive error was available for 

participants in the replication sample. 

  
Genetic variants with minor allele frequency (MAF) > 0.05, missing genotype 

rate ≤ 0.01 for directly genotyped markers and INFO > 0.7 for imputed markers and 

Hardy-Weinberg equilibrium < 1 x 10-6 were selected. In total, 5.4 million SNPs were 

retained. 

 
2.2.2. Assessment of gene-environment interactions on the multiplicative scale 

GWEIS on the multiplicative scale was performed using PLINK (Purcell et al., 2007), 

fitting the following linear regression model: 

 

𝑅𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =  𝑆𝑁𝑃 + 𝑈𝑛𝑖𝐸𝑑𝑢 + 𝑆𝑁𝑃 × 𝑈𝑛𝑖𝐸𝑑𝑢 + 

                                                               + 𝐴𝑔𝑒 + 𝑆𝑒𝑥 + 𝐴𝑟𝑟𝑎𝑦 + 𝑃𝐶1 + 𝑃𝐶2 + ⋯ 𝑃𝐶10      (Eq. 1) 

 

Where, 𝑆𝑁𝑃 corresponds to the numeric count of minor alleles carried by a participant 

(0, 1 or 2) , 𝐴𝑟𝑟𝑎𝑦 is a binary variable indicating if a participant was genotyped on the 

UK BiLEVE Axiom array or the UK Biobank Axiom Array (Bycroft et al., 2018) and 𝑃𝐶1 −

𝑃𝐶10 are the first ten principal components, 𝑈𝑛𝑖𝐸𝑑𝑢 corresponds to education coded 

as 0 if an individual did not have a university degree and 1 otherwise, and 

𝑆𝑁𝑃 × 𝑈𝑛𝑖𝐸𝑑𝑢 corresponds to the gene-environment interaction parameter. 

 
2.2.3.     Assessment of gene-environment interactions on the additive scale 

GWEIS on the additive scale was performed using the additive_interaction function in 

the standalone R package of the same name (Mathur and VanderWeele, 2018). 

Currently, this analysis is only possible for a case-control phenotype. Therefore, before 

the analysis, the two phenotypes (AOSW-inferred refractive error and autorefraction-

measured refractive error) were recoded to represent myopic vs non-myopic status. A 

threshold of < -0.75 dioptres (D) was used to categorise individuals as either cases or 

controls. 

 
After performing the GWEIS analyses, I checked whether at least one exposure (genetic 

or environmental) had a negative association with the phenotype. It has been 

previously shown that in cases where at least one exposure has a preventive effect (i.e. 



40 

OR10 < 1 or OR01 < 1), factors have to be recoded to get valid measures of interaction 

on the additive scale (Knol and VanderWeele, 2011; Knol et al., 2011). An explanation 

for this is that an odds ratio is restricted to lie between 0 and 1 for a preventive factor, 

while it can go from 1 to infinity for a risk factor (Knol and VanderWeele, 2011). A 

simple solution to the problem is recoding the variables in such a way that the stratum 

with the lowest risk when both factors are considered jointly becomes the reference 

category (Knol and VanderWeele, 2011). In my analysis, all exposures that showed 

evidence of association with myopic vs non-myopic status were recoded where 

necessary.  

 
2.2.4.     Meta-analysis 

To strengthen the evidence of association, the discovery and replication samples were 

meta-analysed by using p-value based fixed effects meta-analysis in METAL software 

(Willer et al., 2010). 

 
2.2.5.     Functional mapping and annotation 

For the GWEIS performed in the discovery and meta-analysed samples, gene-

environment interaction summary statistics were analysed using FUMA (Watanabe et 

al., 2017). Gene-based tests were conducted using MAGMA (de Leeuw et al., 2015) 

through the FUMA platform using a 50kb buffer for each gene and setting the 

Bonferroni-corrected significance threshold of p = 0.05/19,061 = 2.62 x 10-6 (where 

19,061 corresponds to protein coding genes obtained from Ensembl build 85 (Zerbino 

et al., 2015)). Note that all genes were included in the functional annotation analysis, 

rather than those remaining after gene-based clumping (described below). In addition, 

FUMA was used to assess functional annotations and pathway enrichment using the 

sentinel SNPs from associated genomic loci. Specifically, SNPs were clumped according 

to linkage disequilibrium (r2 = 0.01) using default settings to identify independent lead 

SNPs with p < 1x10-5. Gene mapping was performed in protein-coding genes using 

positional mapping and expression quantitative trait loci (eQTL) mapping in 53 tissues 

from the Genotype-Tissue Expression project (GTEx v7) (Ongen et al., 2017). Gene-set 

enrichment was assessed using differentially expressed genes in the tissue types 

available from GTEx.  
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2.2.6.     Gene-based clumping  

After the gene-based test using the meta-analysis summary statistics estimated for 

a SNP x University education interaction on an additive scale, several genes were found 

to be associated with the phenotype. However, an inspection of the region of 

association highlighted one locus on chromosome 2 that harboured multiple closely 

located genes. For the purpose of potentially discovering new genes associated with 

refractive error, gene-based clumping (similar in spirit to the approach implemented 

in PLINK (Purcell et al., 2007) for SNP-based clumping) was performed. I used a 

sliding window of 5 Mb and selected the gene with the lowest p-value in the region 

as the lead, independently-associated gene. Other genes in the region were 

excluded from the dataset and the sliding window was advanced by 5 Mb.  

 

2.3. Results 
 
2.3.1.      Gene-environment interaction on the multiplicative scale 

After testing approximately 5.4 million SNPs in the discovery sample (N = 197,966) for 

a gene-environment interaction on the multiplicative scale there was only a single SNP 

with genome-wide significant evidence of an interaction (rs12193446, p = 2.17 x 10-9) 

(Figure 2.1. top panel and Table 2.1.). rs12193446 is situated on chromosome 6 within 

an intron of the LAMA2 gene. This variant showed evidence of replication in the 

independent replication sample for the autorefraction measured refractive error 

phenotype (p = 8 x 10-3). The magnitude and the direction of the effect were almost 

identical for the discovery and replication samples (β = 0.09 and β = 0.12 dioptres, 

respectively). The association between rs12193446 and refractive error was further 

enhanced when a meta-analysis was performed (p = 8.2 x 10-11, Figure 2.1. bottom 

panel). A second variant, rs117771785, located on chromosome 12 in the intronic 

region of the CCDC38 gene, showed borderline evidence of association in the meta-

analysis of the discovery and replication sample GWEIS summary statistics (p = 8.8 x 

10-8). 

 
No gene showed evidence of association after correction for multiple testing when GxE 

summary statistics from the AOSW-inferred refractive error discovery sample were 

used in a MAGMA gene-based analysis. The top gene was IGF2R (p = 1.1 x 10-5 in the 

discovery sample and p = 0.25 in the replication sample). The association of IGF2R was 
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further enhanced in the meta-analysed sample (p = 6.5 x 10-6), albeit remaining non-

significant.  

 

Figure 2.1. Manhattan plots showing genome-wide association for SNP x University 

education interaction measured on a multiplicative risk scale. Top panel shows the 

distribution of p-values for the discovery sample. The bottom panel shows genome-wide 

associations for the meta-analysed discovery and replication samples. The horizontal red line 

represents genome-wide significance threshold (5 x 10-8). 

 

 
Enrichment in brain tissues was assessed by prioritising genes based on physical 

position and eQTL. No genes were found to be differentially up-regulated across GTEx 

tissues in either the discovery or the meta-analysed samples after Bonferroni 

correction; two enriched tissues with down-regulated differentially expressed genes 

were brain cerebellar hemisphere (adjusted-p = 0.014) and brain cerebellum (adjusted-

p = 0.018). No tissue showed evidence of enrichment in both directions (i.e. two-sided 

differential expression). 
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2.3.2.      Gene-environment interaction on the additive scale 

After dichotomizing individuals into myopes (cases) and non-myopes (controls), 

approximately 35% of participants were defined as cases in the discovery sample, while 

29% were assigned as cases in the replication sample. A GWEIS in the discovery sample 

that tested for gene-environment interactions on the additive risk scale using this 

phenotype identified 19 independent genome-wide significant regions (Figure 2.2. top 

panel and Table 2.2.). Of these 19 loci, 11 (58%) were located in intergenic regions. 

Among the 19 independent loci, rs12193446 (LAMA2), rs634990 (GJD2) and rs4738756 

(TOX) showed evidence of an interaction with University education in the replication 

sample (p < 0.05/19 = 2.6 x 10-3). All three regions have previously been shown to 

display marginal SNP effects for refractive error (Tedja et al., 2018). Two additional 

genomic regions, rs4581716 (RBFOX1) and rs913199 (DNAJC6) replicated with nominal 

significance (p = 0.01 and p = 0.05, respectively). The RBFOX1 gene was previously 

identified as being associated with refractive error (Tedja et al., 2018), while DNAJC6 

gene has not previously been implicated. Sign concordance for the RERI statistic was 

poor (i.e. 10 out of 19 variants showed the opposite direction of effect in the discovery 

vs. replication sample); however, genetic variants that did replicate with at least 

nominal significance showed strong agreement (5 out of 5 variants with concordant 

direction of interaction effect). After recoding of risk factors due to either having a 

preventative association with the phenotype (i.e. OR10 < 1 or OR01 < 1), RERI estimates 

for each interaction were negative, implying a reduction in risk when both the genetic 

and environmental (University education) risk factor were present compared to their 

additive sum. 

 
A meta-analysis of the GWEIS additive scale interaction summary statistics for the case-

control phenotype in the discovery and replication samples identified 18 independent 

genomic loci with evidence of interaction effects (Table 2.3.). Of these 18 loci, 10 were 

not found in the discovery sample GWEIS alone. A total of 5 of the 10 genomic regions 

have been previously observed to be associated with myopia development in standard 

GWAS analyses (Kiefer et al., 2013; Verhoeven et al., 2013; Tedja et al., 2018): 

rs55634267 (B4GALNT2), rs869422 (ZMAT4), rs11606250 (LRRC4C), rs2853441 

(PRSS56) and rs779699 (GRM7). 
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In the discovery sample, a gene-based analysis of GxE interaction summary statistics 

on the additive scale obtained using the dichotomised AOSW-inferred refractive error 

phenotype suggested the PDE11A gene was significantly associated after Bonferroni 

correction (p = 1.36 x 10-6). However, there was no evidence of an interaction in the 

replication sample (p = 0.2). PDE11A is known to be implicated in myopia development 

from prior GWAS analyses (Kiefer et al., 2013; Tedja et al., 2018).  

 
A gene-based analysis of meta-analysed additive scale GxE interaction summary 

statistics from the discovery and replication samples was also performed. An initial 

analysis before a gene-based clumping was implemented, identified 10 genes that 

surpassed the Bonferroni corrected threshold for multiple comparisons (p < 

0.05/19,061 = 2.62 x 10-6). However, a visual inspection of the regional association 

plots revealed 8 out 10 genes to be located in close proximity. Therefore, in order to 

identify the set of genes that were independently associated with the case-control 

myopia phenotype via an interaction with University education, gene-based clumping 

was performed. In total, five genes were retained after clumping. Table 2.4. shows a 

list of independent genes that were significant. All five were previously found to be 

associated with refractive error (Tedja et al., 2018). 

 
Examining the additive scale GWEIS GxE interaction summary statistics from either the 

discovery sample or the meta-analysis of the discovery and replication samples, no 

tissue was found to be significantly enriched with eQTLs (i.e. there was no evidence of 

differentially expressed genes). For example, the lowest two-sided enrichment p-value 

was observed for small intestine terminal ileum (p = 0.03, adjusted-p = 1), when 

summary statistics from the meta-analysis were used. 
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Figure 2.2. Manhattan plots showing genome-wide association for SNP x University 

education interaction measured on an additive risk scale. Top panel shows the distribution of 

p-values for the myopia case-control phenotype analysed in the discovery sample, while the 

bottom panel shows results from the meta-analysis of the discover and replication samples. 

The horizontal red line represents genome-wide significance threshold (5 x 10-8). 
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Table 2.1. Loci showing genome-wide significant evidence of a SNP x University education interaction in the discovery sample for the continuous AOSW-inferred 
refractive error phenotype (interaction on the multiplicative risk scale). 

Abbreviations: SNP - single nucleotide polymorphism, CHR - chromosome, BP - base pair, EA - effect allele, N - sample size, β - effect size in dioptres, se - standard 
error, P - p-value. Results are shown for loci that passed genome-wide significance threshold (p < 5 x 10-8). 
 
Table 2.2. Loci showing genome-wide significant evidence of a SNP x University education interaction in the discovery sample for the myopia case-control 
phenotype (RERI interaction on the additive risk scale). 

SNP Nearest gene CHR BP EA N discovery 
RERI 

discovery 
RERI se 

discovery 
RERI P 

discovery 
N replication 

RERI 
replication 

RERI se 
replication 

RERI P 
replication 

rs12193446 LAMA2 6 129820038 G 197,144 -0.272 0.037 6.13 x 10-14 72,978 -0.361 0.079 2.77 x 10-6 

rs2285955 OR10H2 19 15838967 A 193,426 -0.112 0.018 4.67 x 10-10 71,770 -0.004 0.034 0.45 

rs4581716 RBFOX1 16 7458135 G 197,144 -0.113 0.019 1.47 x 10-9 72,978 -0.081 0.035 0.01 

rs634990 GJD2 15 35006073 C 197,144 -0.107 0.018 1.93 x 10-9 72,978 -0.156 0.034 1.76 x 10-6 

rs13106566 LINC01098 4 178884741 T 196,894 -0.106 0.018 2.82 x 10-9 72,875 0.025 0.035 0.76 

rs913199 DNAJC6 1 65871062 T 197,144 -0.105 0.018 3.46 x 10-9 72,978 -0.055 0.034 0.05 

rs12760628 LHX9 1 197991694 C 195,334 -0.105 0.018 3.74 x 10-9 72,353 0.060 0.036 0.95 

rs17541406 RGMA 15 93889459 G 197,144 -0.108 0.019 4.09 x 10-9 72,978 0.047 0.036 0.9 

rs438810 LINC01742 20 56527504 A 196,472 -0.110 0.019 4.47 x 10-9 72,739 -0.016 0.036 0.32 

rs6926368 AKAP12 6 151681431 A 195,961 -0.130 0.023 8.56 x 10-9 72,580 0.042 0.042 0.83 

rs4738756 TOX 8 60038104 G 194,748 -0.109 0.019 8.63 x 10-9 72,129 -0.126 0.035 1.7 x 10-4 

rs6462657 EEPD1 7 36201713 A 192,795 -0.106 0.019 1.43 x 10-8 71,548 -0.008 0.036 0.41 

rs11820438 CD82 11 44649802 T 197,144 -0.101 0.018 1.43 x 10-8 72,978 0.008 0.035 0.59 

rs2812374 FAM205A 9 34740951 A 194,685 -0.108 0.020 2.03 x 10-8 72,108 0.101 0.038 0.99 

rs13107432 INPP4B 4 143444744 G 194,155 -0.099 0.018 2.64 x 10-8 71,906 0.075 0.035 0.98 

rs12473735 SPRED2 2 65896873 A 195,439 -0.098 0.018 3.38 x 10-8 72,381 0.047 0.035 0.9 

rs6130219 PTPRT 20 41425612 T 196,187 -0.098 0.018 3.51 x 10-8 72,627 0.004 0.035 0.54 

rs17386667 HTR2A 13 47980309 T 193,058 -0.105 0.020 4.06 x 10-8 71,638 0.079 0.037 0.98 

rs1154848 MCTP1 5 94263048 A 196,562 -0.099 0.018 4.58 x 10-8 72,802 -0.045 0.034 0.09 

Abbreviations: SNP - single nucleotide polymorphism, CHR - chromosome, BP - base pair, EA - effect allele, N - sample size, se - standard error, P - p-value, RERI - 
relative excess due to interaction. Note that RERI effects were recoded because of negative exposure association. Results are shown for loci that passed genome-
wide significance threshold in the discovery sample (p < 5 x 10-8). 

SNP Nearest gene CHR BP EA N discovery β discovery se discovery P discovery N replication β replication se replication P replication 

rs12193446 LAMA2 6 129820038 G 196,375 0.093 0.016 2.17 x 10-9 72,743 0.126 0.048 8.55 x 10-3 
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Table 2.3. SNP x University education interaction summary statistics obtained from 

a meta-analysis of the myopia case-control phenotype using the additive risk scale.  

SNP 
Nearest 

Gene/RNA 
CHR BP EA N P 

rs12193446 LAMA2 6 129820038 G 270,122 9.24 x 10-19 

rs634990 GJD2 15 35006073 C 270,122 3.19 x 10-14 

rs55634267 B4GALNT2* 17 47283815 T 270,122 5.47 x 10-12 

rs4738756 TOX 8 60038104 G 266,877 6.57 x 10-12 

rs869422 ZMAT4* 8 40723970 G 269,961 1.12 x 10-11 

rs4581716 RBFOX1 16 7458135 G 270,122 7.61 x 10-11 

rs11606250 LRRC4C* 11 40149300 A 267,548 1.00 x 10-10 

rs10172336 NR_110272* 2 119342963 G 265,194 2.49 x 10-10 

rs913199 DNAJC6 1 65871062 T 270,122 1.13 x 10-9 

rs56347383 MCC* 5 112397011 G 265,427 2.19 x 10-9 

rs12654457 HTR1A* 5 63015923 C 268,117 4.85 x 10-9 

rs2853441 PRSS56* 2 233374783 T 269,480 5.66 x 10-9 

rs2285955 OR10H2 19 15838967 A 265,196 8.03 x 10-9 

rs4337625 TBC1D5* 3 17205847 T 268,539 1.41 x 10-8 

rs779699 GRM7* 3 7519647 G 266,004 1.65 x 10-8 

rs2746325 RASAL2* 1 178463591 T 270,122 2.00 x 10-8 

rs1154848 MCTP1 5 94263048 A 269,364 2.48 x 10-8 

rs438810 LINC01742 20 56527504 A 249,211 2.62 x 10-8 

* Denotes genetic variants that were not identified in the discovery sample of case-control 

myopia phenotype using additive risk scale. 

Abbreviations: SNP - single nucleotide polymorphism, CHR - chromosome, BP - base pair, EA - 

effect allele, N - sample size, P - p-value. Results are shown for loci that passed genome-wide 

significance threshold (p < 5 x 10-8). 

 

 

Table 2.4. Genes with evidence of an interaction with University education 

implicated by an additive model analysis for the myopia case-control phenotype. 

Results were obtained from a gene-based MAGMA test using SNP x University 

education interaction summary statistics meta-analysed from the discover sample and 

replication sample. Results are presented for five genes that were retained after gene-

based clumping. 
GENE CHR START BP STOP BP P discovery P replication 
ECEL1 2 233294537 233402538 4.50 x 10-9 5.15 x 10-5* 

PDE11A 2 178437980 179023066 2.34 x 10-7 2.01 x 10-1 

METAP1D 2 172814490 172997158 8.08 x 10-6 9.77 x 10-3* 

GJD2 15 35097732 35312040 3.45 x 10-5 4.88 x 10-2 

TOX 8 40338109 40805352 5.66 x 10-5 2.39 x 10-1 

* Genetic variants that showed evidence of replication with p < 0.05/5 = 1.00 x 10-2. 

Abbreviations: CHR - chromosome, BP - base pair, P - p-value.  

 

 

2.4. Discussion 
 
The heterogeneous nature of causal factors influencing myopia development ranges 

from innate genetic variation (Tedja et al., 2018; Wan et al., 2018; Morgan and Rose, 

2019) to external environmental exposures (Guggenheim et al., 2012; Read et al., 

2015; Mountjoy et al., 2018). Most commonly, these factors are studied in isolation, 
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therefore limiting interpretability of biological mechanisms leading to changes in the 

phenotype. It is believed that studying genetic and environmental factors jointly will 

lead to improved understanding of disease aetiology (Ritchie et al., 2017). In this 

chapter, I sought to investigate the effect of gene-environment interactions using two 

measurement scales. 

 
Using the multiplicative scale, which can be viewed as a straightforward extension of 

a standard genetic association approach, revealed only a single variant (rs12193446) 

that showed evidence of an interaction with University education (Table 2.1.). 

Although the variant did replicate using the carefully phenotyped independent 

replication sample, the nearest gene LAMA2 has already been identified repeatedly as 

a susceptibility gene for refractive error (Kiefer et al., 2013; Verhoeven et al., 2013; 

Tedja et al., 2018). Mutations in LAMA2 are a common cause of childhood-onset 

muscular dystrophy, with or without occipital cortex dysgenesis (Ding et al., 2016). The 

variant rs12193446 is classed as ‘deleterious’ by SIFT, ‘probably damaging’ by 

PolyPhen, but ‘likely benign’ by CADD. In addition, the effect size of the interaction of 

0.09 D (95% CI 0.02 to 0.16 D, p = 2.17 x 10-9) in the discovery sample and 0.13 (95% CI 

0.03 to 0.22 D, p = 8.55 x 10-3) in the replication sample was comparatively large: for 

example, the marginal effect of this variant is 0.09 D (95% CI 0.08 to 0.12 D, p = 6.24 x 

10-29) in the discovery sample and 0.38 D (95% CI 0.33 to 0.44 D, p = 1.47 x 10-41) in the 

replication sample). This raises the question whether the prediction of refractive error 

could be improved by taking into account the effect of gene-environment interaction 

when creating polygenic risk scores (this approach is evaluated in Chapter 5). 

Furthermore, Figure 2.1. demonstrates several other regions that attained a suggestive 

level of significance (p < 1 x 10-6). This suggests that future studies analysing much 

larger sample sizes may identify a larger number of interacting loci using the 

multiplicative scale. For example, the variant with the second strongest association 

signal was rs1079927 (p = 2 x 10-7); this variant was also nominally significant in the 

replication sample (p = 0.04). rs1079927 is located between the genes CASC22 and 

TOX3, neither of which has been previously mentioned in the myopia literature; 

however the related genes TOX and CASC15 (also known as LINC00340) have both been 

associated with refractive error (note that CASC22 encodes a long non-coding RNA 

associated with the risk of cancer, as does CASC15). Testing for interactions using the 
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multiplicative scale, MAGMA did not identify any genes associated with AOSW-

inferred refractive error in the discovery sample. However, insulin-like growth factor 2 

(IGF2R) - a known refractive error-associated gene - showed a suggestive degree of 

association (p = 1.1 x 10-5). One of the functions of this gene includes interaction with 

retinoic acid, which has been shown to be involved in the signalling cascade leading to 

scleral remodelling in response to myopia-inducing visual stimuli in animal models 

(Mertz and Wallman, 2000; Troilo et al., 2006).  

 
Using SNP x University education interaction summary statistics obtained from either 

the discovery or meta-analysis of AOSW-inferred refractive error phenotype on the 

multiplicative risk scale, I found two brain tissue types, brain cerebellar hemisphere 

(adjusted-p = 0.014) and brain cerebellum (adjusted-p = 0.018), to be enriched for 

down-regulated differential expression of the candidate genes implicated by the 

interaction analysis. Given that the connection between the visual system and the 

central nervous system is well established (Goebel et al., 2012), this could suggest an 

interconnected relationship between the two in responding to light stimulus. 

 
The number of GxE interaction loci identified as being associated with AOSW-inferred 

refractive error increased to 19 when the additive risk scale was used (Table 2.2.). 

Several of these genomic regions, such as GJD2 and TOX, were previously known to be 

associated with refractive error (Tedja et al., 2018). However, only 5 of the 19 variants 

showed at least nominal evidence of replication (nevertheless, this is more than would 

be expected by chance, i.e. 0.05 × 19 ≈ 1). The list of genes with at least nominal 

replication included DNAJC6, a regulator of clathrin-mediated endocytosis in neurons. 

Among the disorders associated with this gene is the Volkmann type of cataract, which 

is characterised by a congenital lens opacity  (Morgan et al., 2001; Gall et al., 2002; 

Hirst et al., 2008; Borner et al., 2012). After recoding the RERI statistic, all interaction 

regression coefficients were found to be negative (RERI < 0). This suggests that the 

public health consequences of an intervention, by regulating the amount of education 

received, would be larger in the group with 0 risk alleles for the identified genetic 

variants (VanderWeele and Knol, 2014). A meta-analysis revealed an additional 10 loci 

with evidence of an interaction on the additive scale, of which 5 were previously known 

to be relevant to myopia (Table 2.3.). The novel regions included MCC, HTR1A, TBC1D5 

and RASAL2 genes, and one small interfering RNA (siRNA) NR_110272. One of the 
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functions of the MCC gene is indirect negative regulation of beta-catenin (CTNNB1) 

transcriptional activity. CTNNB1 is known to be associated with neurodevelopmental 

disorders such as spastic diplegia and visual defects, which can lead to strabismus, 

optic nerve atrophy and retinal abnormalities among a range of other symptoms (Tucci 

et al., 2014). The connection with remaining regions is less obvious, since a relationship 

with ocular disorders has not been established. However, taking into account the 

molecular function of HTR1A, TBC1D5 and RASAL2 genes, I speculate that the 

connection with refractive error could lie in regulation of G-nucleotide-binding protein 

activity. A gene-based analysis of the additive scale interaction meta-analysis results 

only identified five genes known to be associated with refractive error (Table 2.4.) 

(Tedja et al., 2018).  

 
Collectively, the results from both the discovery sample and the meta-analysis suggest 

that genetic variants implicated in gene-environment interactions are likely to be 

enriched among the variants that display marginal SNP associations with refractive 

error. In the meta-analysis of additive scale summary statistics, one variant was located 

near a small interfering RNA NR_110272 about which not much information is 

available. siRNA’s alter the expression of specific genes by binding and degrading 

mRNA after transcription has occurred (Carthew and Sontheimer, 2009). Furthermore, 

given that more than 50% of identified genetic variants clustered in intergenic regions, 

rather than protein-coding regions, this suggests that interacting variants may exert 

their effect by regulating gene-expression, an observation that is consistent with that 

made by studying SNPs with marginal effects.  

 
It was notable that the difference in the number of interacting loci identified in the 

additive vs. multiplicative scale analyses was not simply due to the way the phenotype 

was coded. For example, using a case-control myopia phenotype and testing for GxE 

using a multiplicative interaction scale in the discovery sample identifies rs11591075 

variant near PLD5 gene as one of the most strongly associated (OR 1.07, 95% CI 1.04 

to 1.11, p = 2.24 x 10-5) and no evidence of association for this variant is found in the 

replication sample (OR 1.00, 95% CI 0.95 to 1.06, p = 0.95). Note that the strength of 

association is several magnitudes below the genome-wide significance-threshold. 
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As gene-environment interactions can be studied with reference to either an additive 

or a multiplicative scale, this raises the question of which scale is more appropriate, or 

in other words, which scale is better suited for examining biologically important 

mechanisms leading to changes in the phenotype of interest. On the one hand, the 

ease of fitting models exploring multiplicative scale interactions in all statistical 

software allows for easy interpretation of interaction coefficients (VanderWeele and 

Knol, 2014). Conversely, it has been argued that the additive scale is more relevant if 

the goal is to assess the public health importance of an intervention (for example, an 

intervention for a modifiable environmental risk factor) (VanderWeele and Knol, 

2014). However, for quantitative traits such as refractive error this argument may not 

hold. Given the arguments in favour of each of the two scales, several authors have 

recommended reporting findings using both scales (VanderWeele and Knol, 2014; 

Gauderman et al., 2017).  

 
One limitation of the current study was the use of AOSW-inferred refractive error as 

the phenotype in the discovery sample. This phenotype has a correlation of 

approximately 0.55 with autorefraction-measured refractive error. Furthermore, as 

reported in section 3.3.2, the genetic correlation between AOSW-inferred refractive 

error and autorefraction measured refractive error was 0.93. The phenotypic 

correlation of 0.55 indicates that the AOSW-inferred phenotype was informative yet 

imprecise. For certain participants, their approximate refractive error could be inferred 

with high confidence. For example, individuals with an AOSW between 0-6 years of age 

were predominantly hyperopic; those with an AOSW between 6-27 years of age were 

predominantly myopic; those with an AOSW >40 years were mostly emmetropic or low 

hypermetropes. However, there were exceptions to these general trends, such as 

myopes with a very early AOSW. Importantly, the exact level of AOSW-inferred myopia 

and hyperopia would also have been imprecise, even if participants were correctly 

identified as myopic or hyperopic. This was especially evident from the truncated 

distribution of the AOSW-inferred refractive error phenotype compared to the 

autorefraction-measured phenotype (Figure 1.9). Nevertheless, the very large size of 

the discovery sample (approximately three times larger than the replication sample) 

partly compensated for the imprecision of the AOSW-inferred phenotype. This was 

evidence from the genetic correlation of 0.93 between the two traits, which 
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demonstrated that despite the limited accuracy in gauging refractive error using 

AOSW, the GWAS for AOSW-inferred refractive error identified a highly overlapping 

set of associated variants to the GWAS for autorefraction measured refractive error 

and correctly estimated the relative degree of association of these variants with 

refractive error (note that the two GWAS analyses also identified an equivalent 

number of genome-wide significant variants).  

 
The rationale for using the AOSW-inferred refractive error in the discovery sample was 

that it provided a strategy for selecting candidate variants that could then be tested 

using the gold-standard autorefraction-measured phenotype. A second limitation of 

my study was the necessity to dichotomize the phenotype in order to permit an 

analysis of interactions on the additive scale, which required the use of an arbitrary 

classification threshold for assigning case/control status. It is not clear if using < -0.75 

D as a threshold to classify individuals as myopes vs. non-myopes was the optimal 

threshold. A third limitation was the fact that the calculation of the RERI statistic makes 

the assumption that the phenotype is rare, such that odds ratios approximate risks 

ratios. Strictly speaking, this was not true in my analyses given that the prevalence of 

myopia in the discovery sample was 35%. I did consider stratifying individuals as cases 

vs. controls using a more stringent threshold (e.g. a threshold of < -3.00 D would yield 

a prevalence of 7%, making approximation between odds ratios and risk ratios more 

appropriate). However, a decision was made to use < -0.75 D because it is a more 

commonly used threshold in the myopia literature (Holden et al., 2016). The findings 

from the analysis of AOSW-inferred refractive error using the additive interaction scale 

provided some empirical support for this choice: the analysis in the discovery sample 

successfully identified 4 loci that were already known to be implicated in refractive 

error development, and all of these loci were at least nominally significant in the 

replication sample. 

 
In summary, A GWEIS for SNP x University education interactions on the additive scale 

led to the identification of 5 potentially interacting loci. Crucially, most of the putative 

interactions that were identified using the discovery sample did not replicate, 

suggesting they were likely to be false positives. A large proportion of the loci identified 

as having interaction effects involving education were previously known to be 

associated with refractive error through standard GWAS analyses. This suggests the 
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enrichment of interacting loci among those showing a marginal association. Although 

it might be easier to study GxE using the multiplicative scale of interaction, this work 

suggests that future studies may benefit from using the additive scale. 
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Chapter 3 

Genome-wide association study for loci controlling 

phenotypic variability in refractive error 

 
3.1. Introduction 
 

The standard approach adopted in genome-wide association studies (GWAS) for a 

quantitative trait is to estimate the difference in the mean level of the phenotype for 

individuals who differ in genotype at a given locus. However, the alternative approach 

of testing for a difference in phenotypic variance across genotype classes has also been 

proposed (Hill and Mulder, 2010; Pare et al., 2010). A visual representation of a 

hypothetical example of a locus where variance differs depending on the genotype is 

given in Figure 3.1. Extensive simulations and theoretical work have shown that such 

variance heterogeneity can arise at loci involved in either gene-environment or gene-

gene interactions (Struchalin et al., 2010; Forsberg and Carlborg, 2017; Al Kawam et 

al., 2018). For example, Yang et al. reported variance heterogeneity for BMI at the FTO 

locus that could not be accounted for by scale effects (Yang et al., 2012b), and 

subsequent work (Young et al., 2016) found evidence of interactions between FTO 

locus variant rs1421085 and diet, physical activity and sleep. 

 
Given that refractive error has a strong genetic and environmental basis, I aimed to 

discover genetic variants associated with variance heterogeneity of this trait, 

hypothesizing that this could have arisen as a result of gene-environment or gene-gene 

interactions. The extent of variance heterogeneity across different genotype classes 

was estimated using Levene’s median test (Brown and Forsythe, 1974), which is based  
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Figure 3.1. Detection of genetic variants that cause variance heterogeneity. The plot in the 

left panel illustrates a variant that increases both the phenotype mean and phenotype 

variability with each additional copy of the “B” allele. Such variance heterogeneity could be 

detected using Levene’s median test, while the effect on the phenotype mean could be 

detected using a standard GWAS. The plot in the right panel illustrates a locus with no effect 

on the phenotype mean, but an increase in phenotype variance with each additional copy of 

the “B” allele. This locus could be discovered via Levene’s median test but could not using a 

standard GWAS approach. 

 

 

on a one-way analysis of variance (ANOVA). It has been noted that the existence of a 

mean-variance relationship across genotype classes can introduce bias when testing 

for variance heterogeneity (Young et al., 2018). Therefore, a sensitivity analysis was 

carried out using a genome-wide analysis that accounted for this potential source of 

bias (Lee and Nelder, 2006; Rönnegård et al., 2010; Young et al., 2018). 

 
3.2. Methods 
 

3.2.1.     Study participants and sample quality control 

A discovery sample (N = 197,966) and a non-overlapping replication sample (N = 

73,174) of UK Biobank participants were studied. The selection of these two samples 

is outlined in Section 1.4.2. The optimized model described in Section 1.4.1. was used 

to derive the “AOSW-inferred refractive error” phenotype for participants in the 

discovery sample. Autorefraction-measured refractive error was available for 

participants in the replication sample. SNP quality control was performed in PLINK 

(Purcell et al., 2007) after converting genotypes from BGEN format to hard calls. The 
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genome-wide analysis included 5.4 million variants with minor allele frequency (MAF) 

0.05 or greater, missing rate per SNP 0.02 or less and p > 1 x 10-6 for a test of Hardy-

Weinberg equilibrium.  

 
3.2.2.     Levene’s median test: genome-wide analysis in the discovery sample 

Variance heterogeneity across genotype categories was assessed for 5.4 million 

variants in the discovery sample using Levene’s median test, implemented in the OSCA 

software (Zhang et al., 2019). The extent of variance heterogeneity was investigated 

using the following formula: 

 

                                             𝑊 =  
(𝑁−𝑘)

𝑘−1
 ∙  

∑𝑖=1
𝑘 𝑁𝑖(𝑍𝑖⋅−𝑍⋅⋅)

2

∑𝑖=1
𝑘 ∑

𝑗=1

𝑁𝑖 𝑁𝑖(𝑍𝑖𝑗−𝑍𝑖⋅)
2
                                    (𝐸𝑞. 1) 

 

where 𝑘 is the number of different genotype groups (for a bi-allelic SNP 𝑘 = 3), 𝑁𝑖 is 

the sample size of the ith group, 𝑁 is total sample size across all genotype groups, 𝑍𝑖𝑗 

= |𝑌𝑖𝑗 − Ỹ𝑖⋅|, where 𝑌𝑖𝑗 is the phenotype of the measured variable for the jth sample 

from the ith group and Ỹ𝑖⋅ is a median of the ith group, 𝑍𝑖⋅ is the mean of the 𝑍𝑖𝑗 for 

ith group and 𝑍⋅⋅ is the mean of all 𝑍𝑖𝑗. A similar model includes Levene’s mean test, 

where Ỹ𝑖⋅ is replaced by the mean of the ith group. This model was assessed when 

simulating type 1 error along with Levene’s median test. When performing variance 

quantitative trait locus (vQTL) analysis using Levene’s test, age, sex, genotyping array 

and the first 10 principal components were included in the model as covariates. 

 
3.2.3.     Sensitivity analysis: Heteroskedastic linear model 

As a sensitivity analysis, a variance heterogeneity test was also performed in the 

discovery sample using a heteroskedastic linear model (HLMM software (Young et al., 

2018)). This model estimates an additive component that corresponds to the mean 

effect of a genotype, a log-linear variance component that reflects the variance effect 

of a genotype, and a dispersion component that corrects for a generalised mean-

variance relationship (rav). The latter component is of interest in this chapter, since it 

can indicate a locus involved in a gene-environment of gene-gene interaction, while 

accounting for the statistical noise. Calculation of dispersion effects involves two steps. 

First, the correlation between the additive and log-linear variance effect of all available 

variants is calculated. Second, variants are identified that show evidence of residual 
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variance heterogeneity after accounting for the mean-variance relationship. Tests 

were performed for the same set of 5.4 million variants described above. Age, sex, 

genotyping array and first 10 principal components were included as covariates, and 

analyses were performed while correcting for the mean and the variance effects of 

these confounders.   

 
3.2.4.     Assessment of type-1 error rate due to non-normal trait distribution 

The AOSW-inferred refractive error phenotype was not normally distributed, hence I 

performed simulations to investigate if this non-normality increased the false positive 

rate of either Levene’s test (mean or median), or the heteroskedastic linear model 

implemented in HLMM (false positive rate was estimated for the additive, log-linear 

variance and dispersion components). One thousand biallelic genetic variants with 

MAF > 0.05 and no effect on the phenotype were simulated using the PLINK --simulate-

qt command in the discovery sample (n=197,966), while retaining the relationship 

between the phenotype and all of the covariates. The type-1 error rate was calculated 

as the proportion of variants that passed α = (0.01,0.05) thresholds. Simulations were 

performed twice: first using untransformed AOSW-inferred refractive error, followed 

by the rank-based inverse normally transformed (RINT) AOSW phenotype. The RINT 

transformation leads to a phenotype with a standard normal distribution. 

