6 research outputs found

    A Rewriting Framework for Activities Subject to Regulations

    Get PDF
    Activities such as clinical investigations or financial processes are subject to regulations to ensure quality of results and avoid negative consequences. Regulations may be imposed by multiple governmental agencies as well as by institutional policies and protocols. Due to the complexity of both regulations and activities there is great potential for violation due to human error, misunderstanding, or even intent. Executable formal models of regulations, protocols, and activities can form the foundation for automated assistants to aid planning, monitoring, and compliance checking. We propose a model based on multiset rewriting where time is discrete and is specified by timestamps attached to facts. Actions, as well as initial, goal and critical states may be constrained by means of relative time constraints. Moreover, actions may have non-deterministic effects, that is, they may have different outcomes whenever applied. We demonstrate how specifications in our model can be straightforwardly mapped to the rewriting logic language Maude, and how one can use existing techniques to improve performance. Finally, we also determine the complexity of the plan compliance problem, that is, finding a plan that leads from an initial state to a desired goal state without reaching any undesired critical state. We consider all actions to be balanced, that is, their pre and post-conditions have the same number of facts. Under this assumption on actions, we show that the plan compliance problem is PSPACE-complete when all actions have only deterministic effects and is EXPTIME-complete when actions may have non-deterministic effects

    A Multiset Rewriting Model for Specifying and Verifying Timing Aspects of Security Protocols

    Get PDF
    Catherine Meadows has played an important role in the advancement of formal methods for protocol security verification. Her insights on the use of, for example, narrowing and rewriting logic has made possible the automated discovery of new attacks and the shaping of new protocols. Meadows has also investigated other security aspects, such as, distance-bounding protocols and denial of service attacks. We have been greatly inspired by her work. This paper describes the use of Multiset Rewriting for the specification and verification of timing aspects of protocols, such as network delays, timeouts, timed intruder models and distance-bounding properties. We detail these timed features with a number of examples and describe decidable fragments of related verification problems

    Towards HIPAA-compliant healthcare systems

    Full text link
    In healthcare domain, there is a gap between healthcare systems and government regulations such as the Health In-surance Portability and Accountability Act (HIPAA). The violations of HIPAA not only may cause the disclosure of patients ’ sensitive information, but also can bring about tremendous economic loss and reputation damage to health-care providers. Taking effective measures to address this gap has become a critical requirement for all healthcare entities. However, the complexity of HIPAA regulations makes it dif-ficult to achieve this requirement. In this paper, we propose a framework to bridge such a critical gap between healthcare systems and HIPAA regulations. Our framework supports compliance-oriented analysis to determine whether a health-care system is complied with HIPAA regulations. We also describe our evaluation results to demonstrate the feasibility and effectiveness of our approach

    Time, computational complexity, and probability in the analysis of distance-bounding protocols

    Get PDF
    Many security protocols rely on the assumptions on the physical properties in which its protocol sessions will be carried out. For instance, Distance Bounding Protocols take into account the round trip time of messages and the transmission velocity to infer an upper bound of the distance between two agents. We classify such security protocols as Cyber-Physical. Time plays a key role in design and analysis of many of these protocols. This paper investigates the foundational differences and the impacts on the analysis when using models with discrete time and models with dense time. We show that there are attacks that can be found by models using dense time, but not when using discrete time. We illustrate this with an attack that can be carried out on most Distance Bounding Protocols. In this attack, one exploits the execution delay of instructions during one clock cycle to convince a verifier that he is in a location different from his actual position. We additionally present a probabilistic analysis of this novel attack. As a formal model for representing and analyzing Cyber-Physical properties, we propose a Multiset Rewriting model with dense time suitable for specifying cyber-physical security protocols. We introduce Circle-Configurations and show that they can be used to symbolically solve the reachability problem for our model, and show that for the important class of balanced theories the reachability problem is PSPACE-complete. We also show how our model can be implemented using the computational rewriting tool Maude, the machinery that automatically searches for such attacks

    Time, computational complexity, and probability in the analysis of distance-bounding protocols

    Get PDF
    Many security protocols rely on the assumptions on the physical properties in which its protocol sessions will be carried out. For instance, Distance Bounding Protocols take into account the round trip time of messages and the transmission velocity to infer an upper bound of the distance between two agents. We classify such security protocols as Cyber-Physical. Time plays a key role in design and analysis of many of these protocols. This paper investigates the foundational differences and the impacts on the analysis when using models with discrete time and models with dense time. We show that there are attacks that can be found by models using dense time, but not when using discrete time. We illustrate this with an attack that can be carried out on most Distance Bounding Protocols. In this attack, one exploits the execution delay of instructions during one clock cycle to convince a verifier that he is in a location different from his actual position. We additionally present a probabilistic analysis of this novel attack. As a formal model for representing and analyzing Cyber-Physical properties, we propose a Multiset Rewriting model with dense time suitable for specifying cyber-physical security protocols. We introduce Circle-Configurations and show that they can be used to symbolically solve the reachability problem for our model, and show that for the important class of balanced theories the reachability problem is PSPACE-complete. We also show how our model can be implemented using the computational rewriting tool Maude, the machinery that automatically searches for such attacks
    corecore