research

Localized Orthogonal Decomposition for two-scale Helmholtz-type problems

Abstract

In this paper, we present a Localized Orthogonal Decomposition (LOD) in Petrov-Galerkin formulation for a two-scale Helmholtz-type problem. The two-scale problem is, for instance, motivated from the homogenization of the Helmholtz equation with high contrast, studied together with a corresponding multiscale method in (Ohlberger, Verf\"urth. A new Heterogeneous Multiscale Method for the Helmholtz equation with high contrast, arXiv:1605.03400, 2016). There, an unavoidable resolution condition on the mesh sizes in terms of the wave number has been observed, which is known as "pollution effect" in the finite element literature. Following ideas of (Gallistl, Peterseim. Comput. Methods Appl. Mech. Engrg. 295:1-17, 2015), we use standard finite element functions for the trial space, whereas the test functions are enriched by solutions of subscale problems (solved on a finer grid) on local patches. Provided that the oversampling parameter mm, which indicates the size of the patches, is coupled logarithmically to the wave number, we obtain a quasi-optimal method under a reasonable resolution of a few degrees of freedom per wave length, thus overcoming the pollution effect. In the two-scale setting, the main challenges for the LOD lie in the coupling of the function spaces and in the periodic boundary conditions.Comment: 20 page

    Similar works

    Full text

    thumbnail-image