 
3.2.5.     Independent replication of variants identified in the discovery sample  

Variants associated with variance heterogeneity in the discovery sample (Levene’s test 

p < 5 x 10-8) were clumped in order to identify the lead variant in each region. Clumping 

was performed with PLINK using a physical distance threshold of one megabase and 

an LD threshold of r2 < 0.01. These lead variants were evaluated using Levene’s test in 

the replication sample (n=73,174) for the autorefraction measured refractive error 

phenotype. Independent replication using HLMM was performed similarly for variants 

with HLMM p < 5 x 10-8 in the sensitivity analysis. 

 
3.2.6.     Definition of novel variants 

I sought to discover whether any of the genomic regions exhibiting variance 

heterogeneity overlapped with regions known to have marginal associations with 

refractive error. I restricted the comparison to the 149 genomic regions identified in 

the CREAM + 23andMe GWAS meta-analysis reported by Tedja et al., that showed at 
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least nominal (p < 0.05) replication in the UK Biobank sample. All variants (i.e. variants 

identified by vQTL analysis and variants identified by CREAM) with LD threshold of r2 > 

0.1 of the lead vQTL were considered to belong to the same region. 

 
3.2.7.     Effect size similarity between AOSW-inferred and autorefraction measured 

refractive error 

To evaluate the concordance of the Levene’s test results obtained when analysing 

either the AOSW-inferred refractive error phenotype or the autorefraction-measured 

refractive error phenotype on a genome-wide basis, I applied Levene’s median test 

genome-wide in the replication sample and calculated the genetic correlation of 

effects sizes at each locus for the two traits using LD score regression (Bulik-Sullivan et 

al., 2015). LD score regression was discussed in Chapter 1 section 1.4.1. 

 
3.2.8.     Gene-based association and gene-set enrichment 

Using MAGMA software (de Leeuw et al., 2015), I performed a gene-level association 

analysis based on summary statistics obtained from Levene’s median test in the 

discovery sample. Variants were annotated to genes based on NCBI (Build 37.3) gene 

definitions (NCBI Resource Coordinators, 2016). In order to include possible 

transcription regulators, I included 50 Kb regions upstream and downstream of the 

transcribed region. A total of 18,452 genes had at least one variant mapped to them, 

and 62.3% of the variants were mapped to at least one gene. Variants that did not 

map to any gene were excluded from the analysis. For the purpose of potentially 

discovering new genes associated with refractive error, I performed gene-based 

clumping. I used a sliding window of 5 Mb and selected the gene with the lowest p-

value in the region as the lead, independently-associated gene. Other genes in the 

region were excluded from the dataset and the sliding window was advanced by 5 

Mb. Genes that showed evidence of association with AOSW-inferred refractive error 

after clumping, were selected for replication. In addition, for the full list of 18,452 

genes that had at least one variant mapped to them, biological pathway, cellular 

component and molecular function Gene Ontology domains were used to perform 

gene-set enrichment analysis in MAGMA (de Leeuw et al., 2015). I used p < 0.05/(3 

x No of categories in each domain) as the threshold for selecting true positive 

enrichment. 
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3.2.9.     Testing vQTL loci for direct evidence of SNP x education interaction  

For the lead vQTL identified using Levene’s median test in the discovery sample, I 

tested for direct evidence of gene-environment interaction using a binary variable 

(UniEdu) indicating whether participants self-reported having a university degree. The 

variable was coded 1 if an individual reported obtaining a university degree and 0 

otherwise. A genotype x UniEdu interaction was tested in the replication sample for 

the autorefraction measured refractive error phenotype using the following equation: 

𝑅𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =  𝑆𝑁𝑃 + 𝑈𝑛𝑖𝐸𝑑𝑢 + 𝑆𝑁𝑃 × 𝑈𝑛𝑖𝐸𝑑𝑢 + 

                                            + 𝐴𝑔𝑒 + 𝑆𝑒𝑥 + 𝐴𝑟𝑟𝑎𝑦 + 𝑃𝐶1 + 𝑃𝐶2 + ⋯ 𝑃𝐶10         (Eq. 2) 

Where, 𝑆𝑁𝑃 corresponds to the numeric count of minor alleles carried by a participant 

(0, 1 or 2) , 𝐴𝑟𝑟𝑎𝑦 is a binary variable indicating if a participant was genotyped on the 

UK BiLEVE Axiom array or the UK Biobank Axiom Array (Bycroft et al., 2018) and 𝑃𝐶1 −

𝑃𝐶10 are the first ten principal components. 

 
In addition, ‘Age completed full-time education’ (EduYears) was selected as another 

environmental exposure variable. UK Biobank participants with a university degree 

were not asked the age they completed full-time education; hence these individuals 

were assumed to have completed their education at the age of 21 years. Age 

completed education categories with low counts were merged with adjacent 

categories, resulting in four final EduYears categories: 13–15, 16, 17–20, and 21–26 

years, each of which comprised at least 40,000 individuals. A linear regression model 

that included a term for a vQTL x EduYears interaction, similar to the one in (Eq. 2), was 

performed including the same set of covariates as in the original analysis. For the 

analysis of the categorical variable EduYears, interaction effects were estimated using 

the 13-15 years group as the reference group. 

 

3.3. Results 
 

3.3.1.       Simulations to determine type-1 error rate of variance heterogeneity tests 

It is known that some tests for variance heterogeneity, such as Bartlett’s test, can be 

sensitive to the underlying distribution of the trait of interest (Wang et al., 2019). Given 

the non-normal distribution of the AOSW-inferred refractive error phenotype, 

simulations were performed to find out whether the appropriate type 1 error rate was 
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maintained when tests for variance heterogeneity were carried out. For the Levene’s 

tests implemented in the OSCA software (Zhang et al., 2019), Levene’s mean test 

showed massive inflation of the type-1 error rate when analysing the untransformed 

phenotype (Table 3.1.). Levene’s median test attained correct type-1 error rates. Both 

tests had appropriate type 1 error rates at α = 0.05 threshold when the phenotype was 

rank-based inverse normally transformed. These results suggested that the use of 

Levene’s median test for analysis of the untransformed phenotype would perform well 

for a genome-wide vQTL analysis of refractive error.  

 
For the heteroskedastic linear model implemented in the HLMM software (Young et 

al., 2018), I observed very good control of the type-1 error rate for the additive and 

dispersion effects when analysing either the untransformed or inverse-normal 

transformed AOSW-inferred refractive error phenotype (Table 3.2.). However, there 

was a lower than-expected proportion of false positives for the log-linear variance 

component; for example, the proportion of false positive findings was 3.6 times 

smaller than expected at α = 0.05 using the untransformed phenotype. Analyses using 

the transformed refractive error phenotype partially corrected the lower than 

expected false positive rate. Given that I did not observe an inflation of false positive 

findings, the genome-wide vQTL analysis using heteroskedastic linear model was 

performed using untransformed AOSW-inferred refractive error as the phenotype. 

 
3.3.2.     Genome-wide vQTL analysis using Levene’s median test 

Genome-wide analyses were performed for 5.4 million genetic variants in a discovery 

sample of 197,966 unrelated participants for the untransformed AOSW-inferred 

refractive error phenotype. Validation was assessed in a replication sample of 73,174 

unrelated participants for the untransformed autorefraction-measured refractive 

error. 
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Table 3.1. Type-1 error summary for different Levene’s vQTL tests implemented in 

OSCA software. 

The rank-based inverse normal transformation of AOSW-inferred refractive error was 

performed, resulting in a normal distribution with mean zero dioptres and standard deviation 

of one (N(0,1)).  Type-1 error threshold is represented by α. 

 

 

Table 3.2. Summary of simulation results for additive, log-linear variance and 

dispersion components estimated by using the heteroskedastic linear model (HLM). 

 
 Type 1 error rate threshold (α) 

Component (α) = 0.01 (α) = 0.05 

Untransformed 
phenotype 

Additive 0.010 0.049 

Log-linear variance 0.001 0.014 

Dispersion 0.010 0.049 

Transformed 
phenotype 

Additive 0.010 0.050 

Log-linear variance 0.006 0.030 

Dispersion 0.010 0.050 

The rank-based inverse normal transformation of AOSW-inferred refractive error was 

performed, resulting in a normal distribution with mean of zero dioptres and standard 

deviation of one (N(0,1)).  Type-1 error threshold is represented by α. Note that HLMM 

estimates log-linear variance instead of variance effects because the location measure of 

distribution cannot be negative. 

 
 
Considering all 5.4 million variants, the estimated genetic correlation between AOSW-

inferred refractive error and autorefraction-measured refractive error was 0.78 (95% 

CI 0.65 to 0.91, p = 1.6 x 10-31) for the effect estimates obtained from Levene’s median 

test. In comparison, a genetic correlation between the two traits of 0.93 (95% CI 0.88 

to 0.97, p < 2.2 x 10-16) was observed for marginal SNP effect estimates obtained using 

a standard additive GWAS model. This demonstrates a strong genetic overlap between 

the discovery and replication phenotypes based on the variants with marginal effects 

and/or effects on variance heterogeneity. The variance heterogeneity analysis using 

Levene’s median test in the discovery sample identified 48 independent loci that 

showed evidence of unequal variance across genotypes (Figure 3.2., Table 3.3.). 

Approximately one third (n = 14) of these vQTLs passed the Bonferroni corrected 

threshold for multiple comparisons (p < 0.05/48 = 1 x 10-3) in the replication sample 

and 34 (71%) showed at least nominal replication (p < 0.05).  

 

 Levene's mean test Levene's median test 

 (α) = 0.01 (α) = 0.05 (α) = 0.01 (α) = 0.05 

Untransformed phenotype 0.049 0.144 0.01 0.045 

Transformed* phenotype 0.008 0.039 0.009 0.039 
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Figure 3.2. Manhattan plot showing genome-wide associations based on Levene’s 

median vQTL analysis in the discovery sample. The red horizontal line shows genome-

wide significant threshold (p < 5 x 10-8), while the blue horizontal line depicts 

suggestive genomic regions (p < 1 x 10-6). 

 

 

Directionality concordance between effects in the discovery and replication cohorts 

was observed for 45 out of 48 vQTLs. Variant rs12193446 located near the LAMA2 gene 

displayed the highest level of variance heterogeneity and the strongest evidence of 

association with the phenotype in the discovery sample. Each copy of the risk allele 

was associated with a 0.077 D decrease in refractive error variance (95% CI 0.066 to 

0.088, p = 2.8 x 10-47).  

 
3.3.3.    Sensitivity analysis: genome-wide vQTL analysis using the heteroskedastic 

model 

In a genome-wide analysis using the heteroskedastic linear model, 14 vQTLs showed 

evidence of dispersion effects in the discovery sample (Table 3.4. and Figure 3.3.). 

However, in the replication sample, none of these 14 variants showed evidence of a 

dispersion effect after adjustment for multiple comparisons (p < 0.05/14 = 3.6 x 10-3). 

Nevertheless, 2 variants rs3138142 (RDH5) and rs7775087 (ZMAT4) showed nominal 

evidence of replication (p = 0.010 and p = 0.048, respectively). All 14 of the variants (or 

variants with LD threshold of r2 < 0.01 within a one megabase physical distance 

window) identified by the heteroskedastic linear model were also identified using 



64 

Levene’s median test (Table 3.4.). Thus, this suggested that approximately 30% of the 

genome-wide significant variants identified by Levene’s test displayed variance 

heterogeneity across genotypes that could not be explained purely by confounding 

due to a mean-variance relationship. In addition, all 14 of these vQTL were in LD (r2 > 

0.1) with variants known to have marginal associations with refractive error as 

identified by the CREAM consortium (Tedja et al., 2018). Similarly to the GWAS using 

Levene’s test, rs12193446 near LAMA2 displayed the strongest evidence of a 

dispersion effect in the discovery sample (β = -0.139, 95% CI -0.166 to -0.112, p = 6.3 x 

10-23). 
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Table 3.3. Summary of 48 independent vQTLs with p < 5 x 10-8 identified using Levene’s median test in the discovery sample. Genetic variants are 

ranked based on their p-value in the discovery sample. The phenotype analysed in the discovery sample was AOSW-inferred refractive error, and the 

phenotype analysed in the replication sample was autorefraction-measured refractive error. All results are for Levene’s median test.  

SNP 
Nearest 

Gene 
Chr BP β discovery se discovery P discovery N discovery β replication se replication P replication N replication 

rs12193446 LAMA2 6 129820038 -0.078 0.005 2.88 x 10-47 197,966 -0.062 0.009 2.52 x 10-12* 73,174 

rs11606250 LRRC4C 11 40149300 0.051 0.004 1.75 x 10-33 196,204 0.051 0.007 3.90 x 10-13* 72,514 

rs7405453 TSPAN10 17 79615572 0.039 0.003 1.52 x 10-31 197,002 0.037 0.005 6.47 x 10-12* 72,881 

rs524952 GJD2 15 35005886 0.037 0.003 1.51 x 10-30 197,854 0.042 0.005 1.48 x 10-15* 73,131 

rs10089517 TOX 8 60178721 -0.037 0.003 4.05 x 10-29 197,966 -0.022 0.005 6.75 x 10-5* 73,174 

rs16890057 ZMAT4 8 40726582 -0.043 0.004 3.81 x 10-28 197,799 -0.029 0.006 8.82 x 10-6* 73,113 

rs1550094 PRSS56 2 233385396 0.033 0.003 9.61 x 10-22 197,966 0.033 0.006 3.69 x 10-9* 73,174 

rs6929347 KCNQ5 6 73629566 -0.029 0.003 1.52 x 10-19 195,623 -0.023 0.005 2.02 x 10-5* 72,329 

rs3138142 RDH5 12 56115585 -0.033 0.004 6.28 x 10-19 196,730 -0.024 0.006 6.75 x 10-5* 72,709 

2:178827571_GA_G PDE11A 2 178827571 0.027 0.003 9.45 x 10-18 197,243 0.014 0.005 6.53 x 10-3 72,923 

rs17713847 MYO5B 18 47376162 0.037 0.004 3.87 x 10-16 197,076 0.021 0.007 5.06 x 10-3 72,870 

rs9872571‡ CTNNB1 3 41232162 0.026 0.003 6.35 x 10-16 197,070 0.017 0.005 1.57 x 10-3 72,835 

rs4581716 RBFOX1 16 7458135 0.026 0.003 6.51 x 10-16 197,966 0.018 0.005 6.00 x 10-4* 73,174 

rs62169487 PABPC1P2 2 146862268 -0.026 0.003 1.30 x 10-15 195,662 -0.008 0.005 1.29 x 10-1 72,285 

rs17499593 SLC25A12 2 172649755 -0.031 0.004 5.12 x 10-15 197,792 0.002 0.007 7.82 x 10-1 73,105 

rs3769359 GPD2 2 157394443 0.028 0.004 5.54 x 10-15 197,648 0.012 0.006 3.59 x 10-2 73,033 

rs4942848 RCBTB1 13 50141345 -0.027 0.003 8.77 x 10-15 197,966 -0.015 0.006 9.33 x 10-3 73,174 

rs17010513 FRMPD2 10 49403140 0.026 0.004 7.01 x 10-13 197,966 0.016 0.006 5.74 x 10-3 73,174 

rs2300861 AKAP6 14 33294781 -0.023 0.003 8.86 x 10-13 194,490 -0.010 0.005 5.04 x 10-2 71,865 

rs13380109 RASGRF1 15 79378775 0.023 0.003 1.34 x 10-12 197,774 0.015 0.005 4.88 x 10-3 73,112 

11:84736896_TA_T DLG2 11 84736896 0.023 0.003 2.57 x 10-12 196,452 0.018 0.005 1.27 x 10-3 72,644 

rs6428600‡ SNORD3G 1 91192297 0.022 0.003 4.22 x 10-12 195,962 0.014 0.005 6.31 x 10-3 72,367 

rs466700 LMCD1-AS1 3 8178889 0.021 0.003 5.13 x 10-11 197,656 0.016 0.005 2.32 x 10-3 73,078 

rs1361062 PBX1 1 164175828 0.022 0.003 9.39 x 10-11 197,289 0.022 0.006 1.54 x 10-4* 72,927 

rs10887262 RGR 10 86009171 0.022 0.004 1.51 x 10-10 196,977 0.009 0.006 1.06 x 10-1 72,821 

rs10740465 KCNMA1 10 79101195 0.021 0.003 2.35 x 10-10 197,177 0.003 0.005 5.50 x 10-1 72,867 

rs338076 SIX3 2 45171046 -0.022 0.003 5.77 x 10-10 195,071 -0.006 0.006 2.85 x 10-1 72,087 

rs11226861 GRIA4 11 105705843 0.021 0.003 6.33 x 10-10 194,245 0.021 0.005 9.65 x 10-5* 71,822 

rs1837645 LINC00989 4 80481235 0.024 0.004 8.52 x 10-10 196,481 0.014 0.006 2.88 x 10-2 72,619 

rs12893484 BMP4 14 54414738 0.020 0.003 8.88 x 10-10 197,340 0.010 0.005 4.88 x 10-2 72,935 

rs2796260 CD46 1 207914597 0.021 0.003 9.55 x 10-10 195,020 0.006 0.006 3.13 x 10-1 72,045 

‡ denotes vQTL that has not been previously identified to be associated with refractive error by CREAM. 
*denotes vQTL that showed significant replication after accounting for multiple comparisons (p < 0.05/48 = 1 x 10-3). 
Abbreviations: SNP - single nucleotide polymorphism; Chr - chromosome; BP - base pair; β - effect size (defined in terms of the change in the variance); 
se - standard error; P - p-value; N - sample size.  
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Table 3.3. Summary of 48 independent vQTLs with p < 5 x 10-8 identified using Levene’s median test in the discovery sample.  Continued. 

SNP 
Nearest 

Gene 
Chr BP β discovery se discovery P discovery N discovery β replication se replication P replication N replication 

rs2969185 SHISA6 17 11406081 0.020 0.003 1.22 x 10-9 194,706 0.011 0.005 4.13 x 10-2 72,078 

rs67362351 BICC1 10 60306548 0.020 0.003 1.77 x 10-9 197,384 0.013 0.006 2.04 x 10-2 72,954 

rs2258280‡ NR5A2 1 200097648 -0.019 0.003 2.06 x 10-9 197,422 -0.009 0.005 7.64 x 10-2 72,974 

rs71433443 ZIC2 13 100651350 0.019 0.003 2.40 x 10-9 195,468 0.025 0.005 2.88 x 10-6* 72,246 

rs35654095‡ LRMDA 10 78472016 -0.019 0.003 2.82 x 10-9 196,765 -0.017 0.005 1.06 x 10-3 72,726 

rs1790165 NTM 11 131928971 -0.019 0.003 2.98 x 10-9 197,237 -0.006 0.005 2.23 x 10-1 72,905 

rs2808514 LINC00862 1 200343081 0.019 0.003 7.08 x 10-9 196,889 0.007 0.005 2.16 x 10-1 72,748 

rs985631 OPCML 11 132982714 -0.019 0.003 8.79 x 10-9 194,335 -0.005 0.005 3.16 x 10-1 71,831 

rs4837011‡ PPP6C 9 127923014 0.020 0.003 9.63 x 10-9 196,528 0.014 0.006 1.21 x 10-2 72,616 

rs1550871‡ PTPN5 11 18750886 -0.018 0.003 1.50 x 10-8 197,839 -0.014 0.005 5.81 x 10-3 73,112 

rs1806153‡ PAX6-AS1 11 31850105 0.021 0.004 1.53 x 10-8 197,385 0.015 0.006 1.74 x 10-2 72,950 

rs28570522 PINX1 8 10630568 -0.018 0.003 2.22 x 10-8 194,516 -0.018 0.005 1.05 x 10-3 71,866 

rs9518260 NALCN-AS1 13 101632306 0.020 0.004 2.37 x 10-8 197,171 0.003 0.006 6.14 x 10-1 72,893 

rs75570 HIVEP3 1 42248979 -0.018 0.003 3.93 x 10-8 195,335 -0.003 0.005 5.14 x 10-1 72,195 

rs549903 NTNG1 1 108089900 -0.017 0.003 4.17 x 10-8 197,489 -0.016 0.005 2.25 x 10-3 73,008 

rs524373 KCNA4 11 30027074 -0.020 0.004 4.31 x 10-8 197,651 -0.026 0.006 1.56 x 10-5* 73,059 

rs58004513 SLC14A2 18 42887885 -0.024 0.004 4.53 x 10-8 195,272 0.013 0.007 8.14 x 10-2 72,137 

‡ denotes vQTL that has not been previously identified to be associated with refractive error by CREAM. 
*denotes vQTL that showed significant replication after accounting for multiple comparisons (p < 0.05/48 = 1 x 10-3). 
Abbreviations: SNP - single nucleotide polymorphism; Chr - chromosome; BP - base pair; β - effect size (defined in terms of the change in the variance); 
se - standard error; P - p-value; N - sample size. 
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Table 3.4. Summary of 14 independent vQTLs with evidence of dispersion effects with p < 5 x 10-8 identified using HLM. Genetic variants are ranked 

based on their dispersion test p-value in the discovery sample. The phenotype analysed in the discovery sample was transformed AOSW-inferred 

refractive error, and the phenotype analysed in the replication sample was autorefraction-measured refractive error. All results are for the 

heteroskedastic linear model dispersion test. 

*denotes vQTL that showed nominal replication (p < 0.05). 
Abbreviations: SNP - single nucleotide polymorphism; MAF -minor allele frequency; EA - effect allele; NEA - non-effect allele; β - effect size (defined 
in terms of the change in dioptres for every additional effect allele); se - standard error; P - p-value. 

 Discovery sample Replication sample 
SNP Nearest Gene Chr BP MAF EA NEA β  (D) se P β  (D) se P 

rs12193446 LAMA2 6 129820038 0.1 G A -0.139 0.014 6.31 x 10-23 -0.020 0.013 0.122 

rs11602008 LRRC4C 11 40149305 0.17 T A 0.097 0.011 2.07 x 10-17 0.010 0.010 0.308 

rs524952 GJD2 15 35005886 0.49 A T 0.070 0.008 2.25 x 10-16 -0.008 0.008 0.286 

rs3138142 RDH5 12 56115585 0.24 T C -0.077 0.010 5.19 x 10-15 0.023 0.009 0.010* 

rs10089517 TOX 8 60178721 0.35 A C -0.068 0.009 2.42 x 10-14 0.014 0.008 0.078 

rs7775087 KCNQ5 6 73606783 0.44 G T -0.061 0.009 1.34 x 10-12 -0.015 0.008 0.048* 

rs16890057 ZMAT4 8 40726582 0.21 A G -0.073 0.010 1.88 x 10-12 -0.003 0.009 0.712 

rs4581716 RBFOX1 16 7458135 0.38 G A 0.058 0.009 3.09 x 10-11 0.000 0.008 0.969 

rs1550094 PRSS56 2 233385396 0.3 G A 0.059 0.009 1.61 x 10-10 0.008 0.008 0.314 

rs71433443 ZIC2 13 100651350 0.45 T G 0.050 0.009 5.35 x 10-9 0.008 0.008 0.309 

rs12883788 AKAP6 14 33303540 0.46 T C -0.048 0.009 2.19 x 10-8 0.006 0.008 0.401 

rs62100213 ACAA2 18 47302809 0.16 T C 0.065 0.012 2.69 x 10-8 0.002 0.010 0.854 

rs467283 LMCD1-AS1 3 8182065 0.4 G A 0.047 0.009 4.05 x 10-8 0.007 0.008 0.354 

rs61840038 FRMPD2 10 49406911 0.27 A T 0.052 0.010 4.46 x 10-8 -0.004 0.009 0.664 



68 

Figure 3.3. Manhattan plot for dispersion effects estimated using the heteroskedastic 

linear model in the discovery sample. The red horizontal line shows genome-wide 

significant threshold (p < 5 x 10-8), while the blue horizontal line depicts suggestive 

genomic regions (p < 1 x 10-6). 

 

As discussed above (section 3.2.3.), the mean-variance relationship (rav) could lead to 

the discovery of variants that are not involved in interactions. Therefore, I compared 

the extent of overlap between the additive and log-linear variance effects. The 

scatterplot in Figure 3.4. demonstrates a strong relationship (r = -0.66, p < 2.2 x 10-16) 

between the two components in the discovery sample. However, only a weak 

relationship was observed for autorefraction-measured refractive error in the 

replication sample (r = -0.07, p < 2.2 x 10-16). 

 
A comparison of genomic regions showing variance heterogeneity with those known 

from prior work (Tedja et al., 2018) to display marginal association with refractive error 

revealed a high degree of overlap (Figure 3.5.). Nevertheless, my analysis focusing on 

variance heterogeneity across SNP genotypes rather than the mean differences 

identified 7 novel regions not previously associated with refractive error by CREAM 

(Table 3.3.). Of the 7 lead variants at these loci, nominal evidence of replication (p < 

0.05) was observed for 6, while only one variant had no evidence of replication (p > 

0.05).  
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Figure 3.4. Mean-variance relationship between additive and log-linear variance 

effects estimated by heteroskedastic linear model for the AOSW-inferred refractive 

error phenotype in the discovery sample. Estimated additive and log-linear variance 

effects on AOSW-inferred refractive error are plotted for all genome-wide vQTLs, 

shaded according to the −log10(p) for the additive effect, up to a maximum of 

−log10(5 × 10−8). The red line represents the expected log-linear variance effect given 

a specific additive effect on AOSW-inferred refractive error. 

Figure 3.5. Venn diagram illustrating the overlap of refractive error associated 

genomic regions using different methods. The figure shows common genomic regions 

discovered by CREAM testing for the mean difference across genotypes and Levene’s 

median test/heteroskedastic linear model testing for the variance differences across 

genotypes. 

 



70 

3.3.4. Gene-based association and gene-set enrichment 

Gene-level analysis based on summary statistics from Levene’s median test in the 

discovery sample identified 82 independent genes associated with AOSW-inferred 

refractive error, of which 8 showed strong evidence of replication (Table 3.5.; 

Bonferroni corrected threshold p < 6.1 x 10-4), while a further 18 (32% in total) 

showed at least nominal evidence of replication (p < 0.05). The full results for 82 

independent genes are presented in Appendix A. The Spearman correlation between 

gene-based analysis p-values in the discovery vs. replication sample for all 18,452 

genes examined was 0.08 (p < 2.2 x 10-6). All 8 vQTL genes that showed evidence of 

replication have been previously found to be associated with refractive error or 

other related ocular traits such as axial length.  

 
Gene-set enrichment analysis identified ‘ionotropic glutamate receptor complex’ as 

the only cellular component gene set to be enriched for genes highlighted by the 

variance heterogeneity analysis (p = 1.4 x 10-5). Among the 44 genes in the 

ionotropic glutamate receptor complex gene set, 4 genes were associated with this 

Gene Ontology domain (DLG2 p = 1.1 x 10-13; GRIA4 p = 1.06 x 10-9; SHISA6 p = 6 x 

10-8; GRIN2A p = 3.06 x 10-7). In the replication sample, there was minimal evidence 

for an enrichment of this set (p = 0.14), however there was evidence of replication 

for the top 4 genes (DLG2 p = 2.7 x 10-4; GRIA4 p = 4.2 x 10-4; SHISA6 p = 0.014; 

GRIN2A p = 1.6 x 10-3) associated with ‘ionotropic glutamate receptor complex’. 

 
Table 3.5. Genes that showed significant evidence of variance heterogeneity in 

refractive error in the replication sample after adjustment for multiple comparisons. 

START and STOP base-pair positions include 50kb region on either side of the transcribed gene. 

*CHRND and ZIC5 are located near PRSS56 and ZIC2 genes which were identified to be 

associated with refractive error by Kiefer et al. 

GENE CHR START BP STOP BP Pdiscovery Preplication Associated trait 

LAMA2 6 129154286 129887711 1.02 x 10-36 9.09 x 10-7 
Refractive error 

(Tedja et al., 2018) 

NPLOC4 17 79473913 79654138 6.58 x 10-29 1.44 x 10-9 
Strabismus 

(Plotnikov et al., 2019) 

ZMAT4 8 40338109 40805345 4.42 x 10-26 8.34 x 10-5 
Refractive error 

(Tedja et al., 2018) 

CHRND* 2 233340870 233451375 1.29 x 10-22 1.29 x 10-9 
Refractive error 

(Kiefer et al., 2013) 

LRRC4C 11 400085524 41531186 1.89 x 10-15 2.05 x 10-6 
Refractive error 

(Tedja et al., 2018) 

LRIT1 10 85941276 86051217 2.44 x 10-12 1.92 x 10-7 
Refractive error 

(Tedja et al., 2018) 

GRIA4 11 105430800 105902819 1.06 x 10-9 4.25 x 10-4 
Refractive error 

(Tedja et al., 2018) 

ZIC5* 13 100565275 100674178 1.49 x 10-9 1.62 x 10-5 
Hypermetropia 

(Kiefer et al., 2013) 
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The only molecular function domain gene set identified in the vQTL gene-based 

analysis was ‘transcriptional activator of RNA polymerase II distal enhancer 

sequence specific binding’ (p = 7.2 x 10-6). Among the 25 genes included in this gene 

set, 5 drove the enrichment (SIX3 p = 2.8 x 10-8; ZEB2 p = 1.85 x 10-6; NFE2L2 p = 5.52 

x 10-6; MEF2C p = 4.5 x 10-5; SIX6 p = 7.4 x 10-4). As with the ionotropic glutamate 

receptor complex gene set, this set did not show an enrichment in the replication 

sample (p = 0.31), although 3 of the 5 implicated genes displayed suggestive 

evidence of replication (SIX3 p = 0.68; ZEB2 p = 0.07; NFE2L2 p = 0.34; MEF2C p = 4.5 

x 10-5; SIX6 p = 0.07). None of the gene sets in the biological pathway Gene Ontology 

domain showed enrichment after correction for multiple testing. In summary, while 

ionotropic glutamate signalling and RNA polymerase II enhancer binding were 

highlighted as candidate biological processes enriched for vQTL - and therefore 

potentially engaged in gene-environment interactions contributing to myopia 

development - the level of statistical support was far from definitive. 

 
 
3.3.5.      vQTL x education interaction  
 

For the 34 genomic loci identified using Levene’s median test as contributing to 

phenotypic variability in refractive error (i.e. variants with at least nominal evidence of 

replication), I looked for direct evidence of gene-environment interactions. I used the 

two variables, UniEdu and EduYears, as markers of exposure to education. UniEdu is a 

binary variable that indicated whether individuals did or did not hold a university 

degree, while EduYears is a 4-level categorical variable classifying the age at which 

formal education was completed.  

 
In the discovery sample, 8 of the 34 variants tested (23%) showed evidence of an 

interaction with UniEdu after accounting for multiple comparisons (p < 1 x 10-3), and 

another 8 variants (46% in total) showed at least nominal evidence of an interaction (p 

< 0.05). Of these, rs12193446 (LAMA2) had the strongest influence on the AOSW-

inferred refractive error phenotype (β = 0.09 D per copy of the risk allele). Three of the 

8 Bonferroni-significant variants also showed nominal evidence of an interaction with 

UniEdu in the replication sample for the autorefraction-measured phenotype: 

rs12193446 (p = 0.008), rs16890057 (p = 0.003) and rs524952 (p = 0.043). An additional 

variant (rs35654095) had strong evidence for an interaction with UniEdu in the 
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replication sample, but not in the discovery sample (p = 2.27 x 10-5 and p = 0.464, 

respectively). Full results are displayed in Table 3.6. 

 
To avoid false positives in the analysis of interaction with EduYears exposure, I set the 

multiple comparison threshold to 4.9 x 10-4 (p = 0.05/[34 x 3] in order to take into 

account the number of vQTLs tested and the 3 EduYears categories). In the discovery 

sample, the number of vQTL x EduYears interactions above the level expected by 

chance was 8 in the group of individuals who completed their education at 21-25 years 

(Table 3.7.). At all of these loci there was a systematic increase in the effect associated 

with the myopia-associated risk variant with additional years spent in education. For 

example, compared to individuals in the lowest EduYears category, rs11606250 

located near LRRC4C gene had an effect size of -0.05 (95% CI -0.08 to -0.02, p = 0.002) 

for those completing education at age 16 years, -0.06 D (95% CI -0.1 to -0.03, p = 1.9 x 

10-4) for those completing education at age 17-20 years, and -0.08 D (95% CI -0.11 to -

0.05, p = 3.7 x 10-7) for those completing education at age 21-26. I observed the largest 

effect size difference across EduYears groups to be 0.07 D for rs16890057 (p = 2.27 x 

10-6), followed by rs12193446 (p = 2.08 x 10-12) with an effect size difference of 0.06 D 

(Table 3.7.). Two variants that showed vQTL x EduYears interaction, rs28570522 and 

2:178827571_GA_G, were not identified when UniEdu was used as the environmental 

exposure.   

 

3.4. Discussion 

Testing for variance heterogeneity has been proposed as an indirect strategy for 

discovering genetic variants that influence quantitative traits via interaction effects. 

Numerous methods to assess unequal variance have been proposed (Pare et al., 2010; 

Rönnegård et al., 2010; Shen et al., 2012; Deng et al., 2013; Cao et al., 2014; Cao et al., 

2015; Corty et al., 2018; Corty and Valdar, 2018; Young et al., 2018) in the context of 

both gene-environment and gene-gene interactions (Struchalin et al., 2010; Forsberg 

and Carlborg, 2017). Here, my focus was the discovery of genetic variants involved in 

shaping refractive error development that display evidence of variance heterogeneity. 

 
I identified 48 genomic regions contributing to phenotypic variability in refractive 

error, of which 34 showed at least nominal replication using an independent sample. 
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A separate genome-wide analysis using the heteroskedastic linear model, performed 

as a sensitivity analysis, suggested that 14 of these variants were likely to be involved 

in either gene-environment or gene-gene interaction or both, while the remainder may 

potentially have been false positives detected by virtue of their mean-variance 

relationship (Young et al., 2018). A comparison of loci identified by CREAM using a 

standard GWAS model testing for marginal effects and the current Levene’s test vQTL 

analysis showed a remarkably high degree of overlap (Figure 3.5.).  

 
Analysis of variance heterogeneity using Levene’s median test identified 7 novel loci 

not previously identified by CREAM, 6 of which showed nominal replication (p < 0.05) 

using autorefraction-measured refractive error. Notably, 2 of these 7 loci have been 

reported to be associated with other ocular traits. Firstly, after exome sequencing of 

20 patients with high myopia, Wan et al. identified CTNNB1 gene as a key linker node 

in a functional interaction network (Wan et al., 2018). Furthermore, a de novo 

mutation in the CTNNB1 gene was identified in a patient presenting with retinal 

detachment, and lens and vitreous opacities (Li et al., 2017). A form of exudative 

vitreopathy characterised by abrupt cessation of growth of peripheral capillaries, 

leading to an avascular peripheral retina has also been linked to this gene (Panagiotou 

et al., 2017). Secondly, lead variant rs35654095 is situated approximately 140kb 

downstream of the LRMDA gene on chromosome 10. LRMDA is one of the genes 

responsible for oculocutaneous albinism (Kamaraj and Purohit, 2014), which is 

characterized by reduced or absent ocular pigmentation, decreased visual acuity, 

macular hypoplasia, optic dysplasia, atypical choroidal vessels, and nystagmus. The 

connection between refractive error and remaining 5 novel loci is less obvious. For 

example, PTPN5 may be responsible for the control of the synaptic plasticity and 

neuronal cell survival (Pelov et al., 2012). The relationship between the visual system 

and the central nervous system was mentioned in Chapter 2. Yang et al. suggested that 

reduced expression of PTPN5 can lead to calcium 
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Table 3.6. Summary of SNP x UniEdu interaction test results for vQTL variants identified using Levene’s median test. The effect (β) quantifies the 
change in refractive error per copy of the risk allele in those with vs. without a university degree. 

*denotes vQTL that showed evidence of a genotype x UniEdu interaction after accounting for multiple comparisons (p < 0.05/34 = 1.4 x 10-3). 
Abbreviations: SNP - single nucleotide polymorphism; MAF -minor allele frequency; EA - effect allele; NEA - non-effect allele; β - effect size (defined in terms of 
the change in dioptres); se - standard error; P - p-value.  

