156 research outputs found

    Worst-Case Deterministic Fully-Dynamic Biconnectivity in Changeable Planar Embeddings

    Get PDF

    Good r-Divisions Imply Optimal Amortized Decremental Biconnectivity

    Get PDF
    We present a data structure that, given a graph G of n vertices and m edges, and a suitable pair of nested r-divisions of G, preprocesses G in O(m+n) time and handles any series of edge-deletions in O(m) total time while answering queries to pairwise biconnectivity in worst-case O(1) time. In case the vertices are not biconnected, the data structure can return a cutvertex separating them in worst-case O(1) time. As an immediate consequence, this gives optimal amortized decremental biconnectivity, 2-edge connectivity, and connectivity for large classes of graphs, including planar graphs and other minor free graphs

    Parallel Batch-Dynamic Graph Connectivity

    Full text link
    In this paper, we study batch parallel algorithms for the dynamic connectivity problem, a fundamental problem that has received considerable attention in the sequential setting. The most well known sequential algorithm for dynamic connectivity is the elegant level-set algorithm of Holm, de Lichtenberg and Thorup (HDT), which achieves O(log2n)O(\log^2 n) amortized time per edge insertion or deletion, and O(logn/loglogn)O(\log n / \log\log n) time per query. We design a parallel batch-dynamic connectivity algorithm that is work-efficient with respect to the HDT algorithm for small batch sizes, and is asymptotically faster when the average batch size is sufficiently large. Given a sequence of batched updates, where Δ\Delta is the average batch size of all deletions, our algorithm achieves O(lognlog(1+n/Δ))O(\log n \log(1 + n / \Delta)) expected amortized work per edge insertion and deletion and O(log3n)O(\log^3 n) depth w.h.p. Our algorithm answers a batch of kk connectivity queries in O(klog(1+n/k))O(k \log(1 + n/k)) expected work and O(logn)O(\log n) depth w.h.p. To the best of our knowledge, our algorithm is the first parallel batch-dynamic algorithm for connectivity.Comment: This is the full version of the paper appearing in the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 201

    Faster Worst Case Deterministic Dynamic Connectivity

    Get PDF
    We present a deterministic dynamic connectivity data structure for undirected graphs with worst case update time O(n(loglogn)2logn)O\left(\sqrt{\frac{n(\log\log n)^2}{\log n}}\right) and constant query time. This improves on the previous best deterministic worst case algorithm of Frederickson (STOC 1983) and Eppstein Galil, Italiano, and Nissenzweig (J. ACM 1997), which had update time O(n)O(\sqrt{n}). All other algorithms for dynamic connectivity are either randomized (Monte Carlo) or have only amortized performance guarantees

    Faster Deterministic Fully-Dynamic Graph Connectivity

    Full text link
    We give new deterministic bounds for fully-dynamic graph connectivity. Our data structure supports updates (edge insertions/deletions) in O(log2n/loglogn)O(\log^2n/\log\log n) amortized time and connectivity queries in O(logn/loglogn)O(\log n/\log\log n) worst-case time, where nn is the number of vertices of the graph. This improves the deterministic data structures of Holm, de Lichtenberg, and Thorup (STOC 1998, J.ACM 2001) and Thorup (STOC 2000) which both have O(log2n)O(\log^2n) amortized update time and O(logn/loglogn)O(\log n/\log\log n) worst-case query time. Our model of computation is the same as that of Thorup, i.e., a pointer machine with standard AC0AC^0 instructions.Comment: To appear at SODA 2013. 19 pages, 1 figur
    corecore