5,440 research outputs found

    Variational Multiscale Stabilization and the Exponential Decay of Fine-scale Correctors

    Full text link
    This paper addresses the variational multiscale stabilization of standard finite element methods for linear partial differential equations that exhibit multiscale features. The stabilization is of Petrov-Galerkin type with a standard finite element trial space and a problem-dependent test space based on pre-computed fine-scale correctors. The exponential decay of these correctors and their localisation to local cell problems is rigorously justified. The stabilization eliminates scale-dependent pre-asymptotic effects as they appear for standard finite element discretizations of highly oscillatory problems, e.g., the poor L2L^2 approximation in homogenization problems or the pollution effect in high-frequency acoustic scattering

    Localized Orthogonal Decomposition for two-scale Helmholtz-type problems

    Full text link
    In this paper, we present a Localized Orthogonal Decomposition (LOD) in Petrov-Galerkin formulation for a two-scale Helmholtz-type problem. The two-scale problem is, for instance, motivated from the homogenization of the Helmholtz equation with high contrast, studied together with a corresponding multiscale method in (Ohlberger, Verf\"urth. A new Heterogeneous Multiscale Method for the Helmholtz equation with high contrast, arXiv:1605.03400, 2016). There, an unavoidable resolution condition on the mesh sizes in terms of the wave number has been observed, which is known as "pollution effect" in the finite element literature. Following ideas of (Gallistl, Peterseim. Comput. Methods Appl. Mech. Engrg. 295:1-17, 2015), we use standard finite element functions for the trial space, whereas the test functions are enriched by solutions of subscale problems (solved on a finer grid) on local patches. Provided that the oversampling parameter mm, which indicates the size of the patches, is coupled logarithmically to the wave number, we obtain a quasi-optimal method under a reasonable resolution of a few degrees of freedom per wave length, thus overcoming the pollution effect. In the two-scale setting, the main challenges for the LOD lie in the coupling of the function spaces and in the periodic boundary conditions.Comment: 20 page
    • …
    corecore