 Discovery sample Replication sample 
SNP Nearest Gene MAF EA NEA β  (D) se P β  (D) se P 

rs12193446 LAMA2 0.1 G A 0.094 0.016 4.89 x 10-9* 0.128 0.048 7.60 x 10-3 

rs10089517 TOX 0.35 A C 0.044 0.010 1.34 x 10-5* 0.021 0.030 4.76 x 10-1 

rs16890057 ZMAT4 0.2 A G 0.051 0.012 1.73 x 10-5* 0.106 0.035 2.57 x 10-3 

rs524952 GJD2 0.49 A T -0.038 0.010 5.42 x 10-5* -0.057 0.028 4.31 x 10-2 

rs12893484 BMP4 0.43 G A -0.039 0.010 5.89 x 10-5* -0.005 0.029 8.68 x 10-1 

rs4581716 RBFOX1 0.38 G A -0.036 0.010 2.73 x 10-4* -0.037 0.029 2.04 x 10-1 

rs11606250 LRRC4C 0.17 A G -0.042 0.013 8.96 x 10-4* -0.047 0.038 2.15 x 10-1 

rs1550094 PRSS56 0.3 G A -0.034 0.010 9.79 x 10-4* -0.047 0.031 1.26 x 10-1 

rs13380109 RASGRF1 0.42 A G -0.029 0.010 2.42 x 10-3 -0.023 0.029 4.15 x 10-1 

rs549903 NTNG1 0.49 G A 0.029 0.010 2.49 x 10-3 0.005 0.028 8.61 x 10-1 

2:178827571_GA_G PDE11A 0.46 G GA -0.027 0.010 4.72 x 10-3 -0.053 0.029 6.56 x 10-2 

rs1837645 LINC00989 0.2 C T -0.031 0.012 8.17 x 10-3 -0.010 0.035 7.83 x 10-1 

rs28570522 PINX1 0.38 A G 0.026 0.010 8.78 x 10-3 0.009 0.029 7.55 x 10-1 

rs67362351 BICC1 0.33 A C -0.026 0.010 1.14 x 10-2 -0.037 0.030 2.16 x 10-1 

rs17010513 SLC14A2 0.23 C T -0.025 0.011 1.78 x 10-2 -0.024 0.032 4.51 x 10-1 

rs17713847 MYO5B 0.15 A G -0.029 0.013 3.08 x 10-2 -0.009 0.040 8.19 x 10-1 

rs9872571 CTNNB1 0.46 T C -0.018 0.010 6.12 x 10-2 -0.032 0.028 2.61 x 10-1 

rs2969185 SHISA6 0.47 A C -0.018 0.010 6.63 x 10-2 0.009 0.029 7.58 x 10-1 

rs6929347 KCNQ5 0.45 A G 0.017 0.010 8.02 x 10-2 0.044 0.029 1.23 x 10-1 

rs4942848 RCBTB1 0.29 G A 0.018 0.010 8.07 x 10-2 -0.031 0.031 3.21 x 10-1 

rs524373 KCNA4 0.26 G A 0.018 0.011 9.80 x 10-2 0.079 0.032 1.51 x 10-2 

rs6428600 SNORD3G 0.45 G C -0.015 0.010 1.24 x 10-1 0.014 0.029 6.36 x 10-1 

11:84736896_TA_T DLG2 0.36 T TA -0.013 0.010 1.89 x 10-1 -0.001 0.030 9.61 x 10-1 

rs11226861 GRIA4 0.37 A T -0.013 0.010 1.92 x 10-1 -0.029 0.030 3.37 x 10-1 

rs3138142 RDH5 0.24 T C 0.009 0.011 4.17 x 10-1 0.098 0.033 2.95 x 10-3 

rs35654095 LRMDA 0.44 T C 0.007 0.010 4.64 x 10-1 0.121 0.029 2.27 x 10-5* 

rs71433443 ZIC2 0.45 T G -0.007 0.010 4.73 x 10-1 0.003 0.029 9.18 x 10-1 

rs3769359 GPD2 0.27 T G -0.008 0.011 4.79 x 10-1 -0.021 0.032 5.10 x 10-1 

rs1550871 PTPN5 0.47 A G 0.006 0.009 5.53 x 10-1 0.034 0.028 2.35 x 10-1 

rs1361062 PBX1 0.31 T A 0.006 0.010 5.86 x 10-1 0.010 0.031 7.55 x 10-1 

rs466700 LMCD1-AS1 0.41 T G 0.004 0.010 6.68 x 10-1 -0.019 0.029 5.07 x 10-1 

rs1806153 PAX6-AS1 0.23 T G 0.004 0.011 7.10 x 10-1 -0.013 0.034 7.10 x 10-1 

rs7405453 TSPAN10 0.36 A G 0.003 0.010 7.67 x 10-1 -0.043 0.030 1.48 x 10-1 

rs4837011 PPP6C 0.31 T G 0.002 0.010 8.51 x 10-1 0.024 0.031 4.35 x 10-1 
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Table 3.7. Summary of vQTL x EduYears interaction based on 34 vQTLs that showed at least nominal replication using Levene’s median test for 

variance heterogeneity. Interaction effects were estimated in each EduYears category with respect to the baseline group of participants who 

completed their education at the age of 13 to 15 years.  

 EduYears category 

16 years 17-20 years 21-25 years 

SNP 
Nearest 

Gene 
Sample β  (D) se P β  (D) se P β  (D) se P 

rs6428600 SNPRD3G D -0.011 0.013 4.00 x 10-1 -0.014 0.014 3.07 x 10-1 -0.024 0.012 4.56 x 10-2 

  R -0.022 0.043 6.06 x 10-1 -0.024 0.045 5.87 x 10-1 -0.019 0.039 6.20 x 10-1 

rs549903 NTNG1 D 0.009 0.013 5.14 x 10-1 0.018 0.014 1.97 x 10-1 0.036 0.012 2.23 x 10-3 

  R 0.010 0.043 8.19 x 10-1 0.066 0.044 1.35 x 10-1 0.041 0.038 2.82 x 10-1 

rs1361062 PBX1 D -0.002 0.015 9.05 x 10-1 0.007 0.015 6.60 x 10-1 0.001 0.013 9.25 x 10-1 

  R -0.048 0.047 3.07 x 10-1 -0.054 0.048 2.57 x 10-1 0.019 0.042 6.48 x 10-1 

rs3769359 GPD2 D -0.030 0.015 4.36 x 10-2 -0.029 0.015 6.20 x 10-2 -0.031 0.013 1.97 x 10-2 

  R -0.057 0.048 2.35 x 10-1 0.042 0.049 3.91 x 10-1 -0.018 0.043 6.70 x 10-1 

2:178827571_GA_G PDE11A D -0.004 0.013 7.49 x 10-1 -0.026 0.014 6.11 x 10-2 -0.042 0.012 3.96 x 10-4* 

  R -0.044 0.043 3.07 x 10-1 -0.079 0.045 7.52 x 10-2 -0.058 0.039 1.33 x 10-1 

rs1550094 PRSS56 D -0.038 0.015 8.40 x 10-3 -0.043 0.015 4.45 x 10-3 -0.060 0.013 3.16 x 10-6* 

  R 0.041 0.047 3.79 x 10-1 0.020 0.048 6.81 x 10-1 -0.004 0.041 9.30 x 10-1 

rs466700 LMCD1-AS1 D -0.012 0.014 3.69 x 10-1 -0.024 0.014 8.25 x 10-2 -0.016 0.012 1.79 x 10-1 

  R -0.024 0.044 5.90 x 10-1 0.000 0.045 9.94 x 10-1 -0.035 0.039 3.73 x 10-1 

rs9872571 CTNNB1 D -0.017 0.013 2.00 x 10-1 -0.024 0.014 8.78 x 10-2 -0.036 0.012 2.59 x 10-3 

  R -0.100 0.043 1.98 x 10-2 -0.033 0.044 4.56 x 10-1 -0.093 0.038 1.55 x 10-2 

rs1837645 LINC00989 D 0.001 0.017 9.66 x 10-1 -0.029 0.017 8.58 x 10-2 -0.035 0.015 1.74 x 10-2 

  R -0.056 0.053 2.89 x 10-1 -0.005 0.054 9.25 x 10-1 -0.064 0.047 1.73 x 10-1 

rs6929347 KCNQ5 D 0.023 0.014 8.73 x 10-2 0.050 0.014 3.07 x 10-4* 0.039 0.012 1.20 x 10-3 

  R -0.016 0.043 7.05 x 10-1 -0.003 0.045 9.52 x 10-1 0.043 0.039 2.66 x 10-1 

*denotes vQTL that showed significant replication after accounting for multiple comparisons (p < 0.05/(3 x 34) = 4.9 x 10-4). 

Abbreviations: SNP - single nucleotide polymorphism; Sample (D - discovery; R - replication); β - effect size (defined in terms of the change in dioptres across 
EduYears categories); se - standard error; P - p-value. 
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Table 3.7. Summary of vQTL x EduYears interaction based on 34 vQTLs that showed at least nominal replication using Levene’s median test for 

variance heterogeneity. Continued. 

*denotes vQTL that showed significant replication after accounting for multiple comparisons (p < 0.05/(3 x 34) = 4.9 x 10-4). 

Abbreviations: SNP - single nucleotide polymorphism; Sample (D - discovery; R - replication); β - effect size (defined in terms of the change in dioptres across 
EduYears categories); se - standard error; P - p-value. 

 
EduYears category 

16 years 17-20 years 21-25 years 

SNP 
Nearest 

Gene 
Sample β  (D) se P β  (D) se P β  (D) se P 

rs12193446 LAMA2 D 0.077 0.023 6.00 x 10-4 0.099 0.023 2.26 x 10-5* 0.140 0.020 2.08 x 10-12* 

  R -0.007 0.073 9.20 x 10-1 0.027 0.074 7.12 x 10-1 0.170 0.065 8.70 x 10-3 

rs28570522 PINX1 D 0.027 0.014 4.78 x 10-2 0.023 0.014 1.08 x 10-1 0.051 0.012 3.03 x 10-5* 

  R 0.058 0.045 1.93 x 10-1 0.085 0.046 6.34 x 10-2 0.073 0.040 6.50 x 10-2 

rs16890057 ZMAT4 D -0.005 0.017 7.61 x 10-1 0.042 0.017 1.33 x 10-2 0.069 0.015 2.27 x 10-6* 

  R 0.033 0.053 5.33 x 10-1 -0.015 0.054 7.88 x 10-1 0.092 0.047 5.10 x 10-2 

rs10089517 TOX D 0.020 0.014 1.65 x 10-1 0.022 0.015 1.30 x 10-1 0.056 0.012 7.51 x 10-6* 

  R 0.029 0.045 5.20 x 10-1 0.013 0.046 7.75 x 10-1 0.044 0.040 2.68 x 10-1 

rs4837011 PPP6C D -0.015 0.015 3.19 x 10-1 -0.043 0.015 4.57E x 10-3 -0.023 0.013 7.66 x 10-2 

  R -0.097 0.047 3.64 x 10-2 -0.086 0.048 7.28 x 10-2 -0.052 0.041 2.05 x 10-1 

rs17010513 FRMPD2 D 0.000 0.015 9.99 x 10-1 -0.023 0.016 1.41 x 10-1 -0.034 0.013 1.05 x 10-2 

  R 0.011 0.049 8.18 x 10-1 -0.017 0.050 7.38 x 10-1 -0.060 0.043 1.65 x 10-1 

rs67362351 BICC1 D 0.000 0.014 9.77 x 10-1 -0.025 0.015 8.59 x 10-2 -0.024 0.013 5.46 x 10-2 

  R -0.025 0.045 5.90 x 10-1 -0.009 0.047 8.41 x 10-1 -0.050 0.040 2.20 x 10-1 

rs1550871 PTPN5 D 0.023 0.013 7.90 x 10-2 0.043 0.014 2.07 x 10-3 0.025 0.012 3.45 x 10-2 

  R 0.016 0.043 7.03 x 10-1 0.073 0.044 9.76 x 10-2 0.063 0.038 1.01 x 10-1 

rs524373 KCNA4 D 0.017 0.015 2.53 x 10-1 0.022 0.016 1.64 x 10-1 0.034 0.014 1.06 x 10-2 

  R 0.066 0.049 1.78 x 10-1 0.091 0.050 6.78 x 10-2 0.138 0.043 1.50 x 10-3 

rs1806153 PAX6-AS1 D -0.007 0.016 6.42 x 10-1 -0.010 0.016 5.63 x 10-1 0.002 0.014 9.11 x 10-1 

  R -0.001 0.051 9.92 x 10-1 -0.011 0.053 8.36 x 10-1 -0.005 0.046 9.16 x 10-1 

rs11606250 LRRC4C D -0.054 0.018 2.50 x 10-3 -0.069 0.019 1.90 x 10-4* -0.080 0.016 3.75 x 10-7* 

  R -0.036 0.058 5.37 x 10-1 -0.075 0.059 2.09 x 10-1 -0.110 0.051 3.15 x 10-2 
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Table 3.7. Summary of vQTL x EduYears interaction based on 34 vQTLs that showed at least nominal replication using Levene’s median test for 

variance heterogeneity. Continued. 

*denotes vQTL that showed significant replication after accounting for multiple comparisons (p < 0.05/(3 x 34) = 4.9 x 10-4). 

Abbreviations: SNP - single nucleotide polymorphism; Sample (D - discovery; R - replication); β - effect size (defined in terms of the change in dioptres  
across EduYears categories); se - standard error; P - p-value. 

 
EduYears category 

16 years 17-20 years 21-25 years 

SNP 
Nearest 

Gene 
Sample β  (D) se P β  (D) se P β  (D) se P 

11:84736896_TA_T DLG2 D -0.012 0.014 3.75 x 10-1 -0.034 0.015 1.96 x 10-2 -0.028 0.012 2.42 x 10-2 
  R 0.004 0.045 9.22 x 10-1 -0.003 0.046 9.49 x 10-1 -0.010 0.040 8.01 x 10-1 

rs11226861 GRIA4 D 0.003 0.014 8.47 x 10-1 -0.003 0.014 8.42 x 10-1 -0.007 0.012 5.44 x 10-1 
  R -0.030 0.045 5.01 x 10-1 -0.026 0.046 5.74 x 10-1 -0.035 0.040 3.84 x 10-1 

rs3138142 RDH5 D 0.024 0.016 1.27 x 10-1 0.027 0.016 8.86 x 10-2 0.032 0.014 2.14 x 10-2 
  R -0.005 0.050 9.27 x 10-1 0.034 0.052 5.14 x 10-1 0.087 0.045 4.99 x 10-2 

rs4942848 RCBTB1 D 0.027 0.015 6.70 x 10-2 0.014 0.015 3.63 x 10-1 0.032 0.013 1.37 x 10-2 
  R -0.066 0.047 1.60 x 10-1 -0.010 0.049 8.35 x 10-1 -0.040 0.042 3.44 x 10-1 

rs71433443 ZIC2 D 0.006 0.013 6.60 x 10-1 -0.006 0.014 6.52 x 10-1 -0.013 0.012 2.64 x 10-1 
  R 0.053 0.043 2.18 x 10-1 -0.033 0.045 4.59 x 10-1 0.034 0.039 3.77 x 10-1 

rs12893484 BMP4 D -0.023 0.014 8.50 x 10-2 -0.002 0.014 9.08 x 10-1 -0.041 0.012 6.20 x 10-4 
  R 0.019 0.043 6.57 x 10-1 0.013 0.045 7.70 x 10-1 -0.005 0.038 9.06 x 10-1 

rs524952 GJD2 D -0.039 0.013 3.70 x 10-3 -0.057 0.014 3.53 x 10-5* -0.063 0.012 1.08 x 10-7* 
  R -0.024 0.043 5.74 x 10-1 -0.087 0.044 4.78 x 10-2 -0.098 0.038 9.90 x 10-3 

rs13380109 RASGRF1 D -0.015 0.014 2.71 x 10-1 -0.013 0.014 3.36 x 10-1 -0.041 0.012 5.76 x 10-4 
  R 0.000 0.043 9.95 x 10-1 0.005 0.045 9.16 x 10-1 -0.030 0.039 4.42 x 10-1 

rs4581716 RBFOX1 D 0.007 0.014 5.98 x 10-1 -0.020 0.014 1.64 x 10-1 -0.034 0.012 4.88 x 10-3 
  R 0.016 0.044 7.18 x 10-1 0.018 0.045 6.85 x 10-1 -0.019 0.039 6.27 x 10-1 

rs2969185 SHISA6 D -0.022 0.014 1.05 x 10-1 -0.021 0.014 1.31 x 10-1 -0.026 0.012 3.20 x 10-2 
  R 0.003 0.043 9.51 x 10-1 0.005 0.044 9.06 x 10-1 0.016 0.038 6.83 x 10-1 

rs7405453 TSPAN10 D -0.017 0.014 2.15 x 10-1 -0.002 0.014 8.71 x 10-1 -0.007 0.012 5.82 x 10-1 
  R 0.024 0.045 5.99 x 10-1 0.018 0.046 7.01 x 10-1 -0.034 0.040 3.97 x 10-1 

rs17713847 MYO5B D -0.028 0.019 1.42 x 10-1 -0.018 0.019 3.46 x 10-1 -0.032 0.017 5.23 x 10-2 
  R -0.039 0.061 5.25 x 10-1 -0.086 0.062 1.67 x 10-1 -0.085 0.054 1.17 x 10-1 

rs35654095 LRMDA D 0.013 0.014 3.20 x 10-1 0.030 0.014 3.35 x 10-2 0.025 0.012 3.86 x 10-2 
  R 0.021 0.043 6.31 x 10-1 0.042 0.044 3.49 x 10-1 0.109 0.039 4.60 x 10-3 
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channel expression and a recovery of potassium channels from inactivation, which in 

turn increases neuronal vulnerability to glutamate toxicity (Yang et al., 2012a). Both 

Ca2+ and K+ channels have been shown to be regulated by other refractive error genes 

(Tedja et al., 2018). Like PTPN5, PPP6C is a protein phosphatase. Among associated 

disorders of this gene causes spinocerebellar ataxia type 12, a very rare condition 

characterized by relatively mild cerebellar ataxia and the presence of action tremor 

(URL: https://www.orpha.net/consor/cgi-bin/index.php, accessed: 29 October 2019). 

SNORD3G is a small nucleolar RNA and PAX6-AS1 is a long non-coding RNA. Both could 

be responsible for coordinated control of gene expression. For example, PAX6-AS1 may 

regulate expression of PAX6 gene, which is involved in ocular morphogenesis and is 

expressed in numerous ocular tissues during development (Yu et al., 2011). 

Interestingly, PAX6-AS1 and NR5A2 are both highly expressed in the pancreas (Buckle 

et al., 2018; Seitz et al., 2019). The relationship between the eyes and the pancreas is 

well established (Ilegems et al., 2013; Vessey et al., 2005). For example, pancreatic 

peptide hormones, such as glucagon, has been shown to play neuromodulatory roles 

in neurons of the chicken retina (Fischer et al., 2006) and glucagon’s activity is 

influenced by defocus (Vessey et al., 2005). In addition, the connection with the eye 

problems and the pancreas has been studied in diabetics (Fledelius, 1985). 

 
Gene-level analysis identified 82 genes to be associated with AOSW-inferred refractive 

error. Approximately 32% of these showed at least nominal evidence of replication (p 

< 0.05). Gene set enrichment analysis identified ‘ionotropic glutamate receptor 

complex’ as a cellular component enriched for genes associated with the AOSW-

inferred phenotype. Several recent studies have suggested the involvement of this 

cellular component in refractive error development (de Souza et al., 2012; Hendriks 

et al., 2017; Tedja et al., 2018). The molecular function ‘transcriptional activator of 

RNA polymerase II distal enhancer sequence specific binding’ was also implicated, 

which is a novel finding, albeit with less support in the replication sample. Therefore, 

the associated vQTL genes in this gene set could be responsible for regulating 

transcription of one or more downstream myopia-predisposing genes, perhaps in 

response to visual or other environmental cues. 

 
Refractive error is influenced by environmental factors such as educational attainment 

(Mountjoy et al., 2018). Therefore, following the 2-step strategy proposed by (Zhang 
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et al., 2016) including a screening step (e.g. testing for either marginal effects or for 

variance heterogeneity) followed by a test for interaction, I examined whether direct 

evidence of genotype x environment interaction could be found for the confirmed 

vQTL loci. Using university education as an environmental exposure, a total of 3 vQTLs 

showed convincing evidence of an interaction, with an effect size of approximately 0.1 

D (the typical magnitude of effect on the phenotype mean in a standard GWAS for 

refractive error). A more complex pattern of results was observed when age at the 

completion of education was examined as an environmental exposure. At 8 loci there 

was convincing evidence for interaction effects, with – in all cases – a systematic 

increase in the effect of the myopia-predisposing risk allele with additional time spent 

in education. These findings provide molecular-level support for the notion that 

education contributes to myopia development (Mountjoy et al., 2018). However, not 

all variants that were identified as being vQTL in the genome-wide analysis displayed 

evidence of a gene-education interaction. This could be at least partly explained by the 

presence of other interacting factors (either gene-gene or gene-environment) that I 

did not explicitly consider in this study. 

 
A limitation of using AOSW-inferred refractive error as a phenotype in the discovery 

sample was discussed in section 2.4. However, in support of this approach, there was 

a genetic correlation of 0.93 (95% CI 0.88 to 0.97, p < 2.2 x 10-16) between the AOSW-

inferred and autorefraction-measured phenotype, when using marginal SNP effects 

(Chapter 1 section 1.4.1.) and 0.78 (95% CI 0.65 to 0.91, p = 1.6 x 10-31) when using 

summary statistics obtained by Levene’s test. Ultimately, approximately 70% of vQTL 

identified in the discovery sample displayed at least nominal evidence of variance 

heterogeneity in the independent replication sample (p < 2.2 x 10-16).  

 
As illustrated in Figure 3.4., the mean-variance relationship for AOSW-inferred 

refractive error in the discovery sample was strong (rav = -0.66). Such a relationship 

could possibly indicate that genome-wide significant variants controlling phenotype 

variability are more likely to have stronger marginal SNP effects, as was the case when 

Levene’s test was applied. Therefore, future studies might benefit from carrying out a 

joint analysis of additive and variance effects (Shen et al., 2012; Cao et al., 2014; Cao 

et al., 2015; Corty et al., 2018). However, the mean-variance relationship was weaker 

in the replication sample (rav = 0.07), suggesting that rav = -0.66 could have been 
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observed as a consequence of the imprecise inference of AOSW phenotype. 

Unobserved factors such as each individual’s behaviour or lifestyle could have 

contributed to the poor prediction of this phenotype. For example, unwillingness to 

wear glasses could have delayed the age of onset of spectacles wear, thus reducing the 

correlation between AOSW and refractive error. Another source of bias in the 

prediction of AOSW phenotype could be attributed to demographic differences 

between discovery and replication samples. This demonstrates that care needs to be 

taken when comparing the two phenotypes used in this chapter. 

 
While it is true that variance heterogeneity is a hallmark feature of gene-environment 

or gene-gene interactions, there are other potential causes for unequal variance across 

genotype classes. Shifts in variance can be caused by incomplete linkage disequilibrium 

between a causal polymorphism and the tested marker (Ek et al., 2018) or the presence 

of multiple causal alleles in a region (Forsberg et al., 2015). Here, I was unable to 

definitively attribute gene-gene or gene-environment interaction as the cause of 

variance heterogeneity at the majority of the vQTL loci discovered. Further work will 

be required in larger samples, or in samples with information on refractive error and a 

wide range of environmental exposures during childhood. 

 
In summary, the analyses carried out in this chapter suggested that genetic variants 

controlling refractive error variability are likely to be common. Although many of the 

34 newly-discovered loci with effects on variance heterogeneity also displayed 

marginal SNP effects, 7 were not previously reported to be associated with refractive 

error by CREAM. Selecting a subset of variants based on variance heterogeneity across 

genotypes proved to be a useful strategy to identify loci involved in genotype-

education interactions. Finally, the findings imply that a joint test of additive and 

variance effects may provide higher statistical power to detect refractive error variants 

than either test in isolation. 
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Chapter 4 

Evidence of widespread gene-environment or gene-

gene interactions in myopia development 

 
4.1. Introduction 
 
Since an individual’s genotypes are largely fixed during the lifetime, the standard 

approach of analysing complex traits involves the assumption that a genetic variant 

has the same effect in all individuals (i.e. the effects are uniform for all people in the 

population). However, in the case where environmental and genetic risk factors that 

alter the susceptibility of disease progression exist, this assumption will not be 

satisfied. Several recent studies have demonstrated that differences in genetic variant 

effect sizes across individuals can be viewed in terms of gene-environment (GxE) or 

gene-gene interactions (GxG) (Paré et al., 2010; Beyerlein et al., 2011; Williams, 2012; 

Abadi et al., 2017). The two vQTL detection methods (Levene’s median test and the 

heteroskedastic linear model) discussed in the previous chapter were designed to 

detect variance heterogeneity, which is expected from theory to be a hallmark feature 

of GxE or GxG interactions. A major advantage of methods based on detecting such 

heterogeneity of effect sizes is that the identity of the environmental or genetic risk 

factors underlying a GxE or GxG interaction effect does not have to be pre-specified or 

measured directly.  

 
Motivated by the observed enrichment of GxE among the variants known to be 

associated with refractive error, the goal of this chapter was to comprehensively assess 

the extent to which these known susceptibility variants display inter-individual 

variability of effect sizes across the sample distribution. The results for refractive error 

variants were compared with those associated with height, a highly polygenic trait with 
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little or no evidence of a contribution from GxE and GxG interactions (Wood et al., 

2014; Abadi et al., 2017).  

 
As an alternative to Levene’s test and the heteroskedastic linear model tested 

previously, I used conditional quantile regression (CQR) (Koenker and Hallock, 2001) 

for these analyses. CQR has been shown to have greater statistical power in cases were 

population distribution is asymmetric and when interactions display antagonistic 

effects (URL: https://macsphere.mcmaster.ca/handle/11375/23291, accessed: 29 October 

2019). The critical difference between quantile regression and linear regression is that 

the former provides multiple estimates of SNP effect sizes depending on how the 

sample is stratified, while the latter provides a single estimate that summarizes the 

average SNP effect for the whole sample. 

 

4.2.  Methods 
 
4.2.1.      Study participants and sample quality control 

A sample of 72,985 unrelated, white-British participants with the autorefraction-

measured refractive error was studied. The selection of this sample is outlined in 

Section 1.4.3.  

 
4.2.2.      Selection of genetic variants associated with refractive error and height 

For refractive error, the selection of genetic variants was restricted to those attaining 

genome-wide significance threshold (p < 5 x 10-8) in the CREAM Consortium and 

23andMe meta-analysis and that replicated (p < 0.05) in a UK Biobank sample (Tedja 

et al., 2018). Of the initial 149 variants, rs74764079, rs73730144 and rs17837871 were 

excluded from the analysis because their minor allele frequencies (MAF) were less than 

5% (3%,1% and 1% respectively). Before the analysis, the risk allele for each SNP was 

coded as the allele associated with a more negative refractive error. 

 
Similarly, a list of genetic variants associated with height at genome-wide significance 

was obtained from the GIANT Consortium (Wood et al., 2014). Analyses were 

restricted to the 148 independent genetic variants with the strongest association (i.e. 

those with the lowest p-values) and MAF > 0.05. The purpose of using height 

phenotype was to compare and contrast this trait with refractive error.  
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4.2.3.      Statistical analysis 

Linear regression was performed to estimate the effects of the 146 refractive error 

variants assuming that the effect sizes are constant across the full sample distribution. 

Refractive error was modelled as the outcome variable, while the genotype, age, age-

squared, sex and genotyping array were fitted as predictors/covariates.  

 
To estimate SNP effect sizes at different parts of the sample outcome distribution, CQR 

was performed. I used the rq function from the quantreg package in R. The same set 

of covariates as described above was selected when conducting CQR. Standard errors 

for the CQR estimates were obtained using 10,000 Markov-chain-marginal-bootstraps. 

In addition, sensitivity analyses were performed with the first ten principal 

components also included as covariates. Fitting the more complicated model did not 

change the estimates substantially. Therefore, the rest of the chapter will discuss the 

results obtained without using principal components as covariates.  

 
To quantitatively assess the extent of effect size heterogeneity, SNP effect estimates 

and their standard errors were meta-regressed using a mixed-effects model with the 

metafor package in R (Viechtbauer, 2010). The CQR estimated SNP effects at 9 different 

quantiles (0.1, 0.2, 0.3, …, 0.9; see section 4.2.5. for the rationale explaining the 

selection of this set of quantiles) were modelled as the dependent variable and the 

quantile at which these estimates were obtained as the independent variable. The 

non-linear nature of SNP effects was assessed by including a quantile-squared term in 

the meta-regression (MR), resulting in the final model: y = 0 + 1q + 2q2 + e (where 0 

is an meta regression (MR) intercept term, 1 and 2 represent the linear and quadratic 

change in SNP effect across quantiles, respectively, q are the quantiles, and e is the 

residual error). An illustration of the model fitting strategy is outlined in Figure 4.1.  

 
 
4.2.4. Assessment of type-1 error rate and power using a permutation-based 

approach 

The gold-standard approach of permutation was used to assess the type-1 error rate 

and statistical power of the CQR-MR model. Two near-identical methods were used in 

these simulations. The first method tested for an association between the 

autorefraction-measured refractive error and the genotype of a simulated bi-allelic 
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SNP with no marginal effect. The second method evaluated type-1 error rate after 

permuting phenotype values amongst individuals in the sample and testing for an 

association between the simulated phenotype and the raw (actual) SNP genotypes of 

participants. Details are given below. 

 
Creating simulated SNPs. Biallelic SNPs with MAF ranging from 0.05 to 0.45 were 

simulated from a binomial distribution and assigned for all 72,985 participants. 

Association between the simulated genotype and (actual) refractive error was 

assessed using the CQR-MR framework, as shown in Figure 4.1. The procedure was 

repeated 10,000 times, and the type-1 error was calculated as the proportion of SNPs 

with p < 0.05 for each of the three MR coefficients (0, 1 and 2).  

 
Creating simulated phenotypes. In total, the observed avMSE refractive error 

phenotype was permuted 100 times using all 72,985 individuals in the sample. Using 

the simulated phenotype, the association with each of the 146 genetic variants was 

assessed by using CQR-MR framework. The type-1 error rate was calculated as the 

proportion of SNPs with p < 0.05 for each of the MR coefficients (0, 1 and 2). 

 
The relative improvement in statistical power was assessed by varying the sample size. 

A random sample of 10,000 to 70,000 individuals, in steps of 10,000, was selected from 

the full sample of 72,985 participants. In each case, an association between the 146 

genetic variants and avMSE was examined. This procedure was repeated 20 times. 

Statistical power was calculated as the proportion of replicates in which the null 

hypothesis of no association was rejected at α = 0.05. As a result of this sampling 

procedure, power evaluations were based on a total of 149 x 7 x 20 = 20,860 tests. 

When assessing statistical power and type-1 error rate, the same covariates were 

included as in the real data analysis.  
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Figure 4.1. Conditional quantile regression (CQR) and meta-regression (MR) analysis 

framework used to assess the extent of effect size heterogeneity across quantiles of the 

refractive error distribution. The standard approach of ordinary least-squares (OLS) linear 

regression, assumes that the SNP effect size does not vary from person to person in the sample 

under consideration. Therefore, the effect size is estimated by calculating the change in 

refractive error with respect to the number of minor alleles (dashed red line in the top-left 

graph). A CQR relaxes the assumption of OLS and allows for SNP effects to vary across the 

outcome distribution. Similar to OLS, the effect size of a SNP is represented by the slope of the 

quantile regression line (demonstrated in the top-left graph, the nine blue lines correspond to 

quantile regression fits for a range of quantiles). A hypothetical example for the rs12193446 

variant is shown, where the effect size for individuals varies depending on the quantile of the 

trait distribution that they are found in. The middle-right graph provides a better 

representation of the differences in the estimated SNP effects (black circles with error bars 

showing 95% CI). The blue horizontal line in the middle-right graph shows a constant SNP effect 

estimated by OLS and the dotted lines indicate 95% CI. To quantitatively assess the extent of 

effect size heterogeneity across different quantiles, an MR can be used (solid red line in the 

bottom-left graph, with dashed red lines showing 95% CI). 
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4.2.5. Assessment of the optimal number of quantiles using simulations 

The selection of quantiles to be used in CQR-MR analysis is arbitrary. Therefore, 

additional simulations were performed to find the optimal set of quantiles that could 

be used to model effect size heterogeneity for refractive error-associated variants. I 

explored four different sets of quantiles: a) 19 quantiles, q = 0.05 to 0.95 in steps of 

0.05; b) 10 quantiles, q = 0.05 to 0.95 in steps of 0.1; c) 9 quantiles, q = 0.1 to 0.9 in 

steps of 0.1; d) 5 quantiles, q = 0.1 to 0.9 in steps of 0.2. The best set was selected 

based on type-1 error rate and statistical power, which were calculated in the same 

manner as described in section 4.2.4. More specifically, the model that showed the 

lowest rate of inflation of false-positive findings, while maintaining relatively high 

statistical power was preferred. For simplicity, the rest of the chapter describes 

different CQR-MR models in terms of the number of quantiles included in the CQR, i.e. 

5, 9, 10 or 19.  

 
4.2.6. Correction for the inflation of the false-positive findings 

The simulations described in section 4.2.4. revealed inflation of the test statistics for 

all three MR coefficients. To adjust for the inflation of type-1 error rate, correction 

factors for each component (λ0, λ1 and λ2) were calculated in a manner similar to 

genomic control used in GWAS (Devlin and Roeder, 1999). Correction factors for p-

values and confidence intervals for each term (0, 1 and 2) were calculated using the 

results from the phenotype permutation analyses. The adjustment was achieved with 

the equation: 𝜒
adjusted
2  = 𝜒

observed
2  / λ, where λ was calculated as the observed median 

chi-squared statistic from the simulations divided by the expected median chi-squared 

statistic with one degree of freedom (Devlin and Roeder, 1999). Given that 𝑍-statistic 

= /s.e.unadjusted and X2-statistic = Z2, corrected MR confidence intervals were calculated 

by adjusting standard errors: s.e.adjusted = | /√𝑋𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2 |. 

 
4.2.7. Polygenic risk score effect in different educational attainment strata 

The involvement of gene-environment interaction was evaluated by using a polygenic 

risk score (PRS). The PRS was created by counting the number of risk alleles (0, 1 or 2 

for a biallelic SNP) carried by each participant. The PRS did not take into account SNP 

effect sizes to avoid bias due to using the weights obtained from and applied in UK 

Biobank. An environmental exposure factor representing ‘age completed full-time 
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education’ (EduYears) was selected. Individuals with a university degree were not 

asked the age they completed full-time education. Hence, I assumed that these 

individuals had completed their education at the age of 21 years. To reduce 

heterogeneity that arises because some ‘age completed full-time education’ 

categories had low counts, adjacent categories were merged, resulting in four final 

EduYears categories: 13-15, 16, 17-20 and 21-26 years.  

 
 

4.3. Results  
 
4.3.1. Analysis of variants associated with refractive error using ordinary least 
squares 
 
First, a standard approach of testing SNP effects under the assumption of constant 

effect sizes was carried out using ordinary least square regression (Appendix B). Among 

the variants tested, rs12193446 near LAMA2 gene showed the strongest effect, which 

was associated with a -0.43 D more negative refractive error (95% CI -0.39 to -0.48, p 

= 1.1 x 10-77). 

 
4.3.2.   Assessment of type-1 error rate and statistical power using simulations 

The performance of CQR-MR framework was examined by assessing the type-1 error 

and power for all three terms estimated in the MR while varying the number of 

quantiles. The main findings were: first, the CQR-MR model showed systematic 

inflation of the type-1 error rate for the 0, 1 and 2 components (Appendix C top 

panel). Second, the MAF did change the type-1 error rate of CQR-MR (Appendix C 

middle panel). Third, the model that considered 5 quantiles was overly conservative 

(Appendix C bottom panel). Adjustment for the observed systematic bias is described 

in section 4.3.3.  

 
Simulations showed that the number of quantiles considered in the CQR-MR model 

had a substantial contribution towards determining the type-1 error rate. For example, 

the inflation of false-positive findings for the CQR-MR intercept term (0) became 

progressively worse when the outcome distribution was split into a greater number of 

quantiles. The type-1 error rate for the model with 19 quantiles was approximately 

0.30, while the model with 10 quantiles had a type-1 error rate of 0.16. Inflation of 

false-positive findings, slightly above the expected (α = 0.05; the correct type-1 error 
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rate), was observed for the model with only 5 quantiles. A similar pattern of inflation 

was observed for 1 and 2 coefficients. The statistical power was very similar across 

the CQR-MR models that considered 9, 10 or 19 quantiles, while the model with 5 

quantiles showed reduced power.  

 
Thus, in summary, simulations provided evidence that MR leads to increased type-1 

error rate for the intercept (0), linear (1) and quadratic components (2). The error 

also depends on the number of quantiles included and is elevated when the number 

of quantiles considered increases. The statistical power for models with 9, 10 or 19 

quantiles was similar. The model that included 9 quantiles (0.1 to 0.9 in steps of 0.1) 

was considered to be the optimal model and was selected for refractive error and 

height CQR analyses.  

 
4.3.3.  Correction for the inflation of the false-positive findings 

As discussed in section 4.3.2., the CQR-MR analysis led to inflated type-1 error rate for 

the intercept, linear and quadratic components. To correct for this source of bias, p-

values and confidence intervals were adjusted using λ coefficients of 1.66, 1.23 and 

1.10, respectively (i.e. observed Chi-squared statistics were divided by the relevant λ 

coefficient, followed by recalculation of confidence intervals and p-values using 

adjusted Chi-squared statistic). Correction factors were obtained during phenotype 

simulation. 

