6,111 research outputs found

    The Internet's unexploited path diversity

    Get PDF
    The connectivity of the Internet at the Autonomous System level is influenced by the network operator policies implemented. These in turn impose a direction to the announcement of address advertisements and, consequently, to the paths that can be used to reach back such destinations. We propose to use directed graphs to properly represent how destinations propagate through the Internet and the number of arc-disjoint paths to quantify this network's path diversity. Moreover, in order to understand the effects that policies have on the connectivity of the Internet, numerical analyses of the resulting directed graphs were conducted. Results demonstrate that, even after policies have been applied, there is still path diversity which the Border Gateway Protocol cannot currently exploit.Comment: Submitted to IEEE Communications Letter

    Safe Inter-domain Routing under Diverse Commercial Agreements

    Get PDF
    Commercial agreements drive the routing policies used in today\u27s Internet. The two most extensively studied commercial agreements are transit and peering; however, they are only two of many diverse and continuously evolving commercial agreements that ISPs enter into. So far, the only known practical safe and robust routing policy is Gao and Rexford\u27s policy guideline, which is applicable to transit and peering agreements only. It is, therefore, of importance to identify routing policies that are safe and robust and at the same time capable of accommodating the diverse commercial agreements existing in the Internet. In particular, this paper investigates the extent to which routing policies can be devised to accommodate complex mutual transit agreements. We propose a series of policy guidelines that allow mutual transit agreements with progressively broader semantics to be established. Those policy guidelines guarantee routing safety and robustness as long as the AS graph satisfies a corresponding set of precise topological constraints. An experimental evaluation of the proposed policy guidelines demonstrates the benefits they would likely afford in terms of routing reliability, if adopted in the current Internet

    The Strategic Justification for BGP

    Get PDF
    The Internet consists of many administrative domains, or \emph{Autonomous Systems} (ASes), each owned by an economic entity (Microsoft, AT\&T, The Hebrew University, etc.). The task of ensuring interconnectivity between ASes, known as \emph{interdomain routing}, is currently handled by the \emph{Border Gateway Protocol} (BGP). ASes are self-interested and might be willing to manipulate BGP for their benefit. In this paper we present the strategic justification for using BGP for interdomain routing in today's Internet: We show that, in the realistic Gao-Rexford setting, BGP is immune to almost all forms of rational manipulation by ASes, and can easily be made immune to all such manipulations. The Gao-Rexford setting is said to accurately depict the current commercial relations between ASes in the Internet. Formally, we prove that a slight modification of BGP is incentive-compatible in \emph{ex-post Nash equilibrium}. Moreover, we show that, if a certain reasonable condition holds, then this slightly modified BGP is also \emph{collusion-proof} in ex-post Nash -- i.e., immune to rational manipulations even by \emph{coalitions} of \emph{any} size. Unlike previous works on achieving incentive-compatibility in interdomain routing, our results \emph{do not require any monetary transfer between ASes} (as is the case in practice). We also strengthen the Gao-Rexford constraints by proving that one of the three constraints can actually be enforced by the rationality of ASes if the two other constraints hold.Networks; Ex post Nash; Routing; rational manipulation; Border Gateway Protocol; Dispute Wheel

    An Adaptive Policy Management Approach to BGP Convergence

    Full text link
    The Border Gateway Protocol (BGP) is the current inter-domain routing protocol used to exchange reachability information between Autonomous Systems (ASes) in the Internet. BGP supports policy-based routing which allows each AS to independently adopt a set of local policies that specify which routes it accepts and advertises from/to other networks, as well as which route it prefers when more than one route becomes available. However, independently chosen local policies may cause global conflicts, which result in protocol divergence. In this paper, we propose a new algorithm, called Adaptive Policy Management Scheme (APMS), to resolve policy conflicts in a distributed manner. Akin to distributed feedback control systems, each AS independently classifies the state of the network as either conflict-free or potentially-conflicting by observing its local history only (namely, route flaps). Based on the degree of measured conflicts (policy conflict-avoidance vs. -control mode), each AS dynamically adjusts its own path preferences—increasing its preference for observably stable paths over flapping paths. APMS also includes a mechanism to distinguish route flaps due to topology changes, so as not to confuse them with those due to policy conflicts. A correctness and convergence analysis of APMS based on the substability property of chosen paths is presented. Implementation in the SSF network simulator is performed, and simulation results for different performance metrics are presented. The metrics capture the dynamic performance (in terms of instantaneous throughput, delay, routing load, etc.) of APMS and other competing solutions, thus exposing the often neglected aspects of performance.National Science Foundation (ANI-0095988, EIA-0202067, ITR ANI-0205294

    On Compact Routing for the Internet

    Full text link
    While there exist compact routing schemes designed for grids, trees, and Internet-like topologies that offer routing tables of sizes that scale logarithmically with the network size, we demonstrate in this paper that in view of recent results in compact routing research, such logarithmic scaling on Internet-like topologies is fundamentally impossible in the presence of topology dynamics or topology-independent (flat) addressing. We use analytic arguments to show that the number of routing control messages per topology change cannot scale better than linearly on Internet-like topologies. We also employ simulations to confirm that logarithmic routing table size scaling gets broken by topology-independent addressing, a cornerstone of popular locator-identifier split proposals aiming at improving routing scaling in the presence of network topology dynamics or host mobility. These pessimistic findings lead us to the conclusion that a fundamental re-examination of assumptions behind routing models and abstractions is needed in order to find a routing architecture that would be able to scale ``indefinitely.''Comment: This is a significantly revised, journal version of cs/050802

    In Litigation: How Far do the "Haves" Come Out Ahead?

    Get PDF
    This paper studies the consequences of asymmetric litigation costs. Under three differ- ent protocols: static legal process, dynamic legal process with exogenous sequencing and dynamic legal process with endogenous sequencing, solutions are obtained for the litigation efforts and the expected value of lawsuits on each side. Outcomes are evaluated in terms of two normative criteria: achieving `justice' and minimizing aggregate litigation cost. The theory implies that a moderate degree of asymmetry may improve access to justice. The dynamics of legal process may accentuate or diminish the effect of asymmetry. The en- dogenous sequencing protocol minimizes cost and may improve access to justice.access to justice;endogenous sequencing;dynamics of litigation process;re- source dissipation

    In Litigation: How Far do the “Haves” Come Out Ahead

    Get PDF
    This paper studies the consequences of asymmetric litigation costs. Under three differ- ent protocols: static legal process, dynamic legal process with exogenous sequencing and dynamic legal process with endogenous sequencing, solutions are obtained for the litigation efforts and the expected value of lawsuits on each side. Outcomes are evaluated in terms of two normative criteria: achieving `justice' and minimizing aggregate litigation cost. The theory implies that a moderate degree of asymmetry may improve access to justice. The dynamics of legal process may accentuate or diminish the effect of asymmetry. The en- dogenous sequencing protocol minimizes cost and may improve access to justice.access to justice;endogenous sequencing;dynamics of litigation process;re- source dissipation.
    corecore