 
4.3.4.  Widespread evidence of non-uniform refractive error-associated variant 

effects sizes  

The majority of the 146 genetic variants examined had an inverse-U shaped effect size 

profiles (Figure 4.2. and Appendix D). Individuals near the centre of the distribution 

(i.e. emmetropic participants) displayed relatively small effect sizes for refractive error-

associated variants, while the individuals at the extremes of the distribution displayed 

greater effects. For example, the strongest effect size heterogeneity was observed for 

rs12193446 (LAMA2). The effect size varied from -0.20 D (95% CI -0.18 to -0.23) in 

emmetropes to -0.89 D (95% CI -0.71 to -1.07) for highly-myopic participants (Figure 

4.1). However, there were exceptions to the inverse-U shape profile. For example, 

rs1649068 (BICC1) and rs9388766 (L3MBTL3) showed non-constant, almost linear 

changes in effect sizes (Appendix D). In addition, SNPs such as rs9680365 (GRIK1) and 
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rs7449443 (FLJ16171-DRD1) did not show evidence of effect size heterogeneity (i.e. 

the estimates across the quantiles were in the range of those expected under the 

assumption of uniform effect size across the sample distribution) (Figure 4.2. and 

Appendix D). 

 
4.3.5.      Quantitative analysis of non-uniform effects using MR 

Meta-regression was used to quantitatively assess the extent of heterogeneity across 

the refractive error-associated variants. A Bonferroni adjusted p-value threshold of 

0.05/(3 x 146) = 1.1 x 10-4 (where 3 represents the number of components estimated 

and 146 is the number of SNPs tested) was used to account for multiple comparisons. 

In total, 66 (45%) of genetic variants displayed significant non-uniform distribution of 

effects, i.e. p < 1.1 x 10-4 for the 1 (linear) or 2 (quadratic) model coefficients (Table 

4.1., Appendix D and Appendix E). This suggests that 45% of tested genetic variants 

could potentially be involved in either gene-gene or gene-environment interaction. On 

the other hand, 18 (12%) of genetic variants did not show evidence of at least 

nominally significant effect size heterogeneity (i.e. 1 component and 2 component, 

p > 0.05).  
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Figure 4.2. Example of genetic effect size heterogeneity for variants associated with 

refractive error. The solid black line represents genetic effect size estimates obtained using 

CQR, and the shaded grey region represents their 95% confidence intervals. The solid blue line 

shows the estimate obtained from standard OLS, and it’s corresponding 95% confidence 

intervals are depicted by the dashed blue lines. The solid red line represents MR estimates, 

and the dashed red lines correspond to its 95% confidence interval. 
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Table 4.1. Summary for top 10 genetic variants showing the strongest evidence of 
association with refractive error according to conditional quantile regression – meta-
regression (CQR-MR). Results for confidence intervals and p-values are provided after 
correcting for the inflated type I error rate of MR.  

Abbreviations: SNP: single nucleotide polymorphism, CHR: chromosome, BP: base pair, EA: 

effect allele, CI: confidence interval, 0: meta-regression intercept effect size in dioptres per 

copy of the risk allele, 1: meta-regression coefficients for the linear term and 2: meta-

regression coefficients for the quadratic term. 

 

 
4.3.6.  Interaction between the polygenic risk score and educational attainment 

I observed that the polygenic risk score showed a similar effect size distribution profile 

across quantiles as that observed for the majority of SNPs individually (Figure 4.3.). 

Moreover, the effect of the PRS varied across different educational attainment strata. 

A greater PRS effect size was observed for individuals from the myopic tail of refractive 

error distribution (quantiles < 0.4), and the effect was exacerbated with additional 

years spent in education. For example, a one standard deviation increase in PRS was 

associated with a -0.82 D (95% CI -0.73 to -0.90, p = 8.9 x 10-83) more negative refractive 

error in the lowest educational stratum (13-15 years) for individuals in refractive error 

quantile 0.1, while the effect in the highest education stratum was -1.11 D (95% CI -

1.02 to -1.18, p = 1.17 x 10-155). The difference in PRS effect across education strata 

could be as large as 0.57 D (at quantile 0.2).  

 
Similar to the analysis of individual SNPs, the PRS effect was smallest in emmetropes, 

and the difference associated with educational attainment was within a narrow range 

of -0.25 to -0.37 D for participants in quantile 0.6, irrespective of their level of 

education. Individuals in the hyperopic tail of the refractive error distribution 

(quantiles > 0.8) displayed a reverse relationship compared to myopes. Namely, the 

SNP Gene(s) 
0 component 1 component  2 component  

Beta [95% CI] P Beta [95% CI] P Beta [95% CI] P 

rs12193446 
BC035400 

LAMA2 
-1.130 [-1.272; -0.988] 8.07 x 10-55 2.995 [2.529; 3.461] 2.12 x 10-36 -2.363 [-2.765; -1.961] 1.19 x 10-30 

rs524952 
GOLGA8B 

GJD2 
-0.673 [-0.758; -0.588] 4.83 x 10-54 1.797 [1.534; 2.06] 7.47 x 10-41 -1.417 [-1.634; -1.200] 1.68 x 10-37 

rs7744813 KCNQ5 -0.543 [-0.631; -0.455] 7.24 x 10-34 1.402 [1.132; 1.672] 2.15 x 10-24 -1.092 [-1.314; -0.870] 5.75 x 10-22 

rs11602008 LRRC4C -0.669 [-0.79; -0.548] 2.60 x 10-27 1.612 [1.250; 1.974] 2.71 x 10-18 -1.131 [-1.421; -0.841] 2.25 x 10-14 

rs1550094 PRSS56 -0.521 [-0.624; -0.418] 4.77 x 10-23 1.441 [1.118; 1.764] 2.08 x 10-18 -1.142 [-1.409; -0.875] 4.90 x 10-17 

rs72621438 
SNORA51 

CA8 
-0.441 [-0.530; -0.352] 2.06 x 10-22 1.089 [0.817; 1.361] 4.46 x 10-15 -0.821 [-1.044; -0.598] 5.85 x 10-13 

rs2326823 BC035400 -0.680 [-0.830; -0.530] 6.17 x 10-19 1.815 [1.341; 2.289] 6.45 x 10-14 -1.429 [-1.831; -1.027] 3.09 x 10-12 

rs10500355 RBFOX1 -0.400 [-0.490; -0.310] 3.63 x 10-18 1.011 [0.734; 1.288] 8.39 x 10-13 -0.775 [-1.003; -0.547] 2.76 x 10-11 

rs6495367 RASGRF1 -0.374 [-0.459; -0.289] 7.17 x 10-18 1.009 [0.747; 1.271] 4.38 x 10-14 -0.833 [-1.049; -0.617] 3.89 x 10-14 

rs2573210 PRSS56 -0.501 [-0.621; -0.381] 2.91 x 10-16 1.414 [1.037; 1.791] 1.94 x 10-13 -1.121 [-1.434; -0.808] 2.26 x 10-12 
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effect of PRS was smaller in participants with greater educational attainment. For 

example, a one standard deviation reduction in PRS was associated with a +0.62 D (95% 

CI +0.55 to +0.69) effect in the lowest education stratum, yet only a +0.41 D (95% CI 

+0.38 to +0.44) effect in the highest education stratum (p = 6.55 x 10-68 and p = 9.53 x 

10-193, respectively) for hyperopic participants in quantile 0.9.  

 
4.3.7.  Quantitative analysis of GIANT Consortium variants associated with height  

In addition to performing CQR for genetic variants associated with refractive error, I 

performed the same set of analyses for height associated SNPs. Given the limited 

evidence regarding the involvement of GxG and GxE for height, this trait was used to 

illustrate the difference in effect size distribution. The standard analysis of marginal 

SNP effect revealed rs143384 located near the GDF5 gene to have the largest effect 

size and the strongest association with height (effect size = +0.64 cm per copy of the 

risk allele, 95% CI 0.57 to 0.70, p = 2.14 x 10-80). In the CQR analysis, the majority of 

height-associated variants did not show evidence of effect size heterogeneity across 

quantiles, i.e. in marked contrast to the results observed for refractive error (Appendix 

F). In cases where there was a deviation from the estimates obtained using OLS, the 

strongest effect was found at either quantile 0.05 (e.g. CENPO variant rs2278483 and 

STAU1 variant rs17450430) or quantile 0.95 (e.g. HHIP variant rs1812175 and FAM46A 

variant rs310421). Appendix G provides the full results for height variants estimated 

using OLS, while Appendix H provides MR estimates. 

 
Permutation-based correction to control the type-1 error rate was performed for 

height. In total, after correction for the inflated type-1 error rate, 53% of the GIANT 

Consortium genetic variants displayed a marginal association with height (i.e. p < 

0.05/(3 x 148) = 3.34 x 10-4 for MR intercept 0). The largest effect was observed for 

rs143384 located near the GDF5 gene (0 = +0.53cm per copy of the risk allele, 95% CI 

0.45 to 0.62, p = 1.14 x 10-17). Not a single height associated variant displayed evidence 

of a non-uniform effect size across the sample distribution (p > 3.34 x 10-4 for 1 and 

2) (Appendix H).  
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Figure 4.3. The PRS effect size distribution across refractive error quantiles in different 

educational attainment strata. The difference in PRS effect size depending on the years spent 

in education is depicted with a coloured line. Error bars represent 95% confidence intervals.  

 

4.4. Discussion 

Approximately 88% of the 146 refractive error-associated variants tested in this 

chapter, showed evidence of effect size heterogeneity. The highly non-linear 

distribution of genetic effect sizes suggested that in certain individuals SNPs exerted 

up to 4-fold stronger effects (i.e. in myopes compared to emmetropes). This inter-

individual variation is hidden when a conventional approach of assessing SNP effects 

is used. 

 
Heterogeneity of SNP effects for refractive error-associated variants showed a high 

degree of non-linearity such that the strongest effects were found at the extremes of 

the sample outcome distribution, compared to emmetropes (i.e. those around 0.5 

quantile). Only a minor fraction of variants did not vary dramatically across quantiles, 

resulting in estimates that were similar to those expected under the assumption of 

constant effect across the distribution. I suggest that the process of emmetropization 
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could be responsible for such findings. Emmetropization maintains a sharp retinal 

image by controlling the rate of axial eye elongation during infancy via a fine-tuned 

visual feedback loop (Atkinson et al., 2000). I speculate that it might have a protective 

role against myopia- or hyperopia-predisposing effects of genetic risk variants. For 

example, it has been suggested that emmetropization has a limit to the amount of axial 

elongation that it can compensate for (Mutti et al., 2012). Therefore, for those 

individuals whose limit is surpassed, genetic risk factors could lead to greater effects. 

To test the hypothesis that emmetropization is directly responsible for the observed 

heterogeneity of effect sizes would require studies in animal models. Discovery of 

genetic determinants leading to susceptibility of visually-induced myopia could be the 

first step in this direction (Huang et al., 2019).  

 
Previous studies that examined the role of GxE interactions in refractive error found 

only a few compelling examples (Chen et al., 2011b; Fan et al., 2014; Tkatchenko et al., 

2015; Fan et al., 2016).  No evidence of GxG interactions influencing changes in 

refractive error exists. Given the high degree of variance heterogenity observed in this 

study, a signature that could arise due to the involvement of GxE and GxG, it is likely 

that interaction effects influencing the change in refractive error are widespread. To 

show that this feature is not an inherent property of genetic variants, a comparison 

with the phenotype height was made. Far fewer variants displayed effect size 

heterogeneity suggestive of GxE or GxE  (6% for height vs 88% for refractive error had 

at least nominal evidence of non-uniform effect sizes). Future studies could focus on 

the distribution of genetic effect sizes across quantiles for axial eye length, given that 

both height and axial length display some genetic overlap (genetic correlation rg = 0.1 

to 0.2) (Zhang et al., 2011a; Guggenheim et al., 2013b). 

 
Analysis of PRS effects reinforced the results obtained for the individual SNPs. Highly 

myopic and highly hyperopic participants were not protected by emmetropization 

against the genetic risk burden, as was evident from the substantially larger effect sizes 

in these individuals compared to emmetropes. There was evidence that educational 

attainment further modified the effect of genetic risk factors on the phenotype. 

Individuals who spent more time in education displayed larger PRS effects. 
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The CQR-MR framework used to quantify the difference in genetic effects across 

individuals builds upon a statistical test used to assess variance heterogeneity across 

genotypes (Paré et al., 2010; Struchalin et al., 2010; Sun et al., 2013; Zhang et al., 2016). 

As discussed in Chapter 3, the explanation for this phenomenon is not limited to GxE 

and GxG interactions and can extend to include other biological mechanisms. For 

example, parent-of-origin effects, where the effect size of a locus depends on which 

parent transmitted the effect allele, are expected to contribute towards the increased 

variance heterogeneity in heterozygous individuals (Struchalin et al., 2010). In 

addition, variance heterogeneity might arise due to indirect genetic effects, which 

influence the phenotype through untransmitted alleles in parents (Kong et al., 2018). 

For example, the risk alleles inherited from the parent could show an interaction with 

untransmitted parental alleles if the environment to which a child is exposed to is 

influenced by the parent’s genotype.  Another situation in which variance 

heterogeneity can arise is when multiple closely located genotypes are correlated as a 

consequence of being in linkage disequilibrium with the causal variant (Wood et al., 

2014; Forsberg et al., 2015; Ek et al., 2018). This is a well-known problem, which makes 

the causal inference in GWAS analyses particularly difficult (Wray, 2005; Bush and 

Moore, 2012). It is also worth bearing in mind that complex traits are influenced by a 

multitude of environmental and genetic risk factors. Therefore, this could explain why 

the non-uniform effect size heterogeneity persisted after PRS was stratified according 

to different educational attainment groups. 

 
In summary, the findings in this chapter suggest that the majority of currently-known 

refractive error-associated variants exert varying effects in different individuals. A 

simple explanation for observed inverted-U profile among the examined genetic 

variants is that they are involved in GxE or GxG interactions. For some variants, effects 

could vary by as much as 4-fold. There was a stark difference in the magnitude of effect 

size between high-myopes/high-hyperopes and emmetropes. This inter-individual 

variation is not captured by using standard methods, thus limiting our understanding 

of risks associated with developing myopia. Future studies should focus on identifying 

the driving mechanisms behind such non-uniform distribution of effects across 

quantiles. 
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Chapter 5 

Prediction of refractive error using gene-environment 

interactions 
 
5.1. Introduction 

One of the aims of quantitative genetics is to make an accurate prediction of  

phenotypes. To accomplish this, various methods have been developed in the context 

of animal and plant breeding using raw genotype information (Henderson, 1975; 

Meuwissen et al., 2001; Gianola et al., 2006; Gianola and van Kaam, 2008; Habier et 

al., 2011; Gianola, 2013; Hickey et al., 2013; Meuwissen et al., 2014; Morota et al., 

2014; MacLeod et al., 2016). Most of these methods have been based on a best linear 

unbiased prediction (BLUP) framework (Henderson, 1975). For example, Gianola et al. 

described various implementations of Bayesian linear regression that differ in the 

priors adopted, while otherwise sharing the same sampling model (Gianola, 2013). 

Typically, the priors reflect one’s beliefs about the distribution of SNP effects. 

However, these methods are computationally intensive. Hence, several improvements 

that utilize summary statistics from GWAS have been developed (Vilhjálmsson et al., 

2015; Robinson et al., 2017; Turley et al., 2018).  

 
Recent studies have demonstrated that improved prediction accuracy could be 

achieved by a more advanced modelling of the underlying genetic architecture of a 

trait (Vilhjálmsson et al., 2015; Turley et al., 2018; Chung et al., 2019; Wainschtein et 

al., 2019). There is evidence that accounting for linkage disequilibrium (LD) by 

incorporating information from a reference sample, considering the impact of rare 

variants, and analysing the strength of genetic correlation across multiple traits leads 

to better prediction of the phenotype. However, despite sophisticated statistical 

modelling strategies, in many situations’, prediction accuracy has remained far from 

being clinically relevant. For example, Vilhjálmsson et al. compared LD adjusted 
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polygenic risk scores to those obtained by using the pruning and thresholding method 

(P + T) (Vilhjálmsson et al., 2015). Although accounting for LD resulted in 20% more 

accurate prediction compared to (P + T) for schizophrenia, the final Nagelkerke 

prediction R2 was only 0.25. Similarly, limited prediction accuracy was obtained for 

multiple sclerosis, breast cancer, and type 2 diabetes phenotypes. Another 

shortcoming of current genomic prediction methods is that they perform poorly in 

non-European samples (Martin et al., 2017). Differences in LD structure or 

heterogeneity of causal genetic variants across diverse populations are thought to be 

responsible for such underperformance of currently available genomic prediction 

methods.  

 
Dudbridge provided a formula to calculate predictive accuracy of polygenic risk scores 

based on the assumption that narrow-sense heritability of a trait provides an upper 

bound estimate of how good a prediction based on genetic information can get 

(Dudbridge, 2013). However, a recent study suggested that accuracy of prediction 

could be higher than the estimate of narrow-sense heritability by considering other 

sources of variation such as indirect genetic effects (e.g. the environment that parents 

create for their children) (Kong et al., 2018). Some have hypothesized that taking into 

account gene-environment interaction effects could provide better targeted screening 

or intervention (Klengel and Binder, 2013; Chatterjee et al., 2016; McAllister et al., 

2017). Motivated by this idea, I sought to find out whether a better prediction of 

refractive error could be achieved by considering gene-environment interaction 

effects.  

 

5.2. Methods 
 

5.2.1.       Sample and SNP quality control 

A sample of 72,985 unrelated, white-British participants with autorefraction-measured 

refractive error were studied. The selection of this sample is outlined in Section 1.4.3.  

 
As the purpose of this study was to determine whether including gene-environment 

interaction effects would improve genomic prediction, only high-confidence variants 

were considered. Analyses were restricted to directly genotyped variants with minor 

allele frequency (MAF) > 0.05, missing genotype rate ≤ 0.01, Hardy-Weinberg 
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equilibrium < 1 x 10-6 and ‘rs’ variant ID prefix. In total, 308,735 SNPs were retained 

and selected to test for association with refractive error. 

 
5.2.2.       Cross-validation for refractive error prediction 

To avoid bias due to overfitting and to obtain reliable prediction estimates, I performed 

20-fold cross-validation. In each fold, SNP associations with refractive error 

measurement were estimated in 95% of individuals (training sample, N = 69,336), 

while refractive error prediction was made in a 5% left-out sample (testing sample, N 

= 3,649).  

 
5.2.3.       Genome-wide association analysis for marginal and interaction SNP effects 

PLINK (Purcell et al., 2007) was used to estimate SNP effects under an additive genetic 

model. The following linear regression was fitted to obtain marginal SNP effects: 

 

 𝑅𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =  𝑆𝑁𝑃 + 𝐴𝑔𝑒 + 𝑆𝑒𝑥 + 𝐴𝑟𝑟𝑎𝑦 + 𝑃𝐶1 + 𝑃𝐶2 … 𝑃𝐶10               (𝐸𝑞. 1)                       

 

Where, 𝑆𝑁𝑃 corresponds to the numeric count of minor alleles carried by a participant 

(0, 1 or 2) , 𝐴𝑟𝑟𝑎𝑦 is a binary variable indicating if a participant was genotyped on the 

UK BiLEVE Axiom array or the UK Biobank Axiom Array (Bycroft et al., 2018) and 𝑃𝐶1 −

𝑃𝐶10 are the first ten principal components.  

 
University degree status was considered as an environmental risk factor for refractive 

error and was used to estimate gene-environment interaction effects with the 

following linear regression model: 

𝑅𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =  𝑆𝑁𝑃 + 𝑈𝑛𝑖𝐸𝑑𝑢 + 𝑆𝑁𝑃 × 𝑈𝑛𝑖𝐸𝑑𝑢 + 

                                                          + 𝐴𝑔𝑒 + 𝑆𝑒𝑥 + 𝐴𝑟𝑟𝑎𝑦 + 𝑃𝐶1 + 𝑃𝐶2 + ⋯ 𝑃𝐶10        (Eq. 2) 

Where, 𝑈𝑛𝑖𝐸𝑑𝑢 corresponds to education coded as 0 if an individual did not have a 

university degree and 1 otherwise, and 𝑆𝑁𝑃 × 𝑈𝑛𝑖𝐸𝑑𝑢 corresponds to the gene-

environment interaction parameter.  

 
5.2.4.       Selection of SNPs for construction of polygenic risk scores 

Based on the GWAS summary statistics obtained after fitting Eq. 1 and Eq. 2, genetic 

variants were stratified according to their marginal SNP effect p-value threshold: 1 x 

10-3, 5 x 10-3, 1 x 10-4, 5 x 10-4, 1 x 10-5, 5 x 10-5, 1 x 10-6, 5 x 10-6, 1 x 10-7, 5 x 10-7, 5 x 



 

100 

10-8. The rationale behind this selection strategy was made because this study aimed 

to investigate whether the inclusion of interactions in the prediction would improve 

the existing polygenic risk score approach. The set of independent variants for each of 

these 11 thresholds was obtained using an LD clumping threshold (r2) of 0.01 and 

physical distance threshold of 1Mb in PLINK (Purcell et al., 2007). Note that the number 

of SNPs at each threshold varied across cross-validation folds. 

 
5.2.5.       Evaluation of the performance of polygenic interaction scores 

The predictive performance of a standard polygenic risk score (PRS-G) and a polygenic 

interaction risk score (PRS-I) for refractive error were evaluated. The standard 

polygenic risk score was calculated with the following formula: 

                             𝑃𝑜𝑙𝑦𝑔𝑒𝑛𝑖𝑐 𝑟𝑖𝑠𝑘 𝑠𝑐𝑜𝑟𝑒 (𝑃𝑅𝑆 − 𝐺) = ∑ 𝑆𝑁𝑃𝑖  ×  𝑊𝑒𝑖𝑔ℎ𝑡𝑖

𝑀

𝑖=1

                  (𝐸𝑞. 3) 

Where, 𝑆𝑁𝑃𝑖  corresponds to the numeric count of minor alleles carried by a participant 

(0, 1 or 2) for the 𝑖 = 1, 2, 3, … 𝑀 variants and 𝑊𝑒𝑖𝑔ℎ𝑡𝑖 corresponds to the effect size 

of variant 𝑖 in the training sample. Similarly, I obtained a second polygenic risk score 

based on the gene-environment interaction effects: 

                  𝑃𝑜𝑙𝑦𝑔𝑒𝑛𝑖𝑐 𝑟𝑖𝑠𝑘 𝑠𝑐𝑜𝑟𝑒 (𝑃𝑅𝑆 − 𝐼) = ∑ 𝑆𝑁𝑃𝑖𝐸𝑖  ×  𝐺𝐸𝑊𝑒𝑖𝑔ℎ𝑡𝑖

𝑀

𝑖=1

                    (𝐸𝑞. 4) 

Where, 𝐺𝐸𝑊𝑒𝑖𝑔ℎ𝑡𝑖 corresponds to the gene-environment interaction effect size of 

variant 𝑖 and 𝑆𝑁𝑃𝑖𝐸𝑖 corresponds to the Hadamard product of a SNP matrix and a vector 

of an environmental factor for each participant as shown below: 

[
𝑆𝑁𝑃1 ⋯ 𝑆𝑁𝑃𝑀

⋮ ⋱ ⋮
𝑆𝑁𝑃𝑁 ⋯ 𝑆𝑁𝑃𝑁𝑀

]◦[
𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡1

⋮
𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑁

]= [
𝑆𝑁𝑃 × 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡1 ⋯ 𝑆𝑁𝑃 × 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑀

⋮ ⋱ ⋮
𝑆𝑁𝑃 × 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑁 ⋯ 𝑆𝑁𝑃 × 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑁𝑀

] 

Where, 𝑁 is the number of participants and 𝑀 is the number of SNPs. I refer to the 

polygenic risk score described in (𝐸𝑞. 3) as PRS-G and polygenic risk score described 

in (𝐸𝑞. 4) as PRS-I. An environmental risk score was calculated in the similar manner: 

                          𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑟𝑖𝑠𝑘 𝑠𝑐𝑜𝑟𝑒 = ∑ 𝑈𝑛𝑖𝐸𝑑𝑢 ×  𝑊𝑒𝑖𝑔ℎ𝑡                          (𝐸𝑞. 5) 
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Where, 𝑈𝑛𝑖𝐸𝑑𝑢 corresponds to education coded as 0 if an individual did not have a 

university degree and 1 otherwise and 𝑊𝑒𝑖𝑔ℎ𝑡 corresponds to the estimated effect of 

education in the training sample. I refer to the environmental risk score described 

in (𝐸𝑞. 5) as ERS. Therefore, the prediction of refractive error using gene-environment 

interaction effects is a sum of these three components:  

                            𝑅𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =  𝑃𝑅𝑆⎼𝐺 + 𝐸𝑅𝑆 + 𝑃𝑅𝑆⎼𝐼                                         (𝐸𝑞. 6)                       

Note that PRS-G, ERS and PRS-I were modelled as independent covariates in Eq. 6. As 

a sensitivity analysis, the performance of the following model was also evaluated: 

                        R𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =  𝑃𝑅𝑆⎼𝐺 + 𝐸𝑅𝑆 + (𝑃𝑅𝑆⎼𝐺 ×  𝐸𝑅𝑆)                         (𝐸𝑞. 7) 

I found negligible difference between the two models described by 𝐸𝑞. 6 and 𝐸𝑞. 7. In 

practice, it might be less time consuming to use the 𝐸𝑞. 7 model because gene-

environment interaction effects do not need to be estimated.  

 
To assess the variance explained by a PRS, the improvement in R2 was assessed for a 

model including the PRS term(s) relative to a baseline model that included only age 

and sex as covariates. 

 
5.2.6.      Using risk scores to differentiate between myopic and non-myopic 

individuals 

In addition to estimating the amount of phenotypic variance explained by PRS-I, I 

sought to find out whether PRS-I is useful in identifying a high-penetrance risk 

subgroup of individuals. To explore the predictive ability of PRS-I in successfully 

classifying high-myopic vs non-high-myopic individuals, I dichotomized autorefraction-

measured refractive error using a classification threshold of ≤ -6.00 D. Only SNPs 

attaining p < 5 x 10-4 were used to construct a polygenic score because in section 5.2.5 

this threshold achieved the best prediction of the phenotype. Predictive performance 

was assessed using area under the curve (AUC) measurement using the pROC (Robin 

et al., 2011) package in R. The comparison between the models was assessed using 

roc.test function, specifying 1,000 bootstrap replicates.  
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5.3.  Results 
 

5.3.1.      Predictive performance of polygenic scores 

PRS-G explained between 4.6% and 6.4% of the phenotypic variance in refractive error 

over and above that explained by age and sex, depending on the p-value threshold 

chosen for selecting variants. Optimal predictive performance was R2 = 6.4% (95% CI, 

6.1% - 6.7%) at a p-value threshold of p = 5 x 10-4 (Figure 5.1.). Thus, in accordance with 

prior studies (Carey et al., 2016; Mullins et al., 2016), considering more variants at less 

stringent association thresholds improved phenotype prediction until the noise to 

signal ratio became too large (e.g. p = 1 x 10-3). In other words, these results 

demonstrated that a more accurate prediction could be achieved by including not only 

genome-wide significant variants but less strongly-associated variants, too. In contrast, 

the amount of phenotypic variance explained by PRS-I was low (R2 = 0.3% to 0.6%) and 

remained relatively constant regardless of the p-value threshold. The highest R2 

observed was 0.63% (95% CI, 0.33% to 0.94%) at p = 5 x 10-7, while at the threshold p 

= 5 x 10-4 that showed the largest R2 for PRS-G, PRS-I explained only 0.38% (95% CI, 

0.17% to 0.61%) of the variance. The environmental predictor, ERS, explained 

approximately 2.6% (95% CI, 2.36% to 2.82%) of the variance. In a model where PRS-G 

and ERS were added as two separate covariates, prediction accuracy was increased to 

8.42% (95% CI, 8.00% to 8.84%), i.e. close to the level expected assuming their effects 

were independent (6.4% + 2.6% = 9.0%). Fitting the 𝐸𝑞. 6 model provided negligible 

improvement (R2 = 8.44%, 95% CI, 8.02% to 8.86%) and the model in 𝐸𝑞. 7 showed 

similarly negligible improvement (R2 = 8.48%, 95% CI, 8.05% to 8.89%).  
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Figure 5.1. Variance explained (R2) by different polygenic and environmental scores at 

different refractive error association thresholds. The estimates are averages across 20-folds 

of cross validation. The error bars represent 95% confidence intervals. Legend labels: PRS-G - 

polygenic marginal score, PRS-I - polygenic interaction score, ERS - environmental risk score. 

 
 
 
5.3.2.      Assessment of polygenic risk scores to differentiate between a case-control 

high-myopia phenotype 

The average number of high-myopic (≤ -6.00 D) individuals across cross-validations was 

137 ± 13.6. Figure 5.2. shows a representative example AUC from one random cross-

validation for different classification models tested. Full results for all cross-validations 

are presented in Appendix I. The average predictive performance across 20-fold cross-

validations of PRS-G was 0.68 (95% CI 0.63 to 0.72), which was above the level 

expected by chance. Inclusion of ERS resulted in more accurate classification of high-

myopes vs non-high-myopes (AUC 0.71, 95% CI 0.66 to 0.75).  A comparison between 

the two models (PRS-G and PRS-G + ERS) using roc.test function showed that in 17 out 

of 20 cross-validations, addition of ERS significantly improved predictive performance. 

Adding PRS-I in the model made, on average, prediction slightly worse (AUC 0.69, 95% 
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CI 0.64-0.73). Only in 10 out of 20 cross-validation sets inclusion of PRS-I showed 

improved prediction. 

 

Figure 5.2. Predictive performance of AUC curves for distinguishing between high-myopic 

and non-high-myopic individuals. An example is given for one of the cross-validations. 

Numbers in brackets represent 95% confidence intervals. Legend labels: PRS-G - polygenic 

marginal score, PRS-I - polygenic interaction score, ERS - environmental risk score. 

 

 

5.4.  Discussion 

There is immense interest in using genetic and environmental risk factors to improve 

targeted screening or intervention. Prior research in refractive error prediction focused 

on utilizing marginal SNP effects (Kiefer et al., 2013; Verhoeven et al., 2013; 

Guggenheim et al., 2017; Ghorbani Mojarrad et al., 2018; Tedja et al., 2018; Chen et 

al., 2019). Despite increasing sample sizes leading to more accurate estimation of SNP 

effects and an increasing number of genetic variants implicated in refractive error 

development, genetic prediction currently remains too poor to be clinically useful. 

Given that a causal role of education on refractive error development has been 

described (Mountjoy et al., 2018), this study aimed to investigate the contribution of 

gene-environment interaction effects towards the prediction of refractive error. The 

existing literature lacks a consensus regarding the optimal approach to model the joint 
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effects of genetic markers and environmental exposures. Here, I focused on a natural 

extension of the standard polygenic risk score model. 

 
It is common in human genetics to consider several association thresholds when 

constructing polygenic risk scores (Genetics of personality Consortium, 2015; Carey et 

al., 2016; Mullins et al., 2016). An explanation for this is that some genetic variants that 

do not reach genome-wide significance could be informative in making predictions. 

Accordingly, I found that less stringent thresholds such as P = 5 x 10-4 provided a better 

prediction of refractive error compared to genome-wide significant SNPs only. The 

reason for this phenomenon is that current GWAS sample sizes are insufficient to 

decisively detect all variants that influence a trait (Genetics of personality Consortium, 

2015; Carey et al., 2016). Hence, some genetic variants that do not pass the genome-

wide significance threshold are nevertheless informative in making predictions.  

 
When the standard polygenic score (PRS-G) was used to predict refractive error, it 

explained up to 6.4% of the trait variance (Figure 5.1.). Other studies have reported 

similar estimates. For example, 2.6% of refractive error variance was explained in 15 

year olds from the ALSPAC cohort (Ghorbani Mojarrad et al., 2018), 4.3% in children 

from Generation R cohort (Enthoven et al., 2019) and 7.8% was obtained by 

Consortium for refractive error and myopia (Tedja et al., 2018). In contrast, I observed 

that a polygenic risk score created using SNP x education effects (PRS-I) showed a 

consistently poor performance irrespective of p-value threshold. No more than 0.6% 

of the variance in refractive error was explained by the PRS-I, and when added to PRS-

G and ERS in the model, PRS-I did not improve prediction. This suggests that essentially 

all of the variance of PRS-I is already captured by PRS-G and ERS. This could indicate 

that future attempts to use a similar approach of incorporating gene-environment 

interaction effects for prediction will have limited returns as a polygenic risk score 

constructed using marginal SNP effects will suffice.  

 
Alternative methods have been used previously to study gene-environment 

interaction effects in prediction. For example, Mullins et al. and other research groups 

have used the model (Eq. 7): PRS-G + ERS + (PRS-G x ERS) (Mullins et al., 2016; Abadi 

et al., 2017; Enthoven et al., 2019), where the direct interaction between an 

environmental risk exposure and a polygenic risk score is tested without the need to 
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choose weights for the interaction effects. A comparison of this model (Eq. 7) with the 

empirically determined model (Eq. 6) suggested they were similar. Alternatively, 

Acosta-Pech et al. used an extension of genomic BLUP (GBLUP) to incorporate 

interactions in a linear mixed model framework (Acosta-Pech et al., 2017).  

 
One of the goals of studying gene-environment interactions is to identify individuals 

who are at high risk of developing a severe level of the disease (in case of refractive 

error - at risk of becoming highly myopic). One step in that direction included a study 

that investigated the increase in the risk of developing five common diseases, including 

coronary artery disease and type 2 diabetes (Khera et al., 2018). Their method involved 

stratification of PRS-G into percentiles and examining the change in odds ratios across 

the stratified PRS-G groups. The authors concluded that individuals at the top 0.5% of 

the distribution were at greater odds of developing a disease compared to other 

individuals within the top 20% of the distribution. A recent study explored the 

predictive capability of PRS-G x ERS for myopia (Enthoven et al., 2019). Weak evidence 

of discerning between myopic and non-myopic individuals with the help of polygenic 

and environmental risk score interaction effect was observed. Motivated by this 

example, I aimed to examine whether the inclusion of PRS-I could improve the 

differentiation between the non-high-myopes and high-myopes in UK Biobank. I found 

no evidence to suggest that by considering GxE effects improved prediction beyond 

that using both PRS-G and ERS. The difference between findings discussed in this 

chapter and those reported in Enthoven et al. could be due to the sample sizes used. 

The current study had greater power to detect the predictive ability of GxE. Another 

reason for differing results could be due to a different classification of myopia status. 

In the Enthoven et al. study, myopia was defined as ≤ -0.5 D, whereas in my study, high 

myopia was defined as ≤ -6.00 D because the goal was to see if GxE can help to identify 

a subgroup of high-risk individuals. However, when I examined the predictive capability 

of PRS-I using ≤ -0.5 D as the phenotype classification threshold, I observed much 

worse prediction of case-control myopia phenotype: The AUC for PRS-G alone was 0.62 

(95% CI 0.6 to 0.64), while the AUC for PRS-G + ERS + PRS-I was 0.64 (95% CI 0.62 to 

0.66). 

 
An explanation for why inclusion of PRS-I does not lead to an improved prediction 

could be due to the opposite direction of effect for PRS-I compared to PRS-G. This is an 
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example of a qualitative interaction (discussed in Chapter 1 section X.Y.Z.), where two 

risk factors exert their effects in the opposite direction resulting in a joint effect that is 

closer to zero (i.e. in the current context, no change in refractive error). However, the 

current study was underpowered to answer this question definitively. 

 
There are several limitations to using environmental exposures and therefore, gene-

environment interaction effects as a way to improve phenotypic prediction. First, for 

some environmental exposures, it might not be possible to make predictions in 

individuals whose risk factor exposure profile differs from the reference (model 

training) sample. In the case of education, for example, my analyses were restricted to 

a subset of individuals who self-identified as white-British individuals because these 

individuals were more likely to have experienced similar academic environments. 

Including individuals from other countries would not have been appropriate because 

education systems in those countries may differ from that in the UK. Second, lack of 

information about past or - especially - future environmental risk factor exposure 

would limit the applicability of such an approach.  Furthermore, misclassification or 

imprecise measurement of exposures could impede on the ability to make predictions. 

In such situations, more noise could be introduced, leaving PRS-G as the best approach.  

 
In summary, these results suggest that including gene-environment interactions is 

unlikely to lead to a major improvement in prediction of refractive error. This 

conclusion is in line with previous theoretical work (Aschard et al., 2012a), although 

new evidence suggests that rare variants could have a substantial contribution towards 

phenotypic variance influenced by GxE (Kerin and Marchini, 2019). Although PRS-I was 

capable of explaining some of the variation in refractive error, this information was not 

independent of PRS-G, and therefore had limited potential to improve prediction over 

that obtained using the standard PRS-G approach. 
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Chapter 6 

An exploratory analysis of gene-gene interaction 

involvement in refractive error development using 

multifactor dimensionality reduction 

 
6.1. Introduction 

Multifactor dimensionality reduction (MDR) is a non-parametric approach developed 

to identify a set of SNPs that best describe the phenotype (Ritchie et al., 2001; 

Motsinger and Ritchie, 2006). To this day it remains a popular approach for discovering 

gene-gene interactions (Kaur and Kumari, 2018; Kim et al., 2019; Yang et al., 2019) and 

has provided valuable biological insight for a wide range of traits including breast 

cancer (Ritchie et al., 2001), atrial fibrillation (Tsai et al., 2004), myocardial infarction 

(Coffey et al., 2004), asthma (Su et al., 2012), nicotine dependence (Xu et al., 2014) and 

coronary artery disease (Hou et al., 2019). The key idea of MDR is to reduce a high-

dimensional multi-locus model into two groups – a high-risk group and a low risk group 

as shown in Figure 6.1. The classification into different groups was initially based on 

the ratio of affected individuals to unaffected individuals, for example if the ratio 

exceeded one, the multi-locus combination was assigned a high-risk status and vice 

versa (Ritchie et al., 2001; Motsinger and Ritchie, 2006). The performance of this binary 

classification can be evaluated using cross-validation; several metrics such as 

misclassification and prediction error are calculated and used to select the best multi-

locus model. 

 
Since the development of MDR to address classification questions involving high-

dimensional datasets such as genotype data, many additional features have been 

made available. These include extension of the model to accommodate quantitative 

traits (Lou et al., 2007; Gui et al., 2013; Yu et al., 2016; Jung et al., 2018), survival data 

(Gui et al., 2011b; Lee et al., 2012; Lee et al., 2015; Lee et al., 2018), family data (Martin 
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et al., 2006; Lou et al., 2008; Cattaert et al., 2010; Chen et al., 2014) and multiple 

phenotypes (Choi and Park, 2013; Xu et al., 2014; Kim et al., 2019). Gola et al. provide 

a comprehensive overview of MDR and MDR-based approaches, along with their 

strengths and limitations (Gola et al., 2016). Additional features that have made MDR 

a popular choice included development of methods that eliminate the necessity of 

selecting arbitrary thresholds to classify SNP combinations into high and low risk 

groups (Gui et al., 2011a; Jung et al., 2016; Jung et al., 2018) and the development of 

alternative modes of evaluating hypotheses (Mei et al., 2005; Hua et al., 2010; Winham 

et al., 2010; Niu et al., 2011; Park and Kim, 2017; Yang et al., 2017).  

 

In this chapter, I focus on the application of the unified model-based multifactor 

dimensionality reduction (UM-MDR) implementation of MDR (Yu et al., 2016). From a 

vast range of available MDR-based methods, this implementation of the original 

algorithm was selected due to several advantages it has over related approaches. First, 

UM-MDR can accommodate not only non-genetic covariates that describe individuals’ 

ethnicity or age but also adjust the model for marginal SNP effects. Hence, it could be 

used to identify a combination of SNPs that show evidence of a pure statistical 

interaction that is not driven by each variants’ independent (marginal) effect on 

refractive error. Second, UM-MDR can provide an estimate of an interaction effect size. 

Such information could potentially lead to a more detailed prediction of the phenotype 

in the future or provide a more comprehensive understanding of the importance of 

gene-gene interactions in refractive error. Third, many existing MDR- based 

approaches are computationally intensive due to their reliance on permutation to 

evaluate the significance of the multi-locus model (Pattin et al., 2009; Gola et al., 2016). 

UM-MDR circumvents this challenge by providing a more efficient semi-parametric 

correction procedure using a penalized regression framework for every multi-locus 

combination. This chapter investigated the role of gene-gene interactions in refractive 

error development, using UM-MDR. 
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Figure 6.1. Summary of the original MDR algorithm (copied from Ritchie et al., 2003). Step 1 

begins by splitting the data into a training and a testing set. One SNP combination from all 

possible combinations of SNPs is selected in step two and assigned to a low risk or a high-risk 

category for every possible genotype in step three. In step four, the ratio of affected individuals 

to unaffected individuals is calculated based on a specific classification rule. In step five, 

misclassification error of the model is estimated and in step six, the prediction error of the 

model is estimated using the left-out sample. Steps one through to six are repeated for each 

possible cross-validation fold. Bars represent hypothetical distributions of cases (left) and 

controls (right) with each multifactor combination. Dark-shaded cells represent high-risk 

genotype combinations, whereas light-shaded cells represent low-risk genotype combinations. 

White cells represent genotype combinations for which no data were observed. Note that this 

method is not limited for SNP-SNP interactions but can include n-dimensional classification, 

where n represents the number of interacting factors. 

 

 

6.2.  Methods 
 
6.2.1.        Analysis samples and phenotypes 

A discovery sample (N = 197,966) and a non-overlapping replication sample (N = 

73,174) of UK Biobank participants were studied. The selection of these two samples 

is outlined in Section 1.4.2. The optimized model described in Section 1.4.1. was used 

to derive the “AOSW-inferred refractive error” phenotype for participants in the 

discovery sample. Autorefraction-measured refractive error was available for 

participants in the replication sample. 
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6.2.2.       Description of UM-MDR algorithm 

A detailed description of UM-MDR algorithm is described in Yu et al. (Yu et al., 2016). 

In short, the classification step begins by assigning either a low or high-risk category to 

every multi-locus combination. For a quantitative trait such as AOSW-inferred 

refractive error, classification depends on the mean phenotype among individuals with 

a given multi-locus genotype. If this mean value is greater than the mean phenotype 

of all individuals in the sample, the corresponding multi-locus combination is defined 

as high-risk or vice versa. Instead of using cross-validation to select the best 

combination of SNPs, UM-MDR is built under a generalized linear model framework, 

where the effect of the low or high-risk category is estimated using maximum 

likelihood. A non-zero effect would suggest an interactive effect of the pair of SNPs on 

the response variable. Adjustment for marginal SNP effects can be achieved by 

considering individual SNPs as covariates, and in the presence of strong collinearity 

between the phenotype and SNPs, interaction effects can be estimated using ridge 

regression. In the modelling step, the significance of the multi-locus model is evaluated 

using a semi-parametric correction procedure. A small number of permutations are 

used to estimate the non-centrality parameter of a chi-square distribution, followed 

by the recalculation of the p-value.  

 
6.2.3.       SNP quality control and selection for further analyses 

Even though UM-MDR provides one of the most efficient ways to test the significance 

of multi-locus combinations, doing this on a genome-wide scale remains 

computationally intractable, currently. Hence, I implemented a stringent SNP filtering 

strategy before running UM-MDR. First, analyses were restricted to directly genotyped 

variants with MAF > 0.05, Hardy-Weinberg equilibrium test p > 1 x 10-6 and 100% 

genotyping rate. After quality control, 345,180 genetic variants were retained and used 

to run a genome-wide association study in PLINK (Purcell et al., 2007). Age, sex, 

genotyping array and the first ten principal components were used as covariates. A set 

of independent (“clumped”) variants were identified by setting r2 = 0.01 and physical 

distance of 1Mb using the PLINK --clump function (Purcell et al., 2007), resulting in a 

total of 8,877 independent SNPs with p < 0.05. The choice of p-value threshold (p < 5 x 

10-8) for further analyses was selected as described below. 
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6.2.4.       Selection of optimal p-value threshold 

Restricting the UM-MDR analysis to SNPs associated with the trait at genome-wide 

significance might lead to variants that show an interaction effect but that do not 

display marginal effects being missed. On the other hand, selecting variants that are 

nominally significant with the trait (p < 0.05) in a GWAS will lead to a higher statistical 

burden and longer computation times. No universal approach to select the optimal p-

value threshold for gene-gene interaction testing exists. Hence, to find a suitable 

balance between true positives and false negatives, I used cross-validation. From the 

discovery sample, a random subset of 180,000 individuals was selected. Model 

performance was evaluated using 5-fold cross-validation. The data were split into a 

training sample (N = 144,000, which was used to discover significant pairs of interacting 

SNPs) and a testing sample (N = 36,000, which was used to calculate the false discovery 

rate (FDR)). The FDR was defined as the proportion of variants identified in the training 

sample that replicated with at least nominal significance level (p < 0.05) in the testing 

sample. The threshold that had the lowest FDR was considered to be the most 

appropriate for further testing. For each p-threshold, I randomly selected 46 SNPs from 

amongst those showing evidence of association with AOSW-inferred refractive error 

(p < 0.05) in the training sample, so that the FDR was calculated over approximately 

1,000 SNP-SNP comparisons (46 x 46 / 2 = 1,058). The rationale behind such random 

SNP selection was as follows: if less stringent thresholds identify variants that interact 

in the absence of marginal SNP effects, then the FDR should remain similar to that 

observed for SNPs attaining the genome-wide significance threshold. Otherwise, 

selecting a random subset of SNPs would more likely pick up variants that do not 

interact, hence increasing the FDR. 

 
6.2.5.       Statistical analysis 

For the optimal p-value threshold (see Results), a total of 69 independent genetic 

variants were associated with the AOSW-inferred refractive error phenotype. These 69 

SNPs were analysed by UM-MDR, resulting in 2,346 SNP-SNP pairwise comparisons. As 

a sensitivity analysis, all comparisons were evaluated using standard linear regression. 

Associations were considered statistically robust if they passed a Bonferroni corrected 

threshold (p < 0.05/2,346 = 2.13 x 10-5) and were taken forward for testing in the 

replication sample (for the phenotype, autorefraction-measured refractive error). 
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Additionally, discovery and replication samples were analysed jointly by using p-value 

based fixed effects meta-analysis in METAL software (Willer et al., 2010).  

 
6.2.6.       Functional annotation and network analysis 

For each variant that showed evidence of involvement in an interaction, the nearest 

mapped gene was selected and used for gene-based downstream analyses. A list of 14 

significant genes identified by UM-MDR was selected for annotation. In order to obtain 

more detailed insight into the relationship between these genes and the phenotype, 

publicly-curated databases were used to explore the functional categories and 

molecular networks by which these interacting genes could be connected. Specifically, 

GeneMANIA (Montojo et al., 2014) was used to find additional genes that could belong 

to the same pathway or complex, possibly via genetic or physical interactions. To keep 

the interaction network tractable, analysis was restricted to a maximum of 50 resultant 

genes. The composite network was created using a query-dependent weighting 

scheme, where the weights were chosen using linear regression to maximize the 

number of interactions between the genes from my list. All genes returned by 

GeneMANIA were subject to further analyses, as follows. PANTHER (Thomas et al., 

2003) was used to identify enrichment of specific biological processes or molecular 

functions. Overrepresentation analysis was performed using the REACTOME pathway 

database (Fabregat et al., 2018). Within REACTOME, non-human identifiers were 

converted to human equivalents and IntAct (Hermjakob et al., 2004) interacting 

factors, such as proteins, were used to increase the analysis background. WebGestalt 

(Wang et al., 2013) was used to perform a network topology-based analysis (NTA). A 

network expansion algorithm, where 10 top ranking neighbours were selected to rank 

all genes in the network based on their proximity to the list of MDR genes, was selected 

to perform NTA. The advantage of this method over the standard pathway enrichment 

analysis lies in its ability to model interactions explicitly (Mitrea et al., 2013). Within 

WebGestalt, PPI BIOGRID functional database category was selected to run NTA 

because the database provides a comprehensive summary for protein and genetic 

interactions.  
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6.3. Results 

6.3.1.      False discovery rate by threshold 

Running UM-MDR on a genome-wide scale would pose a substantial computational 

burden. Figure 6.2. shows a representative example of the time requirements for 

analysing 2-way or 3-way multi-locus combinations for as many as 21 SNPs using the 

full discovery sample of AOSW-inferred refractive error (n=197,966). Therefore, under 

the assumption that SNPs with interaction effects also have main or marginal effects, 

I attempted to find an optimal main-effect p-value threshold that would minimise the 

number of false-positive findings. While this strategy performed well for the model 

that did not adjust for marginal SNP effects (Table 6.1.), an FDR could not be reliably 

estimated for the model where marginal SNP effects were included as covariates. An 

explanation for this is that the number of true-positive interacting SNP-SNP pairs was 

scarce in the training datasets (Table 6.2.). For example, at the p = 1 x 10-5 association 

threshold, an FDR of 1 was calculated in 3 cross-validation folds, while the remaining 

validation sets contained too few true positives to calculate an FDR reliably. In the 

scenario where no adjustment for marginal SNP effects was made, a gradually reducing 

FDR was observed when the association p-value threshold became more stringent 

(Table 6.1.). The lowest FDR of 0.27 (S.E. = 0.039) was estimated for a genome-wide 

significant threshold (p = 5 x 10-8), and thus only SNPs that passed this threshold were 

selected for further analyses. 

 
6.3.2.       Analysis of SNP-SNP interactions using UM-MDR 

In the discovery sample, a total of 69 independent SNPs had marginal evidence of 

association with the AOSW-inferred refractive error phenotype at the optimal p-value 

threshold of 5 x 10-8. When these 69 SNPs were assessed for pairwise interactions 

using UM-MDR in the discovery sample, only one significant SNP-SNP interaction 

between rs16890054 (ZMAT4) and rs5442 (GNB3) was identified (Figure 6.3. right 

panel and Table 6.3.). Both genomic regions were previously known to be involved in 

myopia development. The interaction exhibited a relatively large effect of 0.1 D (95% 

CI 0.09 to 0.11, p = 2.02 x 10-5). However, this pair of SNPs did not show evidence of 

even nominal replication (95% CI -0.09 to 0.21, p = 0.38) for the autorefraction 

measured refractive error phenotype in the replication sample. Furthermore, a 

sensitivity analysis using linear regression also did not identify a significant interaction 



 

116 

between rs16890054 and rs5442 in either the discovery sample (95% CI -0.01 to 0.05, 

p = 0.15) or the replication sample (95% CI -0.07 to 0.12, p = 0.62). Indeed, no pair of 

SNPs was identified as having a significant interaction effect after Bonferroni 

correction using linear regression in the discovery sample. In general, the distribution 

of interaction effect sizes obtained with UM-MDR and linear regression differed greatly 

(Figure 6.4.), with estimates obtained from regression analysis clustered more closely 

around zero. 

 
6.3.3.     Meta-analysis 

An additional 13 variants were identified as being involved in SNP-SNP interactions in 

the combined discovery and replication sample (Table 6.4.). Interestingly,  

Figure 6.2. Empirical evaluation of time constrains for varying number of gene-gene 

interactions using UM-MDR. The panel on the left shows the total number of possible SNP-

SNP or SNP-SNP-SNP combinations for a small number of genetic variants, while the panel on 

the right demonstrates the time requirements to perform a UM-MDR analysis for all possible 

comparisons using the full discovery sample (n=197,966), either adjusting or not-adjusting for 

marginal SNP effects. Analyses were run on a single processor with 25 GB memory. 
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Table 6.1. False discovery rate by threshold using the model that did not adjust for marginal SNP effects. 
 Association p-value threshold 

CV fold 5 x 10-2 1 x 10-3 5 x 10-3 1 x 10-4 5 x 10-4 1 x 10-5 5 x 10-5 1 x 10-6 5 x 10-6 1 x 10-7 5 x 10-7 5 x 10-8 

1 NaN 0.866 0.906 0.429 0.726 0.466 0.559 0.303 0.303 0.325 0.247 0.307 

2 NaN 0.534 0.428 0.45 0.472 0.396 0.696 0.333 0.327 0.19 0.235 0.16 

3 NaN 0.547 0.918 0.62 0.64 0.66 0.509 0.416 0.498 0.376 0.339 0.273 

4 NaN 0.583 0.803 0.562 0.721 0.45 0.656 0.52 0.362 0.441 0.41 0.407 

5 NaN 0.426 0.649 0.58 0.297 0.528 0.714 0.427 0.403 0.239 0.264 0.264 

Mean 

(se) 

NaN  

NaN 
0.575 

(0.073) 
0.714 

(0.091) 
0.523 

(0.037) 
0.542 

(0.082) 
0.492 

(0.045) 
0.621 

(0.039) 
0.392 

(0.038) 
0.373 

(0.034) 
0.3 

(0.045) 
0.292 

(0.033) 
0.27 

(0.039) 

 *NaN refers to situation where no significant SNP-SNP pair was identified in the training dataset. Abbreviations: CV - cross-validation, se - standard error. 

 

Table 6.2. Total number of significant comparisons at given association threshold. 
  Number of SNPs by threshold 

CV fold 
Marginal 

effect 
5 x 10-2 1 x 10-3 5 x 10-3 1 x 10-4 5 x 10-4 1 x 10-5 5 x 10-5 1 x 10-6 5 x 10-6 1 x 10-7 5 x 10-7 5 x 10-8 

1 
Excluded 0/0 180/24 75/7 298/170 150/41 574/306 313/138 765/533 623/434 920/621 840/632 956/662 

Included 0/0 0/0 0/0 0/0 0/0 2/0 0/0 0/0 0/0 0/0 0/0 5/1 

2 
Excluded 0/0 116/54 21/12 280/154 146/77 535/323 316/96 771/514 636/428 881/713 858/656 921/773 

Included 0/0 0/0 0/0 0/0 0/0 5/0 0/0 0/0 2/0 0/0 0/0 1/1 

3 
Excluded 0/0 168/76 61/5 261/99 175/63 562/191 257/126 797/465 708/355 951/593 916/605 937/681 

Included 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 

4 
Excluded 0/0 185/77 66/13 318/139 176/49 610/335 349/120 873/419 668/426 970/542 923/544 981/581 

Included 0/0 0/0 0/0 0/0 0/0 4/0 0/0 0/0 0/0 0/0 0/0 1/1 

5 
Excluded 0/0 115/66 57/20 365/153 111/78 628/296 371/106 831/476 727/434 937/713 903/664 925/680 

Included 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/1 

Numbers represent significant comparisons in training/testing samples out of a total of 1,035 SNP-SNP comparisons that were evaluated at each p-value threshold.  
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rs16890054 (ZMAT4) was present in every single interaction pair, which is more often 

than would be expected by chance (0.65 out of 13). Following this finding, I confirmed 

that the distinct peak observed in Figure 6.3. left and right panels was overwhelmingly 

caused by the interaction between rs16890054 and other genome-wide significant 

SNPs. 

Figure 6.3. Distribution of p-values for 69 SNPs with genome-wide significant marginal 

effects tested for SNP-SNP interaction using UM-MDR. Results are presented for the model 

where no adjustment for marginal SNP effects was made (left panel) and the model that 

estimated interaction effects adjusting for marginal SNP effects (right panel). The green dot 

represents a SNP-SNP pair that showed evidence of an interaction at Bonferroni corrected 

threshold (p = 0.05/2346, 2.13 x 10-5) in the model accounting for marginal effects. The 

distribution of p-values is arranged on the x-axis arbitrarily depending on the order in which 

SNP-SNP comparisons were analysed and not the physical position in the genome. 

Figure 6.4. Distribution of SNP-SNP interaction effect sizes. Effect sizes estimated using the 

UM-MDR method (accounting for marginal effects) are shown in the left panel, while those 

estimated with linear regression are shown in the right panel. The vertical blue line represents 

the effect size for the rs16890054 vs. rs5442 interaction.
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Table 6.3. Summary of interaction between rs16890054 and rs5442. Interactions were assessed with UM-MDR. 

Abbreviations: BP - base pair, CHR - chromosome, D - dioptre, SD - standard deviation, BETA - effect size, SE - standard error, P - p-value. Combined refers to the 

pooled discovery and replication samples. Excluding marginal effects refers to the model that did not account for marginal SNP effects.  

 

 

Table 6.4. Additional SNP-SNP interaction pairs identified as significant in the combined sample of AOSW-inferred and autorefraction-measured 

refractive error phenotypes. Interactions were assessed with UM-MDR. 

 Excluding marginal 
effects 

Including marginal 
effects 

SNP-SNP combinations Nearest genes BP CHR Effect allele P-value P-value 

rs16890054, rs7013609 ZMAT4, SNTB1 40723038, 121593916 8, 8 C, T 1.1 x 10-37 9.3 x 10-7 

rs35667547, rs16890054 ADAMTS9, ZMAT4 64547477, 40723038 3, 8 C, C 4.1 x 10-39 1.5 x 10-6 

rs75698317, rs16890054 BARHL2, ZMAT4 91181968, 40723038 1, 8 T, C 2.1 x 10-37 2.7 x 10-6 

rs16890054, rs57324368 ZMAT4, RGR 40723038, 86014873 8, 10 C, G 2.6 x 10-39 3.5 x 10-6 

rs1353386, rs16890054 BMP3, ZMAT4 81947080, 40723038 4, 8 A, C 7.4 x 10-45 4.1 x 10-6 

rs16890054, rs11145204 ZMAT4, FXN 40723038, 71714067 8, 9 C, C 6.8 x 10-40 4.9 x 10-6 

rs16890054, rs10842971 ZMAT4, PZP 40723038, 9303296 8, 12 C, T 5.9 x 10-36 6.6 x 10-6 

rs1028308, rs16890054 HIST1H2BK, ZMAT4 27129757, 40723038 6, 8 A, C 8.3 x 10-37 6.9 x 10-6 

rs36003362, rs16890054 ZNF281, ZMAT4 200367088, 40723038 1, 8 G, C 6.2 x 10-37 6.9 x 10-6 

rs475774, rs16890054 PLXNA2, ZMAT4 208158787, 40723038 1, 8 T, C 1.7 x 10-37 7.9 x 10-6 

rs16890054, rs12965607 ZMAT4, MYO5B 40723038, 47391025 8, 18 C, G 1.6 x 10-45 1.1 x 10-5 

rs16890054, rs2856250 ZMAT4, GRAMD1B 40723038, 123418749 8, 11 C, A 1.1 x 10-36 1.7 x 10-5 

rs16890054, rs17010513 ZMAT4, FRMPD2 40723038, 49403140 8, 10 C, C 8.1 x 10-37 1.9 x 10-5 

Abbreviations: BP - base pair, CHR - chromosome. Excluding marginal effects refers to the model that did not account for marginal SNP effects. 

 Excluding marginal effects Including marginal effects 

Sample 
Refractive error (D) 

Mean (SD) 
Nearest genes BP CHR Effect allele BETA (SE) P-value BETA (SE) P-value 

Discovery -0.36 (1.51) ZMAT4, GNB3 40723038, 6954864 8,12 C, A 0.08 (0.0007) 5 x 10-27 0.1 (0.005) 2.02 x 10-5 

Replication -0.25 (2.66) ZMAT4, GNB3 40723038, 6954864 8,12 C, A 0.2 (0.003) 9.6 x 10-17 0.06 (0.08) 0.38 

Combined - ZMAT4, GNB3 40723038, 6954864 8,12 C, A - 2.3 x 10-42 - 3.9 x 10-5 
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6.3.4.      Functional annotation of discovered SNP-SNP interactions 

A GeneMANIA analysis was undertaken to identify additional potential interactions 

partners for the 14 genes identified with UM-MDR in the combined discovery and 

replication samples. In total, 307 connections were established between UM-MDR 

identified genes and partner genes, including the partner genes RDH5, NRP1, FNBP4, 

GNG7, and ACTN1 (Figure 6.5.). Only GRAMD1B did not have any identifiable 

interacting members. The vast majority of these links (96.0%) were established based 

on previous evidence of physical protein-protein interactions, with only a small 

fraction of these connections (3.9%) attributed to genetic interactions, which could be 

a signature of functional association between two genes. 

Figure 6.5. Gene-gene interaction network constructed by GeneMANIA. The genes indicated 

with stripes were identified by UM-MDR. Orange connections represent physical interactions. 

Two genes were linked if they were found to interact in a protein-protein interaction study. 

Green connections show genetic interactions. Two genes were functionally associated if the 

effects perturbing one gene were found to be modified by perturbations to a second gene. 
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The gene list returned by GeneMANIA was selected for functional annotation in 

Panther. Regulation of cellular processes (GO:0009987) was identified as a 

predominant gene ontology category, in which 25 genes were involved in diverse 

mechanisms such as control of growth, division and maturation of various cell types 

(e.g. BMP3 and TGFB1), modulation of G-protein (e.g. PICK1 and ADRA1D) and signal 

transduction (GNB3). Approximately half of the genes (26 out of 64) were implicated 

in binding activity (GO:0005488), including binding F actin filaments (MYO5B) and 

binding DNA as transcription factors (e.g. ZNF281 and BARHL2).  

An overrepresentation analysis, which uses a hypergeometric distribution to test 

whether a list of genes is enriched for pathway X above the level expected by chance, 

identified presynaptic function kainate receptors as the most enriched pathway (p = 

1.3 x 10-11). Table 6.5. shows a summary of the top-ranking pathways returned by 

REACTOME. Overall, the pathways identified were mostly involved in regulation of G-

protein related events, signal transduction and transport of metabolites. 

 

Table 6.5. Summary for top ranking REACTOME pathways. 

Pathway Name 
Total number 

of genes in 
pathway 

Number of 
genes from 

GeneMANIA list 
p-value FDR 

Presynaptic function of Kainate receptors 23 7 1.3 x 10-11 9.3 x 10-9 

Activation of kainite receptors upon glutamate binding 37 7 3.4 x 10-10 9.5 x 10-8 

Vasopressin regulates renal water homeostasis via 
Aquaporins 

95 9 3.9 x 10-10 9.5 x 10-8 

Glucagon-type ligand receptors 45 7 1.3 x 10-9 2.1 x 10-7 

Aquaporin-mediated transport 111 9 1.5 x 10-9 2.1 x 10-7 

Cooperation of PDCL and TRiC/CCT in G-protein beta 
folding 

47 7 1.75 x 10-9 2.1 x 10-7 

Prostacyclin signalling through prostacyclin receptor 49 7 2.33 x 10-9 2.4 x 10-7 

Thromboxane signalling through TP receptor 53 7 3.9 x 10-9 3.6 x 10-7 

G-protein activation 56 7 5.8 x 10-9 4.2 x 10-7 

ADP signalling through P2Y purinoreceptor 12 56 7 5.8 x 10-9 4.2 x 10-7 

Abbreviations: FDR - false discovery rate. Results are shown for the top 10 overrepresented 

pathways. 

 

In addition to overrepresentation analysis, I performed a network topology-based 

analysis, which takes into account the interaction between the genes in the list. Several 

enriched gene ontology domains were identified (Table 6.6.). Most notably, 

multicellular organismal process showed the strongest level of enrichment (p = 1.41 x 

10-7), while other domains such as G protein-coupled receptor signalling pathway 

matched those identified by REACTOME.  
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Table 6.6. Summary of enriched gene ontology categories identified using network 

topology-based analysis in WebGestalt. 

Gene Ontology ID Pathway Name 
Total number of 

genes in pathway 

Number of 
genes from 

UM-MDR list 
p-value FDR 

GO:0032501 Multicellular organismal process 6115 44 1.42 x 10-7 0.0022 

GO:0023052 Signalling 5257 38 4.81 x 10-6 0.024 

GO:0007154 Cell communication 5304 38 6.14 x 10-6 0.024 

GO:0007186 
G protein-coupled receptor 

signalling pathway 
751 13 6.25 x 10-6 0.024 

Abbreviations: FDR - false discovery rate. Results are shown for pathways with FDR < 0.05. 

 

6.4.  Discussion 

Gene-gene interactions have been long thought to be one of the causes of the “missing 

heritability problem” (Manolio et al., 2009; Slatkin, 2009). Experimental studies (Le 

Rouzic et al., 2007; Le Rouzic and Carlborg, 2008; Forsberg et al., 2017) have 

demonstrated that modelling genetic interactions can improve prediction of 

quantitative traits despite theoretical work showing that there is little to no advantage 

of considering such interactions (Hill et al., 2008). The discrepancy between theoretical 

and experimental results could lie in the fact that the additive model can capture most 

of the variance of non-additive genetic effects (Huang and Mackay, 2016). Due to 

limited examples of gene-gene interactions in refractive error, the current study aimed 

at providing a comprehensive guide to the extent and importance of such interactions 

in refractive error development. 

 
In order to discover significant pairs of multi-locus combinations, a recently proposed 

implementation of the original MDR algorithm was used (Yu et al., 2016). Multifactor 

dimensionality reduction methods have been demonstrated to have higher statistical 

power compared to standard linear or logistic regression (Ritchie et al., 2003; Coffey 

et al., 2004; Motsinger and Ritchie, 2006). This increase in power comes from the fact 

that MDR relaxes the assumption of a particular inheritance model and does not put 

strict constraints on the parameters to be estimated. As a result, it allows for the 

detection of non-linear interactions, a task that is not easily accomplished with 

regression modelling. A comparison between interaction effects estimated using linear 

regression and UM-MDR (Figure 6.4.), showed that the latter approach resulted in a 

more widely spread distribution of effect sizes. In future, such information could 
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potentially be used to improve phenotypic prediction in a manner similar to polygenic 

risk scores.  

 
Despite the benefits that come with MDR, only one significant interaction pair between 

rs16890054 (ZMAT4) and rs5442 (GNB3) was identified after adjustment for marginal 

SNP effects. Unfortunately, this interaction did not replicate, which could suggest that 

my initial finding was a false-positive. Similar to previous findings (Yu et al., 2016), we 

found that ignoring the contribution from marginal SNP effects in MDR led to severe 

inflation of false-positive findings (Figure 6.3. left panel). For example, all comparisons 

reaching the Bonferroni corrected threshold would be considered to have originated 

due to interactions using the original MDR algorithm (Ritchie et al., 2001; Motsinger 

and Ritchie, 2006). These false-positive findings were driven by strong individual SNP 

effects, as evidenced by only one significant SNP-SNP pair remaining after adjustment 

for marginal effects (Figure 6.3. right panel).  

 
It is generally believed that novel genomic regions associated with a phenotype via 

gene-gene interactions will be pinpointed as sample sizes become larger. Motivated 

by this idea, I sought to investigate whether additional interacting pairs of SNPs could 

be identified in a larger combined sample of AOSW-inferred refractive error and 

autorefraction measured refractive error. The association between rs16890054 and 

rs5442 remained strong (Table 6.3.), and an additional 13 interacting pairs were found 

(Table 6.4.). Notably, ZMAT4 was involved in every single interaction pair. It has been 

suggested that interacting loci form highly connected epistatic networks (Carlborg et 

al., 2006; Forsberg et al., 2017). These are usually arranged such that variants involved 

in many interactions tie more extensive networks together, while the hub genetic 

variants are in the centre connecting many such radial networks (Forsberg et al., 2017). 

Therefore, I speculate that ZMAT4 could act as a hub gene that is involved in mediating 

the action of other genes identified by UM-MDR. Since the biological function of 

ZMAT4 protein is nucleic acid binding, it is reasonable to assume that this gene is 

responsible for regulating expression of other refractive error associated genes. This 

gene is highly expressed in brain tissues. More specifically, the highest protein 

expression was observed in cerebellum and the highest RNA expression was observed 

in pons and medulla according to the human protein atlas (URL: 



 

124 

https://www.proteinatlas.org/ENSG00000165061-ZMAT4/tissue, accessed: 29 

October 2019). 

 
A list of 14 unique genes identified by UM-MDR in the combined sample was selected 

for further characterisation. Using GeneMANIA, an additional 50 genes were identified 

that were not part of the original list of candidate genes (Figure 6.5.). Of these, only 

RDH5 has been previously associated with refractive error (Tedja et al., 2018). A few 

other genes have been previously associated with other ocular traits or traits that 

affect facial features, including the eyes. For example, according to GeneCards (URL: 

https://www.genecards.org/, accessed: 29 October 2019), the PICK1 gene has been 

associated with age-related macular degeneration (Lin et al., 2012), FNBP4 with 

micropthalmia (Kondo et al., 2013), TGFB1 associated with Camurati-Engelmann 

disease (Janssens et al., 2003), which in some cases can lead to loss of vision, TGFB2 is 

associated with macular holes (Liu and Qiu, 1998) and RAB25 is associated with 

binocular vision deficits. Regarding enrichment of biological process gene ontology 

categories, 25 of the 64 genes showed evidence of involvement in the control of 

cellular processes (GO:0009987), followed by 13 genes responsible for the control of 

the metabolic process (GO:0008152). Approximately half of the genes showed 

evidence of binding cytoskeleton and DNA as their primary molecular function 

(GO:0005488), followed by 16 genes acting as catalytic activators (GO:0003824). 

REACTOME overrepresentation analysis revealed presynaptic function of kainate 

receptors and activation of kainate receptors upon glutamate binding as two most 

enriched pathways. A noteworthy function of kainate receptors includes modulation 

of the release of neurotransmitters like glutamate and gamma amino butyric acid 

(GABA). Both glutamate and GABA affect the transmission of visual information and 

shape the development of the retina (Guoping et al., 2017). The functions of other 

enriched pathways could be broadly divided into signalling of various molecular 

entities, such as thromboxane and prostacyclin, or transport of metabolites such as 

potassium and calcium. Network topology-based analysis, which took into 

consideration not only a list of genes but also the interaction between them, identified 

multicellular biological processes. This gene ontology category includes any biological 

process that occurs at the level of a multicellular organism and can range from cytokine 

production to circadian regulation of heart rate. Three other categories with FDR < 0.05 
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were related to cell signalling. Consistent results from the overrepresentation analysis 

and network topology-based analysis reinforces the importance of signalling cascades 

in the development of refractive error.  

 
MDR has been used to study gene-gene interactions in myopia previously. Chen et al. 

(Chen et al., 2011c) used MDR to look for the relationship between steroidogenesis 

enzyme genes and high myopia in Taiwanese individuals. They concluded that an 

interaction between steroidogenesis genes might be a modulating factor in sex 

hormone metabolism and high-myopia risk. In another study, the same research team 

looked for the association of the lumican gene with high myopia susceptibility (Chen 

et al., 2009b). In addition, MDR has been used in the past to study other ocular traits 

such as open-angle glaucoma (Jia et al., 2009) and eye colour (Pośpiech et al., 2011; 

Zidkova et al., 2013). 

 
One limitation of this study was restricting analyses to genome-wide significant 

variants. However, selecting SNPs from candidate genes is a common practice for this 

type of analysis (Coffey et al., 2004; Tsai et al., 2004; Su et al., 2012; Xu et al., 2014). 

Moreover, the cross-validation strategy (Table 6.1.) suggested that less stringent 

association thresholds are not likely to identify variants that are important in shaping 

the phenotype. Although the FDR could not be estimated reliably when adjusting for 

marginal SNP effects (Table 6.2.), I made the assumption that only variants with 

marginal SNP effects would display evidence of interaction (i.e. no interaction in the 

absence of marginal effects) based on the FDR analysis when not adjusting for marginal 

effects. 

 
In summary, these findings provide tentative evidence that gene-gene interactions 

contribute to refractive error development. The ZMAT4 gene emerged as the most 

promising candidate interacting gene, potentially involved in a diverse range of gene-

gene interactions. Network topology-based analysis identified enriched pathways with 

plausible roles in myopia susceptibility. Further validation of the identified SNP-SNP 

interaction combinations and enriched gene pathways is required, in independent 

datasets. 
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Chapter 7 

Concluding remarks  
 

As discussed in section 1.1.3., despite overwhelming evidence of involvement of 

genetic and environmental components in determining shifts in refractive error 

(Morgan and Rose, 2019), only a handful of gene-environment interaction effects have 

been identified to date (Chen et al., 2011a; Tkatchenko et al., 2015; Fan et al., 2016), 

while no clear and replicable evidence of gene-gene interactions exist. This can be 

explained by GxE and GxG interaction studies being underpowered compared to the 

standard GWAS approach that tests for marginal SNP effects (Duncan and Keller, 

2011). Motivated by the release of UK Biobank, where the large amount of data 

pertaining to the genetic variation of approximately 500,000 individuals has been 

collected and processed,  the primary focus of this thesis was to apply existing 

statistical approaches in order to identify genetic loci with roles in refractive error 

development via interaction with environmental exposures or other genetic variants. 

 
Throughout the thesis, I tried to stay consistent with respect to methodological 

procedures. First, statistical analyses in all chapters were restricted to participants who 

self-identified as white-British. Including individuals from diverse backgrounds could 

introduce bias when studying GxE effects if environmental exposures differ. For 

example, University degree was considered as one of the environmental factors in this 

dissertation. Education systems vary across countries (URL: 

http://www.indire.it/en/2017/08/29/school-education-in-europe/, accessed: 29 

October 2019) therefore the use of non-harmonised environmental exposures could 

confound observed findings. Second, motivated by the poor replication rate of initial 

GxE discoveries in candidate gene studies (Duncan and Keller, 2011; Dick et al., 2015; 

Border and Keller, 2017), Chapter 2, Chapter 3, and Chapter 6 used discovery and 

replication samples to avoid reporting false positive findings. In all three cases, 
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association between GxE/GxG interaction effects and AOSW-inferred refractive error 

was tested in the discovery sample and replicated using the autorefraction phenotype. 

I chose to use the sample of participants with the carefully measured autorefraction 

phenotype as the replication sample, so that any replicating loci would provide high 

confidence of being involved in GxE or GxG interactions. 

 
In Chapter 2, I explored the role of GxE interaction using two different measurement 

scales (additive and multiplicative). The fact that the LAMA2 gene was successfully 

identified and replicated using either of the two risk scales provided a high degree of 

confidence of its involvement in an interaction with education. GxE interaction tested 

on the multiplicative scale provided little information about the functional role of 

interactions even when the discovery and replication samples were meta-analysed. On 

the other hand, GxE interaction tested on the additive scale provided a more 

comprehensive view. In particular, it was apparent that a large proportion of the genes 

identified as having GxE effects were already known to be associated with myopia via 

their marginal effects (Kiefer et al., 2013; Verhoeven et al., 2013; Tedja et al., 2018). 

Collectively, these results suggest that if the goal of a study is to identify novel genetic 

variants that are associated with refractive error, the effort put into investigating GxE 

interactions might not yield a substantial benefit, since any true findings are likely to 

re-identify variants already known to have marginal effects on the phenotype. For 

standard GWAS analyses of refractive error it is relatively easy to combine studies via 

meta-analysis; however, this approach is much less straightforward in the case of GxE 

interaction effects. For instance, different studies might have examined distinct 

environmental exposures or exposure at different stages of childhood.  Nevertheless, 

if attempts to study interactions are made, I suggest that GxE interaction measured on 

the additive scale might provide a more insightful view into the underlying biology of 

refractive error in forthcoming studies.  

 
In Chapter 3, I evaluated a rarely-used approach (‘variance heterogeneity’ analysis) 

that relaxes the assumption of modelling GxE and GxG interactions without explicitly 

having any information available about the interacting factor. Instead of focusing on 

finding the mean difference between the genotype groups, this method tests for a 

difference in the variance between the genotype groups. Consistent with the findings 

from Chapter 2, the majority of the identified genetic variants clustered in genomic 
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regions already known to be involved in refractive error development. Once again, 

LAMA2 was among the top candidate genes showing evidence of variance 

heterogeneity, providing further support for its modifiable role in the presence of 

other environmental or genetic risk factors. I observed a systematic increase in the 

interaction effect size of variants with additional years spent in education. This finding 

supports the notion that more years spent in education leads to a more negative 

refractive error (Mountjoy et al., 2018). The fact that effect sizes vary depending on 

environmental exposures could provide a new avenue in the prediction of complex 

phenotypes such as refractive error. The heteroskedastic linear model analysis in 

Chapter 3 showed how potential false positive findings arising by virtue of a statistical 

artefact (a ‘mean-variance’ relationship) could be eliminated. I propose that future 

studies investigating genetic determinants that influence refractive error could benefit 

from studying the joint effect of the mean and the variance shift across genotype 

groups. Such approaches could be integrated into sophisticated modelling strategies 

that build upon the standard polygenic risk score approach, in order to advance the 

field of personalised medicine. 

 
Given that Chapters 2 and 3 consistently suggested an enrichment of interacting 

variants among those showing evidence of marginal association, Chapter 4 focused on 

examining the extent of SNP effect heterogeneity across the sample distribution for 

refractive error-associated variants. Using conditional quantile regression, I was able 

to show that genetic variants exert different effects in different individuals. A visual 

representation of the highly non-linear profile, observed for the majority of tested 

variants, showed that SNP effects for individuals in the myopic arm of the refractive 

error distribution were as much as 4-fold higher compared to emmetropes. Although 

there are several explanations for such phenomena, this is exactly what we would 

expect to see in case of involvement in GxE or GxG interactions that modify the risk in 

certain individuals. I speculate that interacting factors might act through the  control 

of emmetropization. Finally, I provided additional evidence that education is a critical 

determinant for refractive error, by observing that SNP effects in individuals who spent 

more time in education were stronger compared to those individuals who spent the 

least time in education. 
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In Chapter 5, I shifted my focus to exploring the usefulness of GxE interactions in 

making phenotypic predictions. I found that the inclusion of GxE effects in prediction 

models is unlikely to substantially improve the prediction of refractive error; indeed, 

the phenotypic variance explained by SNP x Education interactions did not exceed 1%. 

This finding is in line with previous studies, for example no improvement in prediction 

of breast cancer, type 2 diabetes, or rheumatoid arthritis was observed by including 

GxE or GxG interaction effects (Aschard et al., 2012a). Although future studies utilising 

larger sample sizes may achieve an improvement in prediction by using GxE, as was the 

case for major depressive disorder (Arnau-Soler et al., 2019), I argue that phenotype 

prediction will be largely dominated by purely additive effects. 

 
Chapter 6 was aimed at exploring the role of GxG interaction in refractive error using 

multifactor dimensionality reduction. I adopted an FDR based method to prioritize 

genetic variants for testing GxG interaction effects, observing an increasing rate of 

false positive findings when less-stringently-associated SNPs were included. This once 

again suggested that variants with marginal effects are also involved in (GxG) 

interactions. Therefore, using only genetic variants that showed a genome-wide 

significant main effect association (p < 5 x 10-8), I discovered one region that showed 

significant evidence of GxG interaction in the discovery sample. However, no evidence 

of such an interaction was observed in the independent replication sample. To increase 

the number of potentially interacting loci, I performed a meta-analysis of the discovery 

and replication samples. This revealed 13 additional candidate regions that could 

potentially be involved in GxG interactions. Interestingly, the ZMAT4 gene was 

implicated in every single comparison. Therefore, I propose that ZMAT4 might act as a 

hub gene to influence the mode of action of other genes. I explored the functional 

consequences of the newly-identified GxG loci by performing pathway enrichment 

analysis and network topology-based analysis. Although, there was strong enrichment 

for several pathways, most of these pathways were already known to be relevant for 

refractive error.  

 
Several limitations of the UK Biobank dataset hindered a more comprehensive 

investigation of the role of genetic and environmental risk factors in refractive error 

development. First, only approximately 25% of UK Biobank participants had their 

refractive error measurement taken, leaving a large proportion of individuals for whom 
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refractive error was inferred using age of onset of spectacles wear. As discussed in 

Chapter 1 and 3, the inferred phenotype was imprecise (correlation with true 

phenotype = 0.55), leading to reduced statistical power to detect associations. This 

could have been caused by demographic differences between discovery and 

replication samples which reflect regional demographic differences (Section 1.4.2.). 

This source of measurement error could have given rise to the strong mean-variance 

relationship observed in Chapter 3, which differed markedly compared to the mean-

variance relationship observed for autorefraction measured refractive error. The 

imprecision of the AOSW-inferred refractive error phenotype may also have 

contributed to the observed high rate of false positive findings in other experimental 

chapters (that is, associations that were not replicated using the autorefraction 

measured refractive error dataset). Second, refractive error was assessed without 

cycloplegia, which can result in measurement error due to certain participants 

accommodating during the test. However, since UK Biobank participants were aged 40 

years old, the degree of measurement error was likely to be minimal compared to 

errors that can arise when non-cycloplegic autorefraction is performed in children. This 

source of bias could have affected the estimation of SNP effect sizes in the analyses 

performed in this thesis. For example, in Chapter 4, the measurement error of 

refractive error phenotype could have affected the estimation of risk factor effect sizes 

at certain quantiles. This, in turn, could have led to imprecise assessment of 

interindividual variation in SNP effect sizes. Specifically, if the higher quantiles - those 

comprising individuals with hyperopia - were relatively more affected by measurement 

error this may have led to the attenuation of risk factor effect size estimates for these 

higher quantiles, which would in turn have attenuated the difference in effect size for 

hyperopes vs. emmetropes. Another source of bias could come from the fact that UK 

Biobank cohort is not representative of the general population and is enriched in more 

affluent individuals who have obtained a university degree. This could have caused 

distorted associations due to collider bias. Specifically, when education level influences 

selection into a study, then genetic variants associated with education may yield biased 

associations with traits correlated with education, such as refractive error. Similarly, 

associations between certain SNPs and refractive error could be subject to bias when 

including education as a covariate in the analysis. 
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In summary, my findings demonstrate that searching for GxE or GxG interactions in 

refractive error development is far less straightforward than identifying genetic 

variants with marginal effects on the phenotype. Furthermore, extreme care needs to 

be taken in confirming the validity of novel findings by seeking to replicate the results 

in an independent sample. (Most of the interactions identified in the discovery sample 

that were statistically significant after Bonferroni correction were deemed likely to be 

false positive findings because of failure to replicate in an independent sample). Those 

loci with convincing evidence of involvement in an interaction had a high likelihood of 

being enriched among genes already known to be associated with refractive error 

through standard GWAS analyses. Consequently, downstream analyses such as gene-

based association tests and pathway enrichment tests generally led to the 

strengthening of previously established findings. I demonstrated that the standard 

ordinary least squares approach is inadequate when it comes to modelling 

interactions. Future studies should consider alternative strategies, such as joint 

methods that take into account the main and interaction effect of a SNP or conditional 

quantile regression that does not assume uniform SNP effect sizes across individuals. 

More sophisticated methods could be developed to include GxE and GxG interaction 

effects when making phenotypic predictions. Given the available evidence that 

complex traits are mediated by complicated networks involving interactions between 

genetic markers and external environmental exposures, I anticipate that the interest 

to study GxE and GxG interactions will increase as the size of genomic datasets grows.  
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Appendix A: Full results for 82 independent genes identified after  
gene-based clumping of Levene’s median test summary statistics 
 

Gene CHR START BP STOP BP P discovery P replication 
LAMA2 6 129154286 129887711 1.02 x 10-36 9.09 x 10-7 

NPLOC4 17 79473913 79654138 6.58 x 10-29 1.44 x 10-9 

ZMAT4 8 40338109 40805345 4.42 x 10-26 8.34 x 10-5 

CHRND 2 233340870 233451375 1.29 x 10-22 1.29 x 10-9 

KCNQ5 6 73281571 73958574 4.99 x 10-19 2.25 x 10-3 

PDE11A 2 178437977 179023066 1.29 x 10-18 3.27 x 10-3 

RBFOX1 16 5239469 7813342 5.67 x 10-18 1.25 x 10-2 

GPD2 2 157241965 157492915 2.88 x 10-17 1.73 x 10-1 

RCBTB1 13 50056082 50209742 5.95 x 10-17 2.76 x 10-2 

CTNNB1 3 41186401 41331939 1.02 x 10-16 6.29 x 10-3 

LRRC4C 11 40085524 41531186 1.89 x 10-15 2.06 x 10-6 

METAP1D 2 172814804 172997158 2.30 x 10-15 1.29 x 10-1 

SARNP 12 56096247 56261540 4.43 x 10-14 4.53 x 10-3 

KCNMA1 10 78579359 79447577 1.22 x 10-12 3.93 x 10-1 

FRMPD2 10 49314602 49532941 1.88 x 10-12 7.27 x 10-2 

LRIT1 10 85941276 86051217 2.45 x 10-12 1.92 x 10-7 

BICC1 10 60222774 60641194 6.31 x 10-12 4.59 x 10-2 

AKAP6 14 32748479 33352268 1.64 x 10-11 6.77 x 10-1 

RASGRF1 15 79202289 79433215 1.95 x 10-11 2.28 x 10-1 

BARHL2 1 91127579 91232794 2.68 x 10-11 7.65 x 10-3 

ACAA2 18 47259874 47390306 1.63 x 10-10 3.18 x 10-2 

PPP6C 9 127858852 128002218 1.90 x 10-10 2.92 x 10-2 

GRIA4 11 105430800 105902819 1.06 x 10-9 4.25 x 10-4 

ZIC5 13 100565275 100674178 1.49 x 10-9 1.62 x 10-5 

CCDC89 11 85344893 85447320 1.92 x 10-9 4.01 x 10-1 

BMP4 14 54366454 54473554 2.24 x 10-9 1.80 x 10-1 

CD34 1 208009883 208134742 3.24 x 10-9 9.45 x 10-2 

NTM 11 131190371 132256716 1.32 x 10-8 8.59 x 10-2 

SOX7 8 10531278 10638084 1.85 x 10-8 9.92 x 10-4 

HIST1H3J 6 27808093 27908570 1.85 x 10-8 2.60 x 10-2 

HIVEP3 1 41922036 42551596 2.60 x 10-8 4.30 x 10-1 

SIX3 2 45119037 45223216 2.83 x 10-8 6.84 x 10-1 

PLEKHG4 16 67261413 67373403 2.87 x 10-8 5.15 x 10-1 

PAX6 11 31756340 31889509 3.60 x 10-8 1.75 x 10-1 

HPD 12 122227433 122376517 3.71 x 10-8 8.54 x 10-1 

SHISA6 17 11094740 11517380 5.99 x 10-8 1.45 x 10-2 

AQR 15 35098552 35311995 7.76 x 10-8 1.29 x 10-1 

BPTF 17 65771644 66030494 1.12 x 10-7 1.48 x 10-1 

PKHD1 6 51430145 52002423 1.34 x 10-7 8.47 x 10-2 

TPRA1 3 127241907 127359602 1.42 x 10-7 6.05 x 10-1 

ZSWIM6 5 60578100 60891999 1.69 x 10-7 2.05 x 10-2 

CAMSAP2 1 200658686 200879832 2.80 x 10-7 1.38 x 10-1 

ANTXR2 4 80772771 81044626 3.61 x 10-7 2.48 x 10-1 

TNKS 8 9362756 9689856 8.24 x 10-7 1.94 x 10-2 

MMP2 16 55463081 55590586 1.54 x 10-6 6.22 x 10-1 

SLC16A10 6 111358728 111594608 1.72 x 10-6 2.56 x 10-1 

ZEB2 2 145091942 145327958 1.86 x 10-6 7.35 x 10-2 

SLC45A4 8 142167273 142360241 1.87 x 10-6 4.80 x 10-1 

PPIP5K2 5 102405958 102589224 3.22 x 10-6 9.26 x 10-1 

DOCK9 13 99395741 99788660 3.46 x 10-6 1.79 x 10-1 

SLC14A2 18 42742947 43313072 3.67 x 10-6 7.03 x 10-1 

PPP4R2 3 72995985 73168349 3.89 x 10-6 1.64 x 10-1 

TET2 4 106017032 106250960 4.16 x 10-6 2.88 x 10-1 

ST8SIA1 12 22296325 22537648 5.97 x 10-6 5.08 x 10-1 

SPAG4 20 34153776 34258967 6.98 x 10-6 6.46 x 10-2 

LOC101927855 17 59390108 59494966 7.18 x 10-6 7.10 x 10-1 

DSCAM 21 41334343 42269039 7.22 x 10-6 4.71 x 10-1 
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SNTB1 8 121497985 121875599 7.36 x 10-6 3.45 x 10-1 

UBE2I 16 1307420 1427019 7.48 x 10-6 5.75 x 10-1 

PTPN5 11 18699475 18864268 8.46 x 10-6 1.11 x 10-1 

GRAMD1B 11 123275191 123548478 1.00 x 10-5 8.09 x 10-1 

TRAF3IP1 2 239179185 239359541 1.28 x 10-5 9.08 x 10-1 

VAV3 1 108063782 108557545 1.36 x 10-5 8.04 x 10-2 

EIF2B2 14 75419612 75526294 1.38 x 10-5 8.09 x 10-1 

CHDH 3 53800324 53930420 1.98 x 10-5 4.44 x 10-1 

NRIP1 21 16283556 16488224 2.19 x 10-5 2.13 x 10-2 

TMC1 9 75086717 75501267 2.59 x 10-5 1.70 x 10-1 

BMP2 20 6698745 6810910 2.66 x 10-5 9.85 x 10-2 

OAZ1 19 2219520 2323487 2.92 x 10-5 1.08 x 10-2 

THBS4 5 79281170 79429111 3.29 x 10-5 3.88 x 10-1 

ADAM17 2 9579392 9745917 3.88 x 10-5 2.85 x 10-1 

AIP 11 67200505 67308579 4.11 x 10-5 8.23 x 10-2 

SIDT2 11 116999626 117118161 4.40 x 10-5 9.69 x 10-1 

MEF2C 5 87964058 88249922 4.49 x 10-5 7.75 x 10-2 

ATXN1L 16 71829894 71941236 4.57 x 10-5 2.07 x 10-1 

THRB 3 24108644 24586772 4.89 x 10-5 3.11 x 10-1 

MYO1D 17 30769628 31253902 5.68 x 10-5 1.59 x 10-1 

MORN4 10 99324310 99443913 6.31 x 10-5 1.16 x 10-1 

AMT 3 49404211 49510111 6.49 x 10-5 2.55 x 10-1 

NAA38 17 7710003 7838608 7.05 x 10-5 2.07 x 10-2 

ZNF689 16 30563879 30672096 7.75 x 10-5 5.29 x 10-1 

OTOF 2 26630071 26831566 8.68 x 10-5 2.46 x 10-1 

START and STOP base-pair positions include 50kb region on either side of the transcribed gene. 

After gene-based clumping of vQTL results, 550 independent genes were retained. Results are 

presented for genes that showed p < 0.05/550 = 9.1 x 10-5 in the discovery sample using AOSW-

inferred refractive error phenotype. 
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Appendix B: Summary statistics for standard linear regression effect size 

estimates for association with refractive error. 

 
SNP Gene CHR BP EA MAF Beta [95% CI] P 

rs524952 GOLGA8B_GJD2 15 35005886 A 0.49 -0.258 [-0.285; -0.231] 6.18 x 10-79 

rs12193446 BC035400_LAMA2 6 129820038 A 0.10 -0.434 [-0.48; -0.389] 1.06 x 10-77 

rs7744813 KCNQ5 6 73643289 A 0.41 -0.218 [-0.246; -0.19] 1.84 x 10-53 

rs1550094 PRSS56 2 233385396 G 0.31 -0.204 [-0.234; -0.175] 5.69 x 10-43 

rs11602008 LRRC4C 11 40149305 T 0.17 -0.238 [-0.274; -0.202] 5.14 x 10-38 

rs72621438 SNORA51_CA8 8 60178580 C 0.35 -0.175 [-0.203; -0.147] 2.99 x 10-34 

rs6495367 RASGRF1 15 79375347 A 0.42 -0.158 [-0.185; -0.131] 7.87 x 10-30 

rs10500355 RBFOX1 16 7459347 A 0.36 -0.164 [-0.193; -0.135] 2.39 x 10-29 

rs2573210 PRSS56 2 233385025 G 0.19 -0.192 [-0.226; -0.157] 4.51 x 10-28 

rs2326823 BC035400 6 129842188 C 0.08 -0.252 [-0.301; -0.204] 2.21 x 10-24 

rs2573081 PDE11A 2 178828507 G 0.46 -0.137 [-0.164; -0.11] 2.51 x 10-23 

rs5442 GNB3 12 6954864 A 0.07 -0.256 [-0.309; -0.204] 1.47 x 10-21 

rs2276560 EIF4E2_EFHD1 2 233450919 C 0.24 -0.145 [-0.176; -0.113] 2.56 x 10-19 

rs7895108 KCNMA1 10 79061458 T 0.37 -0.126 [-0.154; -0.098] 6.35 x 10-19 

rs6433704 PDE11A 2 178847912 G 0.41 -0.127 [-0.155; -0.098] 3.13 x 10-18 

rs2908972 SHISA6 17 11407259 A 0.39 -0.121 [-0.149; -0.092] 4.27 x 10-17 

rs3138137 BLOC1S1-RDH5_RDH5 12 56116981 C 0.49 -0.116 [-0.143; -0.088] 1.01 x 10-16 

rs17400325 PDE11A 2 178565913 C 0.04 -0.28 [-0.348; -0.213] 2.86 x 10-16 

rs2855530 BMP4 14 54421917 C 0.49 -0.111 [-0.138; -0.084] 4.76 x 10-16 

rs9517964 ZIC2_PCCA 13 100717833 C 0.43 -0.113 [-0.141; -0.086] 7.45 x 10-16 

rs745480 LRIT2_LRIT1 10 85986554 G 0.48 -0.109 [-0.136; -0.082] 1.93 x 10-15 

rs2166181 RASGEF1B_U6 4 82422327 G 0.47 -0.11 [-0.137; -0.082] 2.77 x 10-15 

rs1858001 C4BPA_CD55 1 207488004 G 0.31 -0.117 [-0.146; -0.087] 4.20 x 10-15 

rs62070229 MYO1D_TMEM98 17 31227593 G 0.18 -0.137 [-0.172; -0.102] 9.61 x 10-15 

rs7829127 ZMAT4 8 40726394 A 0.21 -0.131 [-0.164; -0.098] 1.27 x 10-14 

rs12898755 APH1B 15 63574641 G 0.21 -0.130 [-0.163; -0.097] 1.53 x 10-14 

rs511217 METTL15_KCNA4 11 30029948 A 0.26 -0.117 [-0.148; -0.087] 8.36 x 10-14 

rs10887262 RGR 10 86009171 C 0.29 -0.110 [-0.140; -0.081] 3.03 x 10-13 

rs11118367 LYPLAL1 1 219790221 T 0.45 -0.100 [-0.127; -0.073] 3.83 x 10-13 

rs13069734 ZBTB38 3 141148419 G 0.35 -0.106 [-0.135; -0.077] 4.59 x 10-13 

rs10511652 SH3GL2_ADAMTSL1 9 18362865 G 0.40 -0.103 [-0.131; -0.075] 5.97 x 10-13 

rs12965607 MYO5B 18 47391025 G 0.15 -0.135 [-0.173; -0.098] 1.25 x 10-12 

rs1556867 5S_rRNA_PBX1 1 164213686 T 0.24 -0.114 [-0.145; -0.082] 1.91 x 10-12 

rs7624084 ZBTB38 3 141093285 T 0.44 -0.097 [-0.124; -0.070] 2.88 x 10-12 

rs2573232 ALPPL2_ALPI 2 233300046 T 0.09 -0.166 [-0.213; -0.119] 3.07 x 10-12 

rs56075542 BC040861_PABPC1P2 2 146882415 T 0.45 -0.096 [-0.124; -0.069] 4.81 x 10-12 

rs7747 ANTXR2 4 80827062 C 0.20 -0.119 [-0.153; -0.085] 5.21 x 10-12 

rs12451582 NOG_C17orf67 17 54734643 G 0.36 -0.098 [-0.126; -0.070] 8.76 x 10-12 

rs837323 PCCA 13 101175664 C 0.47 -0.094 [-0.121; -0.067] 9.78 x 10-12 

rs7042950 RORB 9 77149837 G 0.22 -0.112 [-0.144; -0.079] 1.19 x 10-11 

rs2229742 NRIP1 21 16339172 C 0.11 -0.151 [-0.195; -0.107] 1.34 x 10-11 

rs2143964 BMP4_CDKN3 14 54726800 G 0.26 -0.106 [-0.137; -0.075] 1.57 x 10-11 

rs1954761 GRIA4 11 105596885 T 0.37 -0.095 [-0.123; -0.067] 2.98 x 10-11 

rs11210537 HIVEP3 1 42345723 G 0.32 -0.098 [-0.127; -0.069] 3.16 x 10-11 

rs2155413 DLG2 11 84634790 A 0.47 -0.093 [-0.121; -0.066] 3.81 x 10-11 

rs12883788 AKAP6_NPAS3 14 33303540 C 0.46 -0.091[-0.118; -0.064] 5.82 x 10-11 

rs2150458 PCBP3_COL6A1 21 47377296 G 0.43 -0.091 [-0.118; -0.063] 7.97 x 10-11 

rs41393947 PNPT1_EFEMP1 2 56011517 A 0.14 -0.129 [-0.168; -0.090] 8.67 x 10-11 

rs2225986 LINC00862 1 200311910 A 0.39 -0.090 [-0.118; -0.063] 1.37 x 10-10 

rs297593 GPD2 2 157363743 T 0.29 -0.096 [-0.126; -0.066] 3.15 x 10-10 

rs11802995 KIRREL 1 158053024 C 0.23 -0.104 [-0.136; -0.071] 3.35 x 10-10 

rs7667446 C4orf22_BMP3 4 81906024 C 0.18 -0.110 [-0.145; -0.075] 4.69 x 10-10 

rs72826094 TCF7L2 10 114801488 T 0.20 -0.107 [-0.140; -0.073] 4.73 x 10-10 

rs34539187 FBN1 15 48756536 C 0.13 -0.126 [-0.166; -0.086] 7.19 x 10-10 

rs1237670 HP08777 1 113418415 G 0.22 -0.100 [-0.133; -0.068] 1.06 x 10-9 

rs2622646 NCOA2_TRAM1 8 71413737 A 0.35 -0.088 [-0.117; -0.060] 1.12 x 10-9 

rs7662551 LOC100506035_PCAT4 4 80537638 G 0.25 -0.096 [-0.127; -0.065] 1.20 x 10-9 

rs8073754 C17orf47 17 56618030 C 0.17 -0.110 [-0.146; -0.075] 1.20 x 10-9 

rs11101263 FRMPD2 10 49414181 T 0.27 -0.092 [-0.123; -0.062] 2.33 x 10-9 

rs6420484 TSPAN10 17 79612397 A 0.36 -0.086 [-0.114; -0.058] 2.44 x 10-9 

rs1313240 JB175233_C14orf39 14 60848527 T 0.29 -0.090 [-0.119; -0.060] 3.17 x 10-9 

rs115152181 CDRT15 17 14136125 T 0.43 -0.082 [-0.109; -0.055] 3.39 x 10-9 

rs1928175 LINC00340 6 22079485 A 0.44 -0.081 [-0.109; -0.054] 4.43 x 10-9 

rs9395623 TFAP2D_TFAP2B 6 50757699 T 0.33 -0.085 [-0.114; -0.056] 5.54 x 10-9 
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rs4793501 KCNJ2_BC039327 17 68718734 T 0.42 -0.081 [-0.109; -0.054] 7.14 x 10-9 

rs36024104 LRFN5 14 42294993 G 0.19 -0.101 [-0.135; -0.067] 7.33 x 10-9 

rs9547035 LINC00333_LINC00351 13 85573496 G 0.26 -0.090 [-0.121; -0.059] 9.02 x 10-9 

rs1207782 LINC00340 6 22059967 T 0.38 -0.081 [-0.109; -0.053] 1.21 x 10-8 

rs2745953 CD34 1 208062973 T 0.29 -0.086 [-0.116; -0.056] 1.63 x 10-8 

rs9681162 
AK124857_LMCD1-

AS1 
3 8194734 C 0.29 -0.085 [-0.114; -0.055] 2.28 x 10-8 

rs28471081 RBFOX1 16 7414383 A 0.21 -0.095 [-0.128; -0.062] 2.65 x 10-8 

rs12526735 KCNQ5 6 73648822 T 0.48 -0.075 [-0.102; -0.048] 4.83 x 10-8 

rs10853531 SLC14A2 18 42824449 G 0.21 -0.093 [-0.126; -0.059] 5.11 x 10-8 

rs4764038 GRIN2B 12 14062637 T 0.26 -0.085 [-0.116; -0.054] 6.38 x 10-8 

rs7925340 FSHB_ARL14EP 11 30280408 A 0.23 -0.088 [-0.120; -0.056] 6.50 x 10-8 

rs9295499 CDKAL1 6 21160689 C 0.32 -0.079 [-0.108; -0.050] 8.53 x 10-8 

rs7122817 DSCAML1 11 117657679 G 0.48 -0.074 [-0.101; -0.046] 1.07 x 10-7 

rs11723482 PCAT4_ANTXR2 4 80793199 T 0.26 -0.083 [-0.114; -0.052] 1.37 x 10-7 

rs11145465 TJP2 9 71766593 A 0.22 -0.087 [-0.119; -0.054] 2.05 x 10-7 

rs1790165 NTM 11 131928971 C 0.42 -0.072 [-0.099; -0.045] 2.28 x 10-7 

rs56014528 NDUFB1 14 92598635 G 0.15 -0.098 [-0.136; -0.061] 2.42 x 10-7 

rs1969091 TMC3_MEX3B 15 82326775 C 0.29 -0.078 [-0.108; -0.049] 2.54 x 10-7 

rs1064583 COL10A1 6 116446576 G 0.40 -0.072 [-0.099; -0.044] 3.09 x 10-7 

rs807037 KAZALD1 10 102824349 C 0.34 -0.074 [-0.102; -0.045] 3.56 x 10-7 

rs10003846 C4orf22_BMP3 4 81923677 T 0.10 -0.114 [-0.158; -0.070] 3.95 x 10-7 

rs7337610 FLT1 13 28962666 T 0.37 -0.072 [-0.100; -0.044] 4.15 x 10-7 

rs4237285 C10orf11 10 77814981 C 0.46 -0.068 [-0.095; -0.041] 8.12 x 10-7 

rs4795364 MED1 17 37576546 G 0.25 -0.077 [-0.108; -0.046] 1.21 x 10-6 

rs1555075 RALY 20 32610401 C 0.35 -0.070 [-0.098; -0.042] 1.23 x 10-6 

rs1994840 C4orf22 4 81707526 T 0.22 -0.080 [-0.112; -0.047] 1.79 x 10-6 

rs235770 BMP2 20 6761765 T 0.39 -0.066 [-0.094; -0.039] 2.59 x 10-6 

rs1649068 BICC1 10 60304864 A 0.45 -0.065 [-0.092; -0.038] 2.61 x 10-6 

rs7968679 PZP 12 9313304 G 0.31 -0.070 [-0.099; -0.041] 2.72 x 10-6 

rs6753137 FAM150B_TMEM18 2 301051 T 0.43 -0.065 [-0.092; -0.038] 3.10 x 10-6 

rs11589487 AK097193_BC030753 1 61342229 G 0.44 -0.064 [-0.091; -0.037] 3.34 x 10-6 

rs1983554 MEI1_bK250D10.C22.8 22 42194561 A 0.30 -0.067 [-0.097; -0.038] 6.05 x 10-6 

rs284818 ST18_FAM150A 8 53363937 C 0.13 -0.091 [-0.131; -0.052] 6.52 x 10-6 

rs10880855 ARID2 12 46144855 T 0.50 -0.061 [-0.089; -0.034] 8.89 x 10-6 

rs6903823 SCAND3 6 28322296 A 0.25 -0.070 [-0.102; -0.039] 9.56 x 10-6 

rs1150687 ZNF192P1_TRNA_Ser 6 28162469 C 0.39 -0.062 [-0.089; -0.034] 1.02 x 10-5 

rs1359543 RCBTB1 13 50159165 A 0.35 -0.064 [-0.092; -0.035] 1.03 x 10-5 

rs7737179 
TMEM161B-

AS1_LINC00461 
5 87795525 A 0.22 -0.073 [-0.106; -0.041] 1.21 x 10-5 

rs11654644 B4GALNT2_TRNA_Gln 17 47263475 T 0.18 -0.078 [-0.113; -0.042] 1.52 x 10-5 

rs9416017 DNAJB12 10 74100279 T 0.36 -0.062 [-0.090; -0.033] 1.98 x 10-5 

rs4687586 CACNA1D 3 53837971 C 0.32 -0.062 [-0.092; -0.033] 2.83 x 10-5 

rs4808962 GATAD2A 19 19579557 G 0.17 -0.076 [-0.112; -0.040] 3.35 x 10-5 

rs10458138 LOC100508120 6 2429743 A 0.22 -0.068 [-0.101; -0.036] 4.17 x 10-5 

rs4260345 THRB 3 24256698 C 0.37 -0.058 [-0.086; -0.030] 5.03 x 10-5 

rs17428076 HAT1_METAP1D 2 172851936 C 0.24 -0.064 [-0.096; -0.033] 5.74 x 10-5 

rs3110134 SNORA51_CA8 8 60097984 G 0.31 -0.058 [-0.088; -0.029] 8.72 x 10-5 

rs10122788 MVB12B 9 129206832 G 0.43 -0.055 [-0.082; -0.027] 8.92 x 10-5 

rs79266634 RBFOX1 16 7309047 C 0.09 -0.093 [-0.140; -0.046] 0.000106 

rs28658452 MYCN_SNORA40 2 16234068 A 0.08 -0.097 [-0.145; -0.048] 0.000111 

rs79953651 ANTXR2 4 80982013 C 0.04 -0.135 [-0.204; -0.066] 0.000115 

rs1454776 GALNT15 3 16009044 G 0.48 -0.053 [-0.080; -0.026] 0.000125 

rs17382981 CYP26A1_MYOF 10 94953258 T 0.42 -0.053 [-0.080; -0.026] 0.00013 

rs72655575 SNORA51_CA8 8 60556509 C 0.21 -0.065 [-0.098; -0.032] 0.000133 

rs10760673 TGFBR1 9 101878622 A 0.20 -0.065 [-0.099; -0.031] 0.000146 

rs9516194 GPC5_GPC6 13 93859498 G 0.50 -0.052 [-0.078; -0.025] 0.000166 

rs17032696 CAMKMT_SIX3 2 45137870 A 0.18 -0.067 [-0.102; -0.032] 0.000183 

rs8075280 POLR2A_TNFSF12 17 7434819 T 0.39 -0.053 [-0.081; -0.025] 0.000188 

rs2116093 BC043573 8 10613299 G 0.40 -0.052 [-0.080; -0.024] 0.000233 

rs17125093 TTC8_TRNA_Ala 14 89428948 A 0.20 -0.063 [-0.096; -0.029] 0.000277 

rs7107014 HNRNPKP3_API5 11 43307811 C 0.48 -0.050 [-0.077; -0.023] 0.000307 

rs11088317 NRIP1_USP25 21 16574122 T 0.29 -0.054 [-0.084; -0.024] 0.000356 

rs7941828 MPPED2 11 30430331 C 0.36 -0.051 [-0.079; -0.023] 0.000358 

rs11202736 RNLS 10 90142203 A 0.30 -0.054 [-0.083; -0.024] 0.000414 

rs55885222 SNTB1 8 121621473 A 0.36 -0.051 [-0.079; -0.022] 0.000467 

rs9388766 L3MBTL3 6 130354855 C 0.30 -0.051 [-0.081; -0.022] 0.000568 

rs1358684 SEMA3D_GRM3 7 86103402 C 0.27 -0.053 [-0.083; -0.023] 0.000613 

rs56055503 MAF_DYNLRB2 16 80532694 A 0.22 -0.057 [-0.089; -0.024] 0.00064 

rs117735470 ST8SIA1_C2CD5 12 22592653 A 0.09 -0.079 [-0.125; -0.032] 0.000921 
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rs35337422 RD3L 14 104407243 C 0.15 -0.062 [-0.100; -0.023] 0.00155 

rs7933504 KCNJ5 11 128783781 G 0.29 -0.047 [-0.077; -0.017] 0.0019 

rs11178469 PTPRR 12 71275137 T 0.23 -0.050 [-0.082; -0.018] 0.00223 

rs7207217 BC039327_D43770 17 69528353 A 0.38 -0.043 [-0.071; -0.015] 0.00234 

rs931302 NONE_SETMAR 3 4210614 T 0.29 -0.045 [-0.074; -0.015] 0.00305 

rs10187371 ZEB2 2 145226370 T 0.17 -0.050 [-0.086; -0.014] 0.00648 

rs2823097 NRIP1_USP25 21 16523144 C 0.33 -0.039 [-0.068; -0.011] 0.00752 

rs1532278 CLU 8 27466315 T 0.40 -0.037 [-0.064; -0.009] 0.00891 

rs4894529 FNDC3B 3 171959684 G 0.49 -0.032 [-0.059; -0.005] 0.0189 

rs7971334 PDE3A 12 20720707 T 0.30 -0.034 [-0.063; -0.004] 0.0246 

rs7449443 FLJ16171_DRD1 5 174720893 T 0.40 -0.031 [-0.059; -0.003] 0.0286 

rs11952819 ZNF366 5 71780033 T 0.28 -0.030 [-0.060; 0.000] 0.0503 

rs9606967 AK123891_SYN3 22 32899516 C 0.21 -0.032 [-0.065; 0.001] 0.056 

rs9680365 GRIK1 21 30928732 A 0.03 -0.062 [-0.136; 0.013] 0.105 

Abbreviations: SNP - single nucleotide polymorphism, CHR - chromosome, BP - base pair, EA - 

effect allele, MAF - minor allele frequency,  Beta - the effect size in dioptres per copy of the 

risk allele, CI - confidence interval. 
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Appendix C: Type-1 error rate and statistical power for CQR-MR models 
with different number of quantiles. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Type-1 error rate and statistical power for CQR-MR models with different number of quantiles. 

The top panel demonstrates a systematic inflation of type-1 error rate for all three components 

assessed in meta-regression. The middle panel shows type-1 error for CQR-MR results with 

respect to different minor allele frequencies. The bottom panel represents statistical power 

for different CQR-MR models. Note that the observed inflation of the type-1 error rate was 

corrected in the analysis of statistical power. 
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Appendix D: Distribution of effect sizes for all refractive error-associated 
variants that were obtained from CREAM meta-analysis 
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Appendix E: Summary statistics for CQR-MR effect estimates for variants 
associated with refractive error. 
 

SNP GENE 
β0 β1 β2 

Beta [95% CI] P Beta [95% CI] P Beta [95% CI] P 

rs12193446 BC035400_LAMA2 -1.130 [-1.272;-0.988] 8.07E-55 2.995 [2.529;3.461] 2.12E-36 -2.363 [-2.765;-1.961] 1.19E-30 

rs524952 GOLGA8B_GJD2 -0.673 [-0.758;-0.588] 4.83E-54 1.797 [1.534;2.060] 7.47E-41 -1.417 [-1.634;-1.200] 1.68E-37 

rs7744813 KCNQ5 -0.543 [-0.631;-0.455] 7.24E-34 1.402 [1.132;1.672] 2.15E-24 -1.092 [-1.314;-0.807] 5.75E-22 

rs11602008 LRRC4C -0.669 [-0.790;-0.548] 2.60E-27 1.612 [1.250;1.974] 2.71E-18 -1.131 [-1.421;-0.841] 2.25E-14 

rs1550094 PRSS56 -0.521 [-0.624;-0.418] 4.77E-23 1.441 [1.118;1.764] 2.08E-18 -1.142 [-1.409;-0.875] 4.90E-17 

rs72621438 SNORA51_CA8 -0.441 [-0.530;-0.352] 2.06E-22 1.089 [0.817;1.361] 4.46E-15 -0.821 [-1.044;-0.598] 5.85E-13 

rs2326823 BC035400 -0.680 [-0.830;-0.530] 6.17E-19 1.815 [1.341;2.289] 6.45E-14 -1.429 [-1.831;-1.027] 3.09E-12 

rs10500355 RBFOX1 -0.004 [-0.490;-0.310] 3.63E-18 1.011 [0.734;1.288] 8.39E-13 -0.775 [-1.003;-0.547] 2.76E-11 

rs6495367 RASGRF1 -0.374 [-0.459;-0.289] 7.17E-18 1.009 [0.747;1.271] 4.38E-14 -0.833 [-1.049;-0.617] 3.89E-14 

rs2573210 PRSS56 -0.501 [-0.621;-0.381] 2.91E-16 1.414 [1.037;1.791] 1.94E-13 -1.121 [-1.434;-0.808] 2.26E-12 

rs2573081 PDE11A -0.339 [-0.426;-0.252] 1.69E-14 0.871 [0.605;1.137] 1.46E-10 -0.679 [-0.899;-0.459] 1.35E-09 

rs745480 LRIT2_LRIT1 -0.312 [-0.395;-0.229] 1.68E-13 0.913 [0.658;1.168] 2.28E-12 -0.725 [-0.935;-0.515] 1.34E-11 

rs2276560 EIF4E2_EFHD1 -0.365 [-0.464;-0.266] 5.12E-13 0.984 [0.683;1.285] 1.43E-10 -0.771 [-1.015;-0.527] 6.10E-10 

rs7829127 ZMAT4 -0.369 [-0.470;-0.268] 9.91E-13 0.925 [0.611;1.239] 7.74E-09 -0.669 [-0.929;-0.409] 4.48E-07 

rs1556867 5S_rRNA_PBX1 -0.361 [-0.461;-0.261] 1.77E-12 0.878 [0.569;1.187] 2.65E-08 -0.577 [-0.832;-0.322] 9.35E-06 

rs9517964 ZIC2_PCCA -0.296 [-0.381;-0.211] 9.60E-12 0.817 [0.554;1.080] 1.08E-09 -0.654 [-0.870;-0.438] 3.08E-09 

rs511217 METTL15_KCNA4 -0.343 [-0.443;-0.243] 1.66E-11 0.882 [0.574;1.190] 1.90E-08 -0.664 [-0.917;-0.411] 2.69E-07 

rs5442 GNB3 -0.561 [-0.728;-0.394] 4.15E-11 1.408 [0.918;1.898] 1.81E-08 -1.152 [-1.538;-0.766] 4.82E-09 

rs7895108 KCNMA1 -0.299 [-0.388;-0.210] 4.96E-11 0.744 [0.471;1.017] 8.80E-08 -0.567 [-0.789;-0.345] 5.48E-07 

rs3138137 BLOC1S1-RDH5_RDH5 -0.295 [-0.384;-0.206] 8.84E-11 0.788 [0.515;1.061] 1.46E-08 -0.625 [-0.848;-0.402] 3.96E-08 

rs17400325 PDE11A -0.803 [-1.050;-0.556] 1.97E-10 2.036 [1.283;2.789] 1.14E-07 -1.427 [-2.039;-0.815] 4.81E-06 

rs2908972 SHISA6 -0.287 [-0.376;-0.198] 2.75E-10 0.790 [0.521;1.059] 8.74E-09 -0.661 [-0.879;-0.443] 2.82E-09 

rs12898755 APH1B -0.328 [-0.431;-0.225] 4.98E-10 0.846 [0.527;1.165] 2.08E-07 -0.637 [-0.901;-0.373] 2.25E-06 

rs2143964 BMP4_CDKN3 -0.317 [-0.417;-0.217] 5.15E-10 0.788 [0.477;1.099] 6.79E-07 -0.554 [-0.811;-0.297] 2.38E-05 

rs1954761 GRIA4 -0.276 [-0.363;-0.189] 5.18E-10 0.646 [0.377;0.915] 2.57E-06 -0.424 [-0.647;-0.201] 0.000188 

rs12451582 NOG_C17orf67 -0.277 [-0.365;-0.189] 8.51E-10 0.807 [0.537;1.077] 4.57E-09 -0.660 [-0.881;-0.439] 4.45E-09 

rs7747 ANTXR2 -0.332 [-0.438;-0.226] 9.18E-10 0.953 [0.625;1.281] 1.26E-08 -0.811 [-1.082;-0.540] 4.75E-09 

rs6433704 PDE11A -0.281 [-0.371;-0.191] 9.32E-10 0.677 [0.400;0.954] 1.73E-06 -0.514 [-0.743;-0.285] 1.06E-05 

rs2229742 NRIP1 -0.460 [-0.608;-0.312] 1.06E-09 1.239 [0.794;1.684] 4.91E-08 -0.926 [-1.286;-0.566] 4.59E-07 

rs2855530 BMP4 -0.256 [-0.341;-0.171] 3.94E-09 0.639 [0.377;0.901] 1.74E-06 -0.490 [-0.706;-0.274] 8.93E-06 

rs41393947 PNPT1_EFEMP1 -0.379 [-0.506;-0.252] 4.48E-09 0.972 [0.586;1.358] 8.14E-07 -0.732 [-1.048;-0.416] 5.46E-06 

rs10511652 SH3GL2_ADAMTSL1 -0.267 [-0.356;-0.178] 4.65E-09 0.654 [0.379;0.929] 3.05E-06 -0.496 [-0.722;-0.270] 1.64E-05 

rs8073754 C17orf47 -0.323 [-0.434;-0.212] 1.31E-08 0.916 [0.577;1.255] 1.15E-07 -0.731 [-1.009;-0.453] 2.54E-07 

rs2155413 DLG2 -0.253 [-0.340;-0.166] 1.34E-08 0.694 [0.426;0.962] 3.79E-07 -0.556 [-0.777;-0.335] 8.28E-07 

rs2573232 ALPPL2_ALPI -0.422 [-0.569;-0.275] 2.01E-08 1.237 [0.779;1.695] 1.22E-07 -1.024 [-1.404;-0.644] 1.24E-07 

rs11802995 KIRREL -0.282 [-0.382;-0.182] 3.13E-08 0.810 [0.509;1.111] 1.36E-07 -0.671 [-0.916;-0.426] 8.03E-08 

rs56075542 BC040861_PABPC1P2 -0.233 [-0.317;-0.149] 5.20E-08 0.608 [0.350;0.866] 3.84E-06 -0.476 [-0.689;-0.263] 1.21E-05 

rs10887262 RGR -0.251 [-0.342;-0.160] 6.33E-08 0.650 [0.373;0.927] 4.40E-06 -0.522 [-0.749;-0.295] 6.46E-06 

rs11118367 LYPLAL1 -0.226 [-0.309;-0.143] 1.03E-07 0.481 [0.224;0.738] 0.000245 -0.335 [-0.547;-0.123] 0.00196 

rs62070229 MYO1D_TMEM98 -0.302 [-0.413;-0.191] 1.07E-07 0.717 [0.370;1.064] 5.00E-05 -0.552 [-0.839;-0.265] 0.000161 

rs7667446 C4orf22_BMP3 -0.280 [-0.383;-0.177] 1.08E-07 0.727 [0.410;1.044] 7.09E-06 -0.566 [-0.827;-0.305] 2.15E-05 

rs12965607 MYO5B -0.313 [-0.430;-0.196] 1.48E-07 0.738 [0.381;1.095] 5.13E-05 -0.562 [-0.854;-0.270] 0.000166 

rs2166181 RASGEF1B_U6 -0.222 [-0.305;-0.139] 1.64E-07 0.490 [0.234;0.746] 0.000174 -0.363 [-0.574;-0.152] 0.000727 

rs12883788 AKAP6_NPAS3 -0.221 [-0.304;-0.138] 1.84E-07 0.512 [0.258;0.766] 7.96E-05 -0.370 [-0.578;-0.162] 0.000498 

rs7042950 RORB -0.274 [-0.378;-0.170] 2.28E-07 0.834 [0.520;1.148] 1.94E-07 -0.720 [-0.975;-0.465] 3.08E-08 

rs11101263 FRMPD2 -0.251 [-0.347;-0.155] 3.32E-07 0.601 [0.305;0.897] 6.94E-05 -0.443 [-0.687;-0.199] 0.000367 

rs13069734 ZBTB38 -0.237 [-0.328;-0.146] 3.71E-07 0.650 [0.367;0.933] 6.64E-06 -0.572 [-0.805;-0.339] 1.43E-06 

rs9395623 TFAP2D_TFAP2B -0.234 [-0.324;-0.144] 3.89E-07 0.695 [0.416;0.974] 1.06E-06 -0.588 [-0.818;-0.358] 5.20E-07 

rs7662551 LOC100506035_PCAT4 -0.251 [-0.349;-0.153] 4.96E-07 0.570 [0.268;0.872] 0.000218 -0.384 [-0.634;-0.134] 0.00258 

rs7925340 FSHB_ARL14EP -0.267 [-0.372;-0.162] 6.68E-07 0.821 [0.496;1.146] 7.35E-07 -0.669 [-0.937;-0.401] 9.56E-07 

rs4793501 KCNJ2_BC039327 -0.218 [-0.304;-0.132] 7.01E-07 0.555 [0.290;0.820] 4.04E-05 -0.423 [-0.641;-0.205] 0.000143 

rs297593 GPD2 -0.227 [-0.318;-0.136] 1.11E-06 0.560 [0.279;0.841] 9.43E-05 -0.451 [-0.682;-0.220] 0.000131 

rs1858001 C4BPA_CD55 -0.230 [-0.323;-0.137] 1.22E-06 0.453 [0.169;0.737] 0.00178 -0.329 [-0.564;-0.094] 0.006 

rs56014528 NDUFB1 -0.287 [-0.404;-0.170] 1.40E-06 0.722 [0.362;1.082] 8.28E-05 -0.503 [-0.799;-0.207] 0.000869 

rs11210537 HIVEP3 -0.231 [-0.325;-0.137] 1.53E-06 0.581 [0.293;0.869] 7.86E-05 -0.469 [-0.706;-0.232] 0.000108 

rs1237670 HP08777 -0.234 [-0.330;-0.138] 1.57E-06 0.599 [0.304;0.894] 6.71E-05 -0.494 [-0.736;-0.252] 6.44E-05 

rs11145465 TJP2 -0.244 [-0.344;-0.144] 1.71E-06 0.670 [0.363;0.977] 1.83E-05 -0.536 [-0.787;-0.285] 2.85E-05 

rs72826094 TCF7L2 -0.272 [-0.384;-0.160] 1.79E-06 0.763 [0.424;1.102] 1.01E-05 -0.627 [-0.903;-0.351] 8.31E-06 

rs2225986 LINC00862 -0.210 [-0.297;-0.123] 2.02E-06 0.487 [0.223;0.751] 3.00E-04 -0.372 [-0.587;-0.157] 0.000706 

rs9681162 
AK124857_LMCD1-

AS1 
-0.229 [-0.323;-0.135] 2.02E-06 0.604 [0.313;0.895] 4.78E-05 -0.468 [-0.709;-0.227] 0.000137 

rs28471081 RBFOX1 -0.252 [-0.356;-0.148] 2.10E-06 0.658 [0.336;0.980] 6.21E-05 -0.496 [-0.761;-0.231] 0.000245 

rs2622646 NCOA2_TRAM1 -0.218 [-0.308;-0.128] 2.11E-06 0.616 [0.338;0.894] 1.45E-05 -0.506 [-0.736;-0.276] 1.60E-05 

rs7624084 ZBTB38 -0.209 [-0.296;-0.122] 2.32E-06 0.578 [0.310;0.846] 2.37E-05 -0.508 [-0.729;-0.287] 6.52E-06 

rs1150687 ZNF192P1_TRNA_Ser -0.203 [-0.288;-0.118] 2.54E-06 0.533 [0.274;0.792] 5.55E-05 -0.394 [-0.608;-0.180] 0.00031 

rs837323 PCCA -0.197 [-0.280;-0.114] 3.24E-06 0.453 [0.197;0.709] 0.000519 -0.336 [-0.548;-0.124] 0.0019 

rs7337610 FLT1 -0.202 [-0.289;-0.115] 4.73E-06 0.505 [0.238;0.772] 0.000214 -0.382 [-0.603;-0.161] 0.000696 

rs7737179 
TMEM161B- 

AS1_LINC00461 
-0.248 [-0.354;-0.142] 4.82E-06 0.724 [0.401;1.047] 1.09E-05 -0.583 [-0.845;-0.321] 1.31E-05 

rs6420484 TSPAN10 -0.203 [-0.291;-0.115] 6.81E-06 0.388 [0.115;0.661] 0.0054 -0.207 [-0.434;0.020] 0.0743 
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rs1969091 TMC3_MEX3B -0.213 [-0.308;-0.118] 1.09E-05 0.576 [0.283;0.869] 0.000118 -0.440 [-0.683;-0.197] 0.000382 

rs115152181 CDRT15 -0.199 [-0.288;-0.110] 1.10E-05 0.444 [0.173;0.715] 0.00134 -0.300 [-0.523;-0.077] 0.00847 

rs7968679 PZP -0.193 [-0.281;-0.105] 1.69E-05 0.595 [0.327;0.863] 1.37E-05 -0.515 [-0.734;-0.296] 4.18E-06 

rs34539187 FBN1 -0.281 [-0.410;-0.152] 1.84E-05 0.693 [0.298;1.088] 0.000589 -0.544 [-0.868;-0.220] 0.000984 

rs4237285 C10orf11 -0.182 [-0.265;-0.099] 1.90E-05 0.525 [0.269;0.781] 5.68E-05 -0.433 [-0.644;-0.222] 5.62E-05 

rs9416017 DNAJB12 -0.193 [-0.282;-0.104] 1.95E-05 0.563 [0.293;0.833] 4.50E-05 -0.453 [-0.673;-0.233] 5.33E-05 

rs10853531 SLC14A2 -0.228 [-0.333;-0.123] 2.17E-05 0.503 [0.177;0.829] 0.00247 -0.344 [-0.614;-0.074] 0.0124 

rs7107014 HNRNPKP3_API5 -0.182 [-0.266;-0.098] 2.34E-05 0.440 [0.179;0.701] 0.000953 -0.283 [-0.499;-0.067] 0.0102 

rs2150458 PCBP3_COL6A1 -0.182 [-0.267;-0.097] 2.57E-05 0.411 [0.149;0.673] 0.00215 -0.326 [-0.543;-0.109] 0.00326 

rs1313240 JB175233_C14orf39 -0.195 [-0.286;-0.104] 2.69E-05 0.468 [0.186;0.750] 0.00114 -0.399 [-0.632;-0.166] 0.00079 

rs2745953 CD34 -0.198 [-0.291;-0.105] 3.26E-05 0.492 [0.206;0.778] 0.000738 -0.384 [-0.619;-0.149] 0.00137 

rs72655575 SNORA51_CA8 -0.214 [-0.316;-0.112] 3.69E-05 0.578 [0.263;0.893] 0.000323 -0.441 [-0.702;-0.180] 0.000921 

rs12526735 KCNQ5 -0.181 [-0.267;-0.095] 3.78E-05 0.442 [0.176;0.708] 0.00115 -0.335 [-0.555;-0.115] 0.00287 

rs1649068 BICC1 -0.175 [-0.260;-0.090] 5.90E-05 0.397 [0.132;0.662] 0.00337 -0.285 [-0.506;-0.064] 0.0115 

rs10003846 C4orf22_BMP3 -0.280 [-0.417;-0.143] 5.93E-05 0.695 [0.281;1.109] 0.000988 -0.540 [-0.879;-0.201] 0.00177 

rs9295499 CDKAL1 -0.185 [-0.275;-0.095] 6.06E-05 0.527 [0.248;0.806] 0.000217 -0.451 [-0.683;-0.219] 0.000138 

rs36024104 LRFN5 -0.233 [-0.347;-0.119] 6.16E-05 0.546 [0.201;0.891] 0.00191 -0.397 [-0.677;-0.117] 0.00545 

rs10122788 MVB12B -0.172 [-0.257;-0.087] 7.27E-05 0.533 [0.271;0.795] 6.77E-05 -0.433 [-0.650;-0.216] 9.47E-05 

rs1790165 NTM -0.171 [-0.257;-0.085] 8.90E-05 0.398 [0.133;0.663] 0.0032 -0.292 [-0.511;-0.073] 0.00889 

rs17382981 CYP26A1_MYOF -0.166 [-0.249;-0.083] 9.26E-05 0.503 [0.248;0.758] 0.000108 -0.397 [-0.608;-0.186] 0.000222 

rs6903823 SCAND3 -0.194 [-0.292;-0.096] 9.72E-05 0.466 [0.166;0.766] 0.00236 -0.347 [-0.595;-0.099] 0.00604 

rs1454776 GALNT15 -0.169 [-0.255;-0.083] 0.000126 0.524 [0.257;0.791] 0.000123 -0.457 [-0.679;-0.235] 5.37E-05 

rs1983554 MEI1_bK250D10.C22.8 -0.176 [-0.269;-0.083] 0.000195 0.448 [0.163;0.733] 0.00206 -0.347 [-0.582;-0.112] 0.00378 

rs11654644 B4GALNT2_TRNA_Gln -0.207 [-0.317;-0.097] 0.000239 0.557 [0.219;0.895] 0.00124 -0.458 [-0.733;-0.183] 0.00111 

rs1928175 LINC00340 -0.163 [-0.252;-0.074] 0.000311 0.329 [0.057;0.601] 0.0178 -0.250 [-0.475;-0.025] 0.0294 

rs11723482 PCAT4_ANTXR2 -0.184 [-0.284;-0.084] 0.000321 0.457 [0.15;0.764] 0.00352 -0.387 [-0.639;-0.135] 0.00264 

rs4808962 GATAD2A -0.206 [-0.318;-0.094] 0.00033 0.512 [0.169;0.855] 0.00342 -0.387 [-0.667;-0.107] 0.00682 

rs1994840 C4orf22 -0.188 [-0.292;-0.084] 0.000409 0.458 [0.145;0.771] 0.0041 -0.353 [-0.605;-0.101] 0.00597 

rs11589487 AK097193_BC030753 -0.155 [-0.241;-0.069] 0.000417 0.393 [0.126;0.660] 0.00396 -0.305 [-0.527;-0.083] 0.00704 

rs1207782 LINC00340 -0.158 [-0.248;-0.068] 0.000614 0.305 [0.028;0.582] 0.0311 -0.222 [-0.450;0.006] 0.0568 

rs10880855 ARID2 -0.148 [-0.233;-0.063] 0.000636 0.415 [0.151;0.679] 0.00204 -0.339 [-0.557;-0.121] 0.00232 

rs7122817 DSCAML1 -0.146 [-0.23;-0.062] 0.000662 0.355 [0.095;0.615] 0.0074 -0.282 [-0.497;-0.067] 0.0101 

rs4795364 MED1 -0.174 [-0.275;-0.073] 0.00076 0.470 [0.160;0.780] 0.00301 -0.414 [-0.670;-0.158] 0.00151 

rs4260345 THRB -0.154 [-0.244;-0.064] 0.000777 0.340 [0.065;0.615] 0.0154 -0.236 [-0.462;-0.010] 0.0406 

rs807037 KAZALD1 -0.152 [-0.241;-0.063] 0.000793 0.359 [0.085;0.633] 0.0103 -0.261 [-0.487;-0.035] 0.0238 

rs2116093 BC043573 -0.147 [-0.233;-0.061] 0.000816 0.390 [0.124;0.656] 0.00406 -0.277 [-0.497;-0.057] 0.0138 

rs9388766 L3MBTL3 -0.160 [-0.254;-0.066] 0.000872 0.356 [0.067;0.645] 0.0156 -0.219 [-0.457;0.019] 0.0708 

rs9547035 LINC00333_LINC00351 -0.166 [-0.264;-0.068] 0.000894 0.375 [0.073;0.677] 0.015 -0.330 [-0.579;-0.081] 0.00946 

rs4764038 GRIN2B -0.161 [-0.258;-0.064] 0.00116 0.376 [0.078;0.674] 0.0135 -0.323 [-0.569;-0.077] 0.01 

rs8075280 POLR2A_TNFSF12 -0.143 [-0.231;-0.055] 0.00136 0.357 [0.089;0.625] 0.00914 -0.272 [-0.492;-0.052] 0.0152 

rs79953651 ANTXR2 -0.371 [-0.598;-0.144] 0.00137 0.994 [0.306;1.682] 0.0046 -0.794 [-1.355;-0.233] 0.00558 

rs11088317 NRIP1_USP25 -0.151 [-0.244;-0.058] 0.00153 0.392 [0.106;0.678] 0.00718 -0.299 [-0.533;-0.065] 0.0121 

rs3110134 SNORA51_CA8 -0.145 [-0.235;-0.055] 0.00163 0.272 [-0.01;0.554] 0.059 -0.176 [-0.412;0.060] 0.144 

rs10458138 LOC100508120 -0.170 [-0.276;-0.064] 0.00172 0.460 [0.136;0.784] 0.00534 -0.396 [-0.66;-0.132] 0.00331 

rs17125093 TTC8_TRNA_Ala -0.169 [-0.275;-0.063] 0.00182 0.528 [0.201;0.855] 0.00157 -0.457 [-0.726;-0.188] 0.000855 

rs79266634 RBFOX1 -0.233 [-0.38;-0.086] 0.0019 0.5 [0.054;0.946] 0.0282 -0.332 [-0.698;0.034] 0.0751 

rs1359543 RCBTB1 -0.143 [-0.234;-0.052] 0.002 0.402 [0.125;0.679] 0.00451 -0.334 [-0.563;-0.105] 0.00419 

rs1064583 COL10A1 -0.126 [-0.208;-0.044] 0.00258 0.201 [-0.056;0.458] 0.126 -0.134 [-0.348;0.08] 0.22 

rs1358684 SEMA3D_GRM3 -0.14 [-0.232;-0.048] 0.0029 0.418 [0.135;0.701] 0.00378 -0.363 [-0.596;-0.13] 0.00226 

rs55885222 SNTB1 -0.133 [-0.221;-0.045] 0.0031 0.305 [0.035;0.575] 0.0267 -0.216 [-0.438;0.006] 0.0562 

rs117735470 ST8SIA1_C2CD5 -0.216 [-0.36;-0.072] 0.00335 0.585 [0.147;1.023] 0.00893 -0.472 [-0.833;-0.111] 0.0105 

rs17428076 HAT1_METAP1D -0.139 [-0.235;-0.043] 0.00458 0.348 [0.053;0.643] 0.0209 -0.321 [-0.565;-0.077] 0.00984 

rs10760673 TGFBR1 -0.152 [-0.258;-0.046] 0.00483 0.373 [0.046;0.7] 0.0255 -0.303 [-0.575;-0.031] 0.0292 

rs235770 BMP2 -0.123 [-0.209;-0.037] 0.00498 0.228 [-0.038;0.494] 0.0924 -0.163 [-0.383;0.057] 0.146 

rs1555075 RALY -0.124 [-0.211;-0.037] 0.00527 0.333 [0.066;0.6] 0.0145 -0.285 [-0.505;-0.065] 0.0113 

rs7207217 BC039327_D43770 -0.126 [-0.215;-0.037] 0.00566 0.342 [0.068;0.616] 0.0145 -0.262 [-0.487;-0.037] 0.0224 

rs6753137 FAM150B_TMEM18 -0.121 [-0.207;-0.035] 0.00598 0.258 [-0.006;0.522] 0.0557 -0.201 [-0.418;0.016] 0.0691 

rs17032696 CAMKMT_SIX3 -0.156 [-0.267;-0.045] 0.00601 0.366 [0.025;0.707] 0.0356 -0.296 [-0.576;-0.016] 0.0382 

rs7933504 KCNJ5 -0.13 [-0.223;-0.037] 0.00632 0.252 [-0.037;0.541] 0.0874 -0.149 [-0.388;0.09] 0.222 

rs28658452 MYCN_SNORA40 -0.214 [-0.373;-0.055] 0.00848 0.679 [0.185;1.173] 0.00703 -0.59 [-1.001;-0.179] 0.00488 

rs284818 ST18_FAM150A -0.172 [-0.3;-0.044] 0.00856 0.379 [-0.011;0.769] 0.0567 -0.306 [-0.623;0.011] 0.0585 

rs35337422 RD3L -0.156 [-0.275;-0.037] 0.0103 0.398 [0.034;0.762] 0.0322 -0.328 [-0.628;-0.028] 0.0322 

rs11178469 PTPRR -0.132 [-0.235;-0.029] 0.0121 0.313 [-0.004;0.63] 0.053 -0.203 [-0.463;0.057] 0.126 

rs4894529 FNDC3B -0.104 [-0.191;-0.017] 0.0185 0.259 [-0.008;0.526] 0.0568 -0.163 [-0.384;0.058] 0.148 

rs4687586 CACNA1D -0.109 [-0.201;-0.017] 0.0201 0.28 [-0.006;0.566] 0.0549 -0.248 [-0.485;-0.011] 0.0404 

rs7941828 MPPED2 -0.105 [-0.194;-0.016] 0.0208 0.265 [-0.012;0.542] 0.061 -0.204 [-0.434;0.026] 0.0823 

rs2823097 NRIP1_USP25 -0.104 [-0.194;-0.014] 0.0237 0.294 [0.019;0.569] 0.0364 -0.249 [-0.475;-0.023] 0.0306 

rs56055503 MAF_DYNLRB2 -0.114 [-0.215;-0.013] 0.0263 0.347 [0.034;0.66] 0.0297 -0.33 [-0.59;-0.07] 0.0128 

rs931302 NONE_SETMAR -0.101 [-0.193;-0.009] 0.0306 0.252 [-0.029;0.533] 0.0787 -0.213 [-0.443;0.017] 0.0695 

rs11202736 RNLS -0.105 [-0.2;-0.01] 0.0307 0.273 [-0.021;0.567] 0.0689 -0.259 [-0.503;-0.015] 0.0373 

rs9680365 GRIK1 -0.167 [-0.394;0.06] 0.15 0.414 [-0.28;1.108] 0.242 -0.303 [-0.869;0.263] 0.294 

rs9516194 GPC5_GPC6 -0.056 [-0.139;0.027] 0.189 0.047 [-0.214;0.308] 0.724 -0.033 [-0.246;0.18] 0.762 

rs11952819 ZNF366 -0.058 [-0.152;0.036] 0.227 0.078 [-0.213;0.369] 0.599 -0.033 [-0.272;0.206] 0.787 

rs10187371 ZEB2 -0.072 [-0.189;0.045] 0.228 0.148 [-0.213;0.509] 0.421 -0.119 [-0.417;0.179] 0.433 

rs9606967 AK123891_SYN3 -0.063 [-0.169;0.043] 0.244 0.238 [-0.087;0.563] 0.152 -0.231 [-0.498;0.036] 0.0896 

rs1532278 CLU -0.040 [-0.128;0.048] 0.372 0.087 [-0.182;0.356] 0.527 -0.096 [-0.314;0.122] 0.389 

rs7971334 PDE3A -0.036 [-0.132;0.060] 0.462 0.051 [-0.244;0.346] 0.734 -0.035 [-0.282;0.212] 0.781 
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rs7449443 FLJ16171_DRD1 -0.019 [-0.106;0.068] 0.668 -0.037 [-0.308;0.234] 0.789 0.0310 [-0.188;0.250] 0.782 

Abbreviations: SNP - single nucleotide polymorphism, CHR - chromosome, BP - base pair, EA -

effect allele, CI - confidence interval, 0 - meta-regression intercept effect size in dioptres per 

copy of the risk allele, 1 - meta-regression coefficients for the linear term and 2 - meta-

regression coefficients for the quadratic term. 
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Appendix F: Distribution of effect sizes for all height-associated variants 
that were obtained from GIANT Consortium 

 

 



 

152 

 

 

 



 

153 

 

 

 

 



 

154 

 



 

155 

 

 



 

156 

 
 

 

 

 

 

 



 

157 

Appendix G: Summary statistics for standard linear regression effect size 
estimates for association with height. 
 

SNP Gene CHR BP EA MAF Beta [95% CI] P 
rs143384 GDF5 20 34025756 G 0.40 0.637 [0.571; 0.702] 2.14 x 10-80 

rs724016 ZBTB38 3 141105570 G 0.45 0.540 [0.475; 0.605] 1.17 x 10-59 

rs1812175 HHIP 4 145574844 A 0.17 -0.562 [-0.649; -0.476] 2.05 x 10-37 

rs3791679 EFEMP1 2 56096892 G 0.22 -0.495 [-0.572; -0.417] 6.99 x 10-36 

rs7692995 LCORL 4 17936634 C 0.16 -0.556 [-0.645; -0.467] 2.63 x 10-34 

rs6845999 HHIP 4 145565826 T 0.43 0.397 [0.331; 0.462] 9.2 x 10-33 

rs798497 GNA12 7 2795957 G 0.30 -0.427 [-0.498; -0.357] 3.21 x 10-32 

rs42039 CDK6 7 92244422 T 0.25 0.448 [0.373; 0.523] 1.62 x 10-31 

rs8756 HMGA2 12 66359752 C 0.48 0.385 [0.32; 0.449] 3.41 x 10-31 

rs4896582 GPR126 6 142703877 A 0.30 -0.403 [-0.474; -0.332] 6.46 x 10-29 

rs552707 JAZF1 7 28205303 T 0.30 0.401 [0.33; 0.471] 1.65 x 10-28 

rs3825199 SOCS2 12 93976954 G 0.22 0.434 [0.356; 0.511] 7.31 x 10-28 

rs3118905 DLEU7 13 51105334 A 0.28 -0.402 [-0.474; -0.329] 1.32 x 10-27 

rs7162542 ADAMTSL3 15 84514290 C 0.45 -0.358 [-0.423; -0.293] 3.23 x 10-27 

rs4369779 CABLES1 18 20735408 T 0.21 -0.431 [-0.51; -0.352] 1.58 x 10-26 

rs16942341 ACAN 15 89388905 T 0.03 -1.052 [-1.247; -0.857] 3.52 x 10-26 

rs17556750 PRKG2 4 82155568 A 0.29 0.370 [0.298; 0.442] 6.16 x 10-24 

rs4733724 MLZE 8 130723728 G 0.20 -0.413 [-0.493; -0.332] 7.92 x 10-24 

rs806794 HIST1H2BF 6 26200677 G 0.27 -0.373 [-0.446; -0.300] 1.52 x 10-23 

rs2289195 DNMT3A 2 25463483 A 0.41 0.328 [0.262; 0.393] 1.39 x 10-22 

rs2070776 CD79B 17 62007498 A 0.35 -0.333 [-0.401; -0.265] 4.54 x 10-22 

rs1884897 BMP2 20 6612832 A 0.37 0.330 [0.263; 0.398] 5.77 x 10-22 

rs2871865 IGF1R 15 99194896 G 0.12 -0.499 [-0.600; -0.397] 5.84 x 10-22 

rs9428104 SPAG17 1 118855587 A 0.25 -0.36 [-0.434; -0.285] 3.54 x 10-21 

rs2425163 PHF20 20 34432670 G 0.17 0.412 [0.327; 0.498] 4.27 x 10-21 

rs10958476 PLAG1 8 57095808 C 0.21 0.373 [0.294; 0.452] 1.93 x 10-20 

rs12214804 HMGA1 6 34188866 C 0.09 0.535 [0.422; 0.649] 2.27 x 10-20 

rs2854207 CSH2 17 61947107 G 0.28 0.338 [0.266; 0.411] 3.85 x 10-20 

rs2888877 CDK6 7 92228400 T 0.20 0.379 [0.298; 0.460] 5.79 x 10-20 

rs2079795 C17orf82 17 59496649 T 0.33 0.313 [0.245; 0.381] 2.34 x 10-19 

rs2284746 MFAP2 1 17306675 C 0.48 -0.296 [-0.361; -0.232] 2.64 x 10-19 

rs2257011 SH3GL3 15 84266145 T 0.49 0.296 [0.231; 0.361] 4.77 x 10-19 

rs11049611 CCDC91 12 28600244 T 0.31 -0.317 [-0.387; -0.247] 8.4 x 10-19 

rs2687950 KCNRG 13 50718468 T 0.25 0.334 [0.260; 0.408] 9.79 x 10-19 

rs9392918 BMP6 6 7708631 C 0.48 0.290 [0.225; 0.355] 3.05 x 10-18 

rs3760318 CENTA2 17 29247715 A 0.38 -0.296 [-0.363; -0.23] 3.12 x 10-18 

rs7740107 L3MBTL3 6 130374461 T 0.26 0.325 [0.252; 0.398] 3.12 x 10-18 

rs10859567 CRADD 12 94126925 G 0.45 -0.29 [-0.356; -0.225] 3.16 x 10-18 

rs1415701 L3MBTL3 6 130345835 A 0.26 -0.33 [-0.405; -0.256] 4.52 x 10-18 

rs4448343 PTCH1 9 98266370 G 0.33 0.300 [0.230; 0.369] 2.23 x 10-17 

rs3800461 C6orf106 6 34616322 C 0.11 0.431 [0.330; 0.533] 7.64 x 10-17 

rs817300 PTCH1 9 98380222 A 0.08 -0.516 [-0.637; -0.394] 1.09 x 10-16 

rs6457374 HLA-C 6 31272261 C 0.30 0.298 [0.227; 0.368] 1.1 x 10-16 

rs10748128 FRS2 12 69827658 T 0.35 0.286 [0.218; 0.354] 1.32 x 10-16 

rs9835332 C3orf63 3 56667682 C 0.46 -0.273 [-0.338; -0.208] 1.53 x 10-16 

rs1155939 C6orf173 6 126866133 A 0.49 0.270 [0.205; 0.334] 2.67 x 10-16 

rs11144688 PCSK5 9 78542286 A 0.12 -0.412 [-0.512; -0.313] 3.67 x 10-16 

rs9650315 CHCHD7 8 57155598 T 0.13 -0.400 [-0.496; -0.304] 3.94 x 10-16 

rs2280470 ACAN 15 89395626 A 0.32 0.284 [0.215; 0.353] 7.08 x 10-16 

rs7870753 HABP4 9 99201585 G 0.22 0.320 [0.242; 0.398] 8.87 x 10-16 

rs314263 LIN28B 6 105392745 C 0.32 0.283 [0.214; 0.353] 1.05 x 10-15 

rs3116168 DIS3L2 2 232989831 T 0.27 -0.294 [-0.366; -0.222] 1.68 x 10-15 

rs11880992 DOT1L 19 2176403 A 0.41 0.264 [0.198; 0.330] 3.98 x 10-15 

rs422421 FGFR4 5 176517326 T 0.22 -0.314 [-0.392; -0.235] 5.53 x 10-15 

rs7652177 FNDC3B 3 171969077 C 0.50 -0.252 [-0.317; -0.188] 2.11 x 10-14 

rs4868126 FBXW11 5 171283469 T 0.40 -0.270 [-0.34; -0.200] 4.57 x 10-14 

rs606452 SERPINH1 11 75276178 A 0.14 0.357 [0.264; 0.450] 5.12 x 10-14 

rs12639764 TET2 4 106216205 C 0.39 -0.255 [-0.321; -0.188] 7.76 x 10-14 

rs6919534 ZNF76 6 35246903 G 0.14 -0.355 [-0.448; -0.262] 8.08 x 10-14 

rs2278483 CENPO 2 25040082 T 0.22 0.291 [0.213; 0.369] 2.45 x 10-13 

rs3814333 GLT25D2 1 184007119 T 0.32 0.260 [0.190; 0.330] 3.16 x 10-13 

rs6894139 MEF2C 5 88327782 G 0.47 -0.241 [-0.306; -0.176] 3.35 x 10-13 

rs6694089 DNM3 1 172083881 A 0.29 0.264 [0.192; 0.335] 4.35 x 10-13 

rs17511102 CDC42EP3 2 37960613 T 0.09 0.413 [0.301; 0.526] 5.16 x 10-13 

rs4803468 BCKDHA 19 41922352 A 0.39 0.242 [0.176; 0.308] 6.69 x 10-13 

rs3817428 ACAN 15 89415247 G 0.27 -0.266 [-0.339; -0.193] 1.11 x 10-12 

rs1074683 PXMP4 20 32304653 G 0.26 -0.266 [-0.340; -0.192] 2.07 x 10-12 

rs7033487 PAPPA 9 119129257 C 0.20 -0.29 [-0.371; -0.209] 2.35 x 10-12 

rs9993613 ADAMTS3 4 73476014 T 0.47 0.231 [0.166; 0.295] 2.93 x 10-12 

rs6696239 ZNF678 1 227750068 A 0.19 -0.290 [-0.372; -0.208] 4.16 x 10-12 

rs7154721 TRIP11 14 92427348 C 0.42 -0.230 [-0.296; -0.165] 5.04 x 10-12 

rs11677466 DIS3L2 2 232982257 T 0.09 0.390 [0.279; 0.501] 6.21 x 10-12 

rs1401795 C17orf67 17 54839652 G 0.50 -0.228 [-0.294; -0.163] 6.64 x 10-12 

rs10990303 PTCH1 9 98410405 T 0.22 0.279 [0.199; 0.359] 9.21 x 10-12 

rs17450430 STAU1 20 47772264 T 0.24 0.261 [0.185; 0.337] 1.66 x 10-11 

rs9292468 C5orf23 5 32819073 T 0.40 0.226 [0.160; 0.292] 2.27 x 10-11 

rs1681630 PTPRJ 11 47969152 T 0.34 0.232 [0.164; 0.301] 3.22 x 10-11 

rs12538407 IGF2BP3 7 23521316 G 0.42 -0.221 [-0.287; -0.155] 5.16 x 10-11 
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rs509035 GHSR 3 172163449 A 0.32 0.232 [0.163; 0.302] 5.62 x 10-11 

rs6955948 TMEM176A 7 150508720 T 0.27 0.242 [0.170; 0.315] 6.66 x 10-11 

rs4548838 ADAMTS17 15 100761190 T 0.46 0.217 [0.152; 0.282] 6.76 x 10-11 

rs2857693 BAT2 6 31588384 T 0.36 -0.223 [-0.29; -0.156] 7.6 x 10-11 

rs10780910 SPIN1 9 90849255 T 0.41 0.220 [0.153; 0.286] 9.12 x 10-11 

rs991967 TGFB2 1 218615451 C 0.29 0.235 [0.164; 0.307] 1.13 x 10-10 

rs11633371 ACAN 15 89356832 T 0.48 0.211 [0.146; 0.276] 1.69 x 10-10 

rs6439168 H1FX 3 129050943 A 0.22 -0.254 [-0.332; -0.176] 1.72 x 10-10 

rs2974438 SLIT3 5 168250903 A 0.21 -0.260 [-0.340; -0.180] 1.92 x 10-10 

rs181338 ZCCHC6 9 89108161 C 0.50 -0.210 [-0.275; -0.145] 2.2 x 10-10 

rs12125882 DNM3 1 172141403 T 0.42 0.212 [0.146; 0.277] 2.31 x 10-10 

rs2856321 ETV6 12 11855773 G 0.36 0.216 [0.149; 0.283] 3.12 x 10-10 

rs3020418 ESR1 6 152345162 A 0.27 0.232 [0.160; 0.305] 3.5 x 10-10 

rs2581830 RFT1 3 53134098 T 0.40 0.211 [0.145; 0.277] 3.71 x 10-10 

rs1368380 FBXW11 5 171285632 T 0.43 0.205 [0.140; 0.270] 6.61 x 10-10 

rs1036821 ZFAT 8 135650483 A 0.30 -0.223 [-0.294; -0.152] 7.2 x 10-10 

rs4240326 ANAPC10 4 145839264 A 0.45 0.203 [0.138; 0.268] 8.64 x 10-10 

rs12209223 FILIP1 6 76164589 A 0.10 0.335 [0.227; 0.443] 1.19 x 10-9 

rs17721822 BMP2 20 6469596 A 0.36 -0.209 [-0.277; -0.142] 1.22 x 10-9 

rs6902771 ESR1 6 152157881 T 0.46 0.200 [0.136; 0.265] 1.3 x 10-9 

rs9217 ZBTB4 17 7363088 C 0.36 0.207 [0.139; 0.274] 2 x 10-9 

rs11684404 EIF2AK3 2 88924622 C 0.34 0.209 [0.140; 0.277] 2.03 x 10-9 

rs2093210 C14orf39 14 60957279 C 0.39 0.201 [0.135; 0.267] 2.35 x 10-9 

rs1923367 ZCCHC24 10 81132829 C 0.46 -0.198 [-0.263; -0.133] 2.7 x 10-9 

rs1753637 DLEU7 13 51084173 T 0.31 0.212 [0.142; 0.282] 2.94 x 10-9 

rs1809889 FAM101A 12 124801226 T 0.27 0.220 [0.148; 0.293] 3.15 x 10-9 

rs7701414 PDLIM4 5 131585958 G 0.46 0.195 [0.130; 0.260] 3.91 x 10-9 

rs7971536 CCDC53 12 102373788 A 0.50 -0.195 [-0.26; -0.130] 4.17 x 10-9 

rs11175992 HMGA2 12 66391396 A 0.24 -0.250 [-0.333; -0.166] 4.71 x 10-9 

rs310421 FAM46A 6 81792063 G 0.45 -0.193 [-0.258; -0.128] 6.8 x 10-9 

rs4986172 ACBD4 17 43216281 T 0.34 -0.201 [-0.269; -0.132] 8.84 x 10-9 

rs4735677 PXMP3 8 78148191 T 0.29 0.208 [0.136; 0.280] 1.25 x 10-8 

rs1950500 NFATC4 14 24830850 T 0.29 0.206 [0.135; 0.277] 1.26 x 10-8 

rs4337252 LOXL1 15 74226765 C 0.49 0.186 [0.121; 0.250] 1.89 x 10-8 

rs7733195 FAM44B 5 172994624 A 0.35 -0.194 [-0.262; -0.126] 2.07 x 10-8 

rs12474201 SOCS5 2 46921285 A 0.37 0.187 [0.120; 0.254] 4.23 x 10-8 

rs2305833 VIL1 2 219305404 G 0.43 -0.182 [-0.248; -0.117] 5.37 x 10-8 

rs526896 PITX1 5 134356705 G 0.28 -0.200 [-0.272; -0.127] 5.96 x 10-8 

rs10770705 SLCO1C1 12 20857467 A 0.34 0.189 [0.121; 0.257] 6.03 x 10-8 

rs6600365 SCMH1 1 41556253 C 0.44 0.179 [0.114; 0.244] 7.2 x 10-8 

rs7716219 SLC38A9 5 54955071 T 0.30 0.193 [0.122; 0.263] 8.85 x 10-8 

rs1265097 PSORS1C1/PSORS1C2 6 31106459 A 0.08 -0.326 [-0.445; -0.206] 8.92 x 10-8 

rs7551732 PKN2 1 89139041 T 0.42 -0.178 [-0.244; -0.113] 1.06 x 10-7 

rs7466269 FUBP3 9 133464084 G 0.36 -0.183 [-0.251; -0.116] 1.07 x 10-7 

rs862034 LTBP2 14 74990746 A 0.36 -0.180 [-0.248; -0.113] 1.46 x 10-7 

rs33852 FBXW11 5 171189571 G 0.32 0.185 [0.115; 0.254] 1.7 x 10-7 

rs9967417 DYM 18 46959500 G 0.44 0.173 [0.108; 0.238] 2.1 x 10-7 

rs720390 IGF2BP2 3 185548683 A 0.37 0.175 [0.108; 0.242] 3.05 x 10-7 

rs4973429 C2orf52 2 232377818 T 0.32 -0.182 [-0.252; -0.112] 3.08 x 10-7 

rs749052 NPPC 2 232796610 C 0.06 -0.350 [-0.486; -0.214] 4.68 x 10-7 

rs12330322 RYBP 3 72455355 T 0.22 -0.196 [-0.275; -0.118] 8.69 x 10-7 

rs4141885 HIST1H1E 6 26157481 T 0.08 -0.288 [-0.410; -0.166] 3.61 x 10-6 

rs12470505 CCDC108 2 219908369 G 0.10 -0.254 [-0.363; -0.145] 5.3 x 10-6 

rs996743 OTUD4 4 146128884 G 0.09 -0.262 [-0.376; -0.149] 5.98 x 10-6 

rs648831 BCKDHB 6 80956208 C 0.47 -0.151 [-0.216; -0.085] 6.4 x 10-6 

rs5742915 PML 15 74336633 C 0.46 0.149 [0.084; 0.214] 6.5 x 10-6 

rs7849585 QSOX2 9 139111870 T 0.34 0.157 [0.088; 0.225] 7.28 x 10-6 

rs7027110 ZNF462 9 109599046 A 0.23 0.174 [0.097; 0.251] 1.04 x 10-5 

rs12458127 DYM 18 46657358 T 0.05 -0.329 [-0.477; -0.181] 1.33 x 10-5 

rs12153391 FBXW11 5 171203438 A 0.25 -0.150 [-0.225; -0.075] 8.29 x 10-5 

rs2074977 NFIC 19 3434028 C 0.36 0.135 [0.068; 0.203] 8.83 x 10-5 

rs3807931 ITGB8 7 20381674 A 0.46 0.125 [0.059; 0.190] 0.000176 

rs7534365 SV2A 1 149876124 C 0.13 0.194 [0.09; 0.299] 0.000269 

rs2573625 ADAMTS17 15 100513158 C 0.34 -0.126 [-0.195; -0.057] 0.000363 

rs227724 C17orf67 17 54778817 T 0.34 0.119 [0.051; 0.187] 0.000636 

rs1582931 CCDC100 5 122657199 A 0.47 -0.112 [-0.178; -0.046] 0.000868 

rs2806561 LUZP1 1 23504795 G 0.44 -0.101 [-0.166; -0.036] 0.00226 

rs1659127 MKL2 16 14388305 A 0.33 0.106 [0.037; 0.175] 0.00245 

rs10948222 SUPT3H 6 45244415 C 0.40 0.099 [0.033; 0.165] 0.00317 

rs7043114 IPPK 9 95387983 C 0.44 0.083 [0.018; 0.148] 0.0128 

Abbreviations: SNP - single nucleotide polymorphism, CHR - chromosome, BP - base pair, EA - 

effect allele, MAF - minor allele frequency,  Beta - the effect size in dioptres per copy of the 

risk allele, CI - confidence interval. 
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Appendix H: Summary statistics for standard linear regression effect size 
estimates for association with height. 
 

SNP GENE 
0 1 2 

Beta [95% CI] P Beta [95% CI] P Beta [95% CI] P 
rs143384 GDF5 0.567 [0.441; 0.693] 7.21 x 10-18 0.069 [-0.497; 0.634] 0.812 0.150 [-0.410; 0.710] 0.599 

rs724016 ZBTB38 0.481 [0.351; 0.611] 1.42 x 10-12 0.291 [-0.284; 0.866] 0.322 -0.274 [-0.839; 0.292] 0.343 

rs3825199 SOCS2 0.551 [0.401; 0.701] 1.87 x 10-12 -0.682 [-1.351; -0.013] 0.0456 0.715 [0.056; 1.373] 0.0333 

rs3791679 EFEMP1 -0.536 [-0.685; -0.387] 5.31 x 10-12 0.260 [-0.408; 0.929] 0.445 -0.239 [-0.897; 0.419] 0.476 

rs9428104 SPAG17 -0.449 [-0.592; -0.306] 1.70 x 10-09 0.345 [-0.291; 0.982] 0.288 -0.272 [-0.898; 0.354] 0.395 

rs17556750 PRKG2 0.428 [0.289; 0.566] 3.68 x 10-09 -0.062 [-0.683; 0.558] 0.845 -0.106 [-0.721; 0.509] 0.735 

rs11144688 PCSK5 -0.578 [-0.769; -0.387] 6.65 x 10-09 0.814 [-0.045; 1.673] 0.0633 -0.775 [-1.629; 0.079] 0.0751 

rs4896582 GPR126 -0.402 [-0.539; -0.266] 1.67 x 10-08 -0.032 [-0.64; 0.576] 0.918 0.088 [-0.511; 0.686] 0.774 

rs2871865 IGF1R -0.571 [-0.765; -0.376] 2.00 x 10-08 0.180 [-0.695; 1.056] 0.687 -0.029 [-0.892; 0.835] 0.948 

rs7692995 LCORL -0.523 [-0.706; -0.34] 4.00 x 10-08 -0.290 [-1.104; 0.524] 0.486 0.367 [-0.439; 1.173] 0.372 

rs806794 HIST1H2BF -0.401 [-0.541; -0.261] 4.00 x 10-08 0.163 [-0.463; 0.788] 0.61 -0.170 [-0.786; 0.446] 0.589 

rs42039 CDK6 0.402 [0.261; 0.544] 5.23 x 10-08 0.208 [-0.431; 0.848] 0.523 -0.183 [-0.82; 0.454] 0.573 

rs3760318 CENTA2 -0.363 [-0.493; -0.232] 9.87 x 10-08 0.132 [-0.448; 0.712] 0.655 0.001 [-0.569; 0.571] 0.998 

rs2289195 DNMT3A 0.348 [0.221; 0.475] 1.60 x 10-07 -0.070 [-0.638; 0.497] 0.809 0.064 [-0.495; 0.622] 0.823 

rs4369779 CABLES1 -0.420 [-0.574; -0.265] 1.86 x 10-07 -0.120 [-0.809; 0.568] 0.732 0.134 [-0.546; 0.814] 0.699 

rs2857693 BAT2 -0.34 [-0.465; -0.215] 1.90 x 10-07 0.482 [-0.082; 1.047] 0.0941 -0.395 [-0.956; 0.167] 0.168 

rs11049611 CCDC91 -0.369 [-0.505; -0.233] 2.13 x 10-07 0.377 [-0.227; 0.981] 0.221 -0.397 [-0.992; 0.197] 0.19 

rs798497 GNA12 -0.366 [-0.502; -0.23] 2.62 x 10-07 -0.086 [-0.691; 0.520] 0.782 -0.051 [-0.645; 0.544] 0.867 

rs7162542 ADAMTSL3 -0.327 [-0.449; -0.204] 3.36 x 10-07 -0.151 [-0.700; 0.398] 0.589 0.167 [-0.374; 0.709] 0.545 

rs2888877 CDK6 0.396 [0.245; 0.547] 5.04 x 10-07 0.070 [-0.613; 0.754] 0.84 -0.191 [-0.874; 0.492] 0.584 

rs552707 JAZF1 0.359 [0.219; 0.500] 9.69 x 10-07 0.214 [-0.410; 0.839] 0.501 -0.256 [-0.872; 0.361] 0.417 

rs11880992 DOT1L 0.325 [0.198; 0.453] 9.71 x 10-07 -0.189 [-0.758; 0.380] 0.515 0.071 [-0.490; 0.631] 0.805 

rs1812175 HHIP -0.424 [-0.589; -0.258] 9.86 x 10-07 -0.234 [-0.977; 0.509] 0.537 -0.074 [-0.806; 0.657] 0.842 

rs16942341 ACAN -0.935 [-1.312; -0.558] 2.03 x 10-06 -0.253 [-1.931; 1.424] 0.767 0.075 [-1.579; 1.729] 0.929 

rs12209223 FILIP1 0.501 [0.298; 0.704] 2.18 x 10-06 -0.645 [-1.572; 0.281] 0.172 0.475 [-0.454; 1.404] 0.316 

rs10780910 SPIN1 0.314 [0.187; 0.441] 2.19 x 10-06 -0.520 [-1.087; 0.047] 0.0723 0.531 [-0.027; 1.090] 0.0622 

rs9835332 C3orf63 -0.305 [-0.429; -0.181] 2.59 x 10-06 0.380 [-0.176; 0.935] 0.181 -0.458 [-1.007; 0.090] 0.102 

rs8756 HMGA2 0.306 [0.181; 0.431] 2.86 x 10-06 0.169 [-0.389; 0.727] 0.553 -0.052 [-0.601; 0.496] 0.852 

rs606452 SERPINH1 0.448 [0.264; 0.632] 3.17 x 10-06 -0.282 [-1.105; 0.540] 0.501 0.174 [-0.637; 0.985] 0.675 

rs3118905 DLEU7 -0.341 [-0.483; -0.2] 3.73 x 10-06 -0.499 [-1.127; 0.128] 0.119 0.594 [-0.021; 1.208] 0.0582 

rs3800461 C6orf106 0.449 [0.263; 0.635] 3.85 x 10-06 -0.094 [-0.931; 0.743] 0.826 0.034 [-0.792; 0.859] 0.936 

rs2425163 PHF20 0.402 [0.235; 0.569] 4.04 x 10-06 0.072 [-0.668; 0.812] 0.849 -0.071 [-0.801; 0.659] 0.849 

rs12214804 HMGA1 0.557 [0.324; 0.79] 4.58 x 10-06 -0.286 [-1.309; 0.737] 0.583 0.294 [-0.709; 1.297] 0.565 

rs9292468 C5orf23 0.299 [0.173; 0.426] 5.73 x 10-06 -0.464 [-1.028; 0.100] 0.107 0.472 [-0.085; 1.028] 0.0966 

rs6845999 HHIP 0.298 [0.172; 0.424] 6.13 x 10-06 0.151 [-0.411; 0.713] 0.598 0.092 [-0.460; 0.644] 0.744 

rs10748128 FRS2 0.302 [0.172; 0.433] 9.08 x 10-06 -0.191 [-0.773; 0.391] 0.521 0.251 [-0.325; 0.826] 0.393 

rs2278483 CENPO 0.353 [0.199; 0.507] 1.08 x 10-05 0.093 [-0.586; 0.772] 0.789 -0.349 [-1.014; 0.316] 0.303 

rs10958476 PLAG1 0.364 [0.205; 0.522] 1.09 x 10-05 0.187 [-0.511; 0.884] 0.6 -0.245 [-0.928; 0.439] 0.483 

rs12639764 TET2 -0.284 [-0.41; -0.158] 1.50 x 10-05 0.083 [-0.481; 0.647] 0.773 -0.048 [-0.605; 0.509] 0.866 

rs422421 FGFR4 -0.338 [-0.491; -0.186] 2.14 x 10-05 0.023 [-0.658; 0.703] 0.948 0.060 [-0.613; 0.732] 0.862 

rs2079795 C17orf82 0.283 [0.155; 0.412] 2.27 x 10-05 -0.056 [-0.633; 0.520] 0.848 0.179 [-0.395; 0.752] 0.542 

rs7971536 CCDC53 -0.270 [-0.394; -0.146] 3.11 x 10-05 0.330 [-0.225; 0.885] 0.244 -0.283 [-0.832; 0.267] 0.313 

rs17511102 CDC42EP3 0.470 [0.253; 0.687] 3.28 x 10-05 -0.545 [-1.517; 0.426] 0.271 0.687 [-0.268; 1.642] 0.159 

rs1036821 ZFAT -0.297 [-0.435; -0.159] 3.75 x 10-05 0.321 [-0.292; 0.933] 0.305 -0.260 [-0.861; 0.342] 0.397 

rs1582931 CCDC100 -0.269 [-0.395; -0.143] 4.23 x 10-05 0.538 [-0.023; 1.100] 0.0602 -0.336 [-0.891; 0.218] 0.234 

rs2687950 KCNRG 0.309 [0.164; 0.454] 4.46 x 10-05 0.142 [-0.504; 0.789] 0.666 -0.140 [-0.776; 0.497] 0.667 

rs1155939 C6orf173 0.262 [0.138; 0.386] 5.19 x 10-05 -0.150 [-0.704; 0.405] 0.597 0.223 [-0.326; 0.772] 0.427 

rs991967 TGFB2 0.291 [0.153; 0.429] 5.46 x 10-05 -0.056 [-0.67; 0.558] 0.858 -0.082 [-0.687; 0.523] 0.791 

rs2856321 ETV6 0.269 [0.141; 0.398] 5.76 x 10-05 -0.210 [-0.783; 0.363] 0.473 0.178 [-0.386; 0.743] 0.536 

rs2257011 SH3GL3 0.261 [0.136; 0.386] 6.25 x 10-05 0.182 [-0.377; 0.740] 0.524 -0.205 [-0.757; 0.346] 0.465 

rs1884897 BMP2 0.268 [0.139; 0.397] 6.75 x 10-05 0.024 [-0.551; 0.599] 0.935 0.142 [-0.426; 0.710] 0.625 

rs17450430 STAU1 0.301 [0.156; 0.447] 6.78 x 10-05 -0.048 [-0.694; 0.598] 0.884 -0.061 [-0.699; 0.577] 0.852 

rs2284746 MFAP2 -0.256 [-0.381; -0.131] 8.34 x 10-05 -0.272 [-0.829; 0.285] 0.339 0.336 [-0.213; 0.886] 0.231 

rs6894139 MEF2C -0.257 [-0.382; -0.132] 8.38 x 10-05 -0.066 [-0.621; 0.489] 0.817 0.125 [-0.421; 0.670] 0.654 

rs2070776 CD79B -0.305 [-0.454; -0.156] 8.85 x 10-05 -0.027 [-0.698; 0.643] 0.936 -0.035 [-0.698; 0.627] 0.916 

rs3116168 DIS3L2 -0.289 [-0.431; -0.148] 9.02 x 10-05 -0.005 [-0.637; 0.627] 0.988 0.005 [-0.618; 0.628] 0.988 

rs4448343 PTCH1 0.272 [0.139; 0.406] 9.13 x 10-05 0.1440 [-0.45; 0.738] 0.635 -0.123 [-0.709; 0.463] 0.681 

rs509035 GHSR 0.274 [0.140; 0.408] 9.24 x 10-05 -0.371 [-0.971; 0.228] 0.225 0.448 [-0.144; 1.039] 0.138 

rs6919534 ZNF76 -0.364 [-0.544; -0.185] 9.91 x 10-05 0.260 [-0.539; 1.060] 0.523 -0.320 [-1.11; 0.471] 0.428 

rs6457374 HLA-C 0.274 [0.139; 0.409] 0.000101 0.303 [-0.298; 0.905] 0.323 -0.364 [-0.958; 0.231] 0.231 

rs1074683 PXMP4 -0.285 [-0.428; -0.141] 0.000145 0.085 [-0.556; 0.725] 0.795 -0.081 [-0.714; 0.552] 0.802 

rs4733724 MLZE -0.297 [-0.449; -0.145] 0.000186 -0.249 [-0.938; 0.440] 0.479 0.006 [-0.679; 0.691] 0.986 

rs10859567 CRADD -0.243 [-0.369; -0.118] 0.000208 -0.321 [-0.883; 0.241] 0.263 0.348 [-0.206; 0.902] 0.218 

rs9392918 BMP6 0.239 [0.115; 0.363] 0.000228 -0.023 [-0.578; 0.532] 0.935 0.190 [-0.359; 0.738] 0.497 

rs1415701 L3MBTL3 -0.278 [-0.422; -0.133] 0.000242 0.010 [-0.636; 0.655] 0.976 -0.128 [-0.764; 0.508] 0.693 

rs12474201 SOCS5 0.243 [0.115; 0.372] 0.000285 -0.295 [-0.866; 0.277] 0.312 0.298 [-0.265; 0.862] 0.299 

rs7033487 PAPPA -0.296 [-0.453; -0.139] 0.000296 0.233 [-0.469; 0.936] 0.516 -0.354 [-1.051; 0.344] 0.32 

rs7849585 QSOX2 0.251 [0.117; 0.384] 0.000318 -0.456 [-1.051; 0.139] 0.133 0.405 [-0.181; 0.991] 0.176 

rs2280470 ACAN 0.246 [0.114; 0.378] 0.000346 0.099 [-0.492; 0.690] 0.743 -0.031 [-0.616; 0.554] 0.917 

rs7740107 L3MBTL3 0.266 [0.123; 0.408] 0.000371 0.145 [-0.489; 0.778] 0.654 -0.071 [-0.695; 0.552] 0.822 

rs3817428 ACAN -0.257 [-0.397; -0.117] 0.000441 0.097 [-0.524; 0.718] 0.76 -0.199 [-0.811; 0.412] 0.523 

rs9217 ZBTB4 0.238 [0.108; 0.367] 0.00045 -0.078 [-0.657; 0.502] 0.793 0.013 [-0.560; 0.585] 0.965 

rs817300 PTCH1 -0.398 [-0.616; -0.18] 0.000467 -0.011 [-1.005; 0.982] 0.982 -0.330 [-1.326; 0.666] 0.516 

rs7652177 FNDC3B -0.23 [-0.356; -0.104] 0.000476 0.079 [-0.481; 0.638] 0.783 -0.181 [-0.732; 0.370] 0.519 

rs2305833 VIL1 -0.234 [-0.363; -0.106] 0.000489 0.321 [-0.249; 0.892] 0.27 -0.314 [-0.874; 0.246] 0.272 

rs10770705 SLCO1C1 0.238 [0.107; 0.369] 0.000515 -0.018 [-0.603; 0.568] 0.953 -0.162 [-0.739; 0.415] 0.582 

rs7980687 SBNO1 0.284 [0.127; 0.442] 0.000532 -0.164 [-0.860; 0.532] 0.645 0.290 [-0.393; 0.973] 0.406 

rs1401795 C17orf67 -0.229 [-0.356; -0.102] 0.000536 -0.031 [-0.595; 0.532] 0.913 0.097 [-0.458; 0.652] 0.732 

rs3814333 GLT25D2 0.247 [0.110; 0.384] 0.000538 0.068 [-0.536; 0.671] 0.826 -0.089 [-0.680; 0.501] 0.767 

rs7027110 ZNF462 0.279 [0.124; 0.435] 0.000591 -0.236 [-0.921; 0.448] 0.499 
0.0450 [-0.626; 

0.716] 
0.896 

rs11175992 HMGA2 -0.274 [-0.43; -0.118] 0.000776 0.119 [-0.582; 0.820] 0.739 -0.084 [-0.780; 0.611] 0.812 

rs314263 LIN28B 0.230 [0.098; 0.361] 0.000828 0.290 [-0.298; 0.877] 0.334 -0.288 [-0.868; 0.292] 0.331 



 

160 

rs4141885 HIST1H1E -0.41 [-0.646; -0.175] 0.000832 0.793 [-0.253; 1.84] 0.137 -0.888 [-1.925; 0.148] 0.093 

rs2573625 ADAMTS17 -0.228 [-0.362; -0.094] 0.00114 0.428 [-0.170; 1.027] 0.161 -0.366 [-0.956; 0.224] 0.224 

rs2074977 NFIC 0.211 [0.083; 0.339] 0.00158 -0.307 [-0.878; 0.264] 0.292 0.268 [-0.296; 0.832] 0.351 

rs6696239 ZNF678 -0.258 [-0.416; -0.100] 0.00174 -0.111 [-0.811; 0.589] 0.757 0.072 [-0.613; 0.756] 0.838 

rs6955948 TMEM176A 0.227 [0.087; 0.366] 0.00187 -0.193 [-0.815; 0.430] 0.544 0.327 [-0.288; 0.942] 0.297 

rs2974438 SLIT3 -0.247 [-0.401; -0.093] 0.00207 -0.480 [-1.171; 0.212] 0.174 0.700 [0.016; 1.385] 0.0449 

rs2854207 CSH2 0.225 [0.085; 0.366] 0.00215 0.400 [-0.225; 1.026] 0.21 -0.291 [-0.908; 0.325] 0.354 

rs181338 ZCCHC6 -0.197 [-0.320; -0.073] 0.00228 0.011 [-0.537; 0.558] 0.969 -0.034 [-0.570; 0.503] 0.902 

rs9993613 ADAMTS3 0.199 [0.073; 0.324] 0.00237 -0.049 [-0.605; 0.506] 0.862 0.165 [-0.379; 0.710] 0.552 

rs9967417 DYM 0.197 [0.070; 0.324] 0.00288 -0.137 [-0.700; 0.425] 0.633 0.155 [-0.397; 0.707] 0.583 

rs5742915 PML 0.192 [0.068; 0.316] 0.00301 -0.172 [-0.726; 0.382] 0.543 0.120 [-0.428; 0.669] 0.667 

rs1265097 PSORS1C1/PSORS1C2 -0.352 [-0.581; -0.123] 0.00319 0.466 [-0.554; 1.487] 0.37 -0.628 [-1.63; 0.374] 0.219 

rs4803468 BCKDHA 0.192 [0.066; 0.318] 0.00352 0.009 [-0.55; 0.569] 0.975 0.100 [-0.449; 0.650] 0.72 

rs9650315 CHCHD7 -0.267 [-0.444; -0.091] 0.00373 -0.770 [-1.573; 0.032] 0.0598 0.786 [-0.013; 1.586] 0.054 

rs10990303 PTCH1 0.234 [0.079; 0.390] 0.00395 0.057 [-0.637; 0.751] 0.872 0.078 [-0.606; 0.761] 0.824 

rs17721822 BMP2 -0.195 [-0.326; -0.065] 0.00405 -0.008 [-0.587; 0.570] 0.978 0.008 [-0.562; 0.577] 0.979 

rs1753637 DLEU7 0.198 [0.066; 0.330] 0.00417 0.081 [-0.509; 0.671] 0.787 -0.054 [-0.634; 0.525] 0.854 

rs310421 FAM46A -0.185 [-0.309; -0.061] 0.00417 0.074 [-0.478; 0.627] 0.792 -0.128 [-0.672; 0.417] 0.646 

rs12470505 CCDC108 -0.312 [-0.521; -0.102] 0.00431 0.068 [-0.859; 0.995] 0.886 0.121 [-0.789; 1.031] 0.794 

rs12538407 IGF2BP3 -0.187 [-0.314; -0.059] 0.00515 -0.180 [-0.749; 0.390] 0.536 0.192 [-0.37; 0.754] 0.503 

rs4986172 ACBD4 -0.192 [-0.325; -0.058] 0.00602 0.338 [-0.253; 0.930] 0.262 -0.537 [-1.120; 0.046] 0.0711 

rs4337252 LOXL1 0.179 [0.054; 0.304] 0.00615 -0.037 [-0.590; 0.517] 0.896 0.080 [-0.464; 0.624] 0.773 

rs862034 LTBP2 -0.182 [-0.311; -0.053] 0.00674 0.206 [-0.368; 0.780] 0.482 -0.284 [-0.849; 0.281] 0.325 

rs7870753 HABP4 0.211 [0.061; 0.361] 0.00719 0.080 [-0.591; 0.752] 0.815 0.205 [-0.456; 0.866] 0.543 

rs11677466 DIS3L2 0.313 [0.089; 0.537] 0.00741 0.176 [-0.815; 1.166] 0.728 -0.021 [-0.991; 0.948] 0.966 

rs7551732 PKN2 -0.176 [-0.303; -0.05] 0.00763 0.123 [-0.441; 0.687] 0.669 -0.241 [-0.796; 0.314] 0.395 

rs4973429 C2orf52 -0.185 [-0.318; -0.051] 0.00816 -0.107 [-0.698; 0.483] 0.722 0.159 [-0.416; 0.734] 0.587 

rs4868126 FBXW11 -0.189 [-0.326; -0.051] 0.00844 -0.435 [-1.046; 0.176] 0.163 0.433 [-0.169; 1.034] 0.159 

rs1809889 FAM101A 0.197 [0.053; 0.340] 0.00874 0.019 [-0.617; 0.655] 0.954 0.053 [-0.570; 0.675] 0.868 

rs33852 FBXW11 0.181 [0.049; 0.314] 0.00884 0.024 [-0.571; 0.619] 0.936 -0.061 [-0.650; 0.528] 0.84 

rs3020418 ESR1 0.191 [0.050; 0.332] 0.00923 0.259 [-0.363; 0.881] 0.414 -0.293 [-0.903; 0.316] 0.345 

rs11684404 EIF2AK3 0.174 [0.041; 0.307] 0.012 0.021 [-0.571; 0.613] 0.946 0.051 [-0.534; 0.636] 0.864 

rs4548838 ADAMTS17 0.167 [0.039; 0.294] 0.0121 0.088 [-0.477; 0.653] 0.759 -0.013 [-0.570; 0.544] 0.963 

rs4735677 PXMP3 0.181 [0.039; 0.322] 0.0147 0.155 [-0.469; 0.779] 0.627 -0.131 [-0.738; 0.477] 0.674 

rs1950500 NFATC4 0.169 [0.034; 0.304] 0.0162 -0.004 [-0.607; 0.600] 0.991 0.083 [-0.514; 0.681] 0.784 

rs720390 IGF2BP2 0.163 [0.033; 0.294] 0.0163 -0.062 [-0.639; 0.516] 0.835 0.115 [-0.453; 0.683] 0.691 

rs7716219 SLC38A9 0.163 [0.030; 0.296] 0.019 0.300 [-0.294; 0.894] 0.322 -0.373 [-0.957; 0.212] 0.212 

rs11633371 ACAN 0.151 [0.027; 0.274] 0.0195 0.268 [-0.282; 0.818] 0.339 -0.253 [-0.795; 0.288] 0.359 

rs4240326 ANAPC10 0.150 [0.024; 0.275] 0.0227 0.383 [-0.175; 0.941] 0.179 -0.409 [-0.957; 0.139] 0.143 

rs648831 BCKDHB -0.143 [-0.267; -0.019] 0.0277 -0.100 [-0.658; 0.458] 0.725 0.143 [-0.408; 0.694] 0.611 

rs6600365 SCMH1 0.143 [0.017; 0.268] 0.029 0.144 [-0.413; 0.700] 0.613 -0.122 [-0.670; 0.426] 0.662 

rs996743 OTUD4 -0.236 [-0.446; -0.027] 0.0305 0.072 [-0.882; 1.027] 0.882 -0.232 [-1.183; 0.719] 0.633 

rs12458127 DYM -0.330 [-0.628; -0.032] 0.0338 0.203 [-1.114; 1.521] 0.762 -0.279 [-1.566; 1.008] 0.671 

rs6439168 H1FX -0.164 [-0.314; -0.015] 0.035 -0.344 [-1.008; 0.320] 0.31 0.273 [-0.379; 0.926] 0.411 

rs227724 C17orf67 0.139 [0.009; 0.270] 0.0401 -0.097 [-0.675; 0.481] 0.743 0.091 [-0.477; 0.658] 0.754 

rs12125882 DNM3 0.131 [0.006; 0.255] 0.045 0.367 [-0.189; 0.923] 0.195 -0.340 [-0.888; 0.208] 0.224 

rs1923367 ZCCHC24 -0.127 [-0.252; -0.002] 0.0518 0.071 [-0.483; 0.626] 0.801 -0.313 [-0.857; 0.230] 0.258 

rs10948222 SUPT3H 0.126 [-0.001; 0.254] 0.0573 -0.072 [-0.637; 0.493] 0.803 0.011 [-0.544; 0.567] 0.968 

rs2093210 C14orf39 0.122 [-0.005; 0.249] 0.0656 0.213 [-0.356; 0.783] 0.463 -0.075 [-0.639; 0.489] 0.794 

rs12330322 RYBP -0.138 [-0.282; 0.006] 0.0662 0.020 [-0.634; 0.673] 0.953 -0.251 [-0.903; 0.401] 0.45 

rs7701414 PDLIM4 0.111 [-0.015; 0.237] 0.0918 0.339 [-0.224; 0.902] 0.238 -0.300 [-0.856; 0.256] 0.29 

rs2806561 LUZP1 -0.107 [-0.234; 0.019] 0.103 -0.115 [-0.672; 0.442] 0.686 0.198 [-0.35; 0.746] 0.478 

rs7466269 FUBP3 -0.110 [-0.242; 0.022] 0.111 -0.371 [-0.954; 0.213] 0.213 0.343 [-0.229; 0.915] 0.24 

rs1681630 PTPRJ 0.109 [-0.025; 0.243] 0.119 0.594 [0.000; 1.188] 0.05 -0.549 [-1.133; 0.036] 0.0657 

rs7154721 TRIP11 -0.102 [-0.229; 0.024] 0.121 -0.417 [-0.980; 0.146] 0.147 0.290 [-0.264; 0.845] 0.305 

rs6694089 DNM3 0.109 [-0.029; 0.246] 0.13 0.677 [0.069; 1.284] 0.029 -0.577 [-1.170; 0.017] 0.0568 

rs1368380 FBXW11 0.099 [-0.028; 0.226] 0.135 0.349 [-0.214; 0.913] 0.224 -0.213 [-0.767; 0.341] 0.452 

rs1659127 MKL2 0.098 [-0.032; 0.229] 0.147 -0.272 [-0.854; 0.310] 0.36 0.402 [-0.172; 0.977] 0.17 

rs526896 PITX1 -0.098 [-0.234; 0.038] 0.168 -0.362 [-0.970; 0.245] 0.243 0.240 [-0.357; 0.837] 0.431 

rs6902771 ESR1 0.087 [-0.037; 0.212] 0.179 0.370 [-0.186; 0.926] 0.193 -0.227 [-0.777; 0.323] 0.418 

rs3807931 ITGB8 0.083 [-0.041; 0.207] 0.201 0.298 [-0.254; 0.851] 0.29 -0.332 [-0.875; 0.211] 0.23 

rs7043114 IPPK 0.073 [-0.052; 0.198] 0.265 0.000 [-0.555; 0.555] 1 0.015 [-0.532; 0.561] 0.958 

rs7733195 FAM44B -0.067 [-0.196; 0.062] 0.317 -0.403 [-0.980; 0.175] 0.172 0.265 [-0.305; 0.835] 0.362 

rs7534365 SV2A -0.043 [-0.242; 0.157] 0.684 0.922 [0.023; 1.821] 0.0443 -0.748 [-1.645; 0.150] 0.103 

rs12153391 FBXW11 -0.020 [-0.163; 0.122] 0.786 -0.713 [-1.35; -0.076] 0.0283 0.729 [0.097; 1.360] 0.0237 

rs749052 NPPC 0.028 [-0.237; 0.292] 0.842 -1.306 [-2.476; -0.136] 0.0287 0.874 [-0.279; 2.027] 0.138 

Abbreviations: SNP - single nucleotide polymorphism, CHR - chromosome, BP - base pair, EA -

effect allele, CI - confidence interval, 0 - meta-regression intercept effect size in dioptres per 

copy of the risk allele, 1 - meta-regression coefficients for the linear term and 2 - meta-

regression coefficients for the quadratic term. 
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Appendix I: A comparison of AUC curves for different classification 
models across 20-fold cross validations 
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