298 research outputs found

    On Recognizing Transparent Objects in Domestic Environments Using Fusion of Multiple Sensor Modalities

    Full text link
    Current object recognition methods fail on object sets that include both diffuse, reflective and transparent materials, although they are very common in domestic scenarios. We show that a combination of cues from multiple sensor modalities, including specular reflectance and unavailable depth information, allows us to capture a larger subset of household objects by extending a state of the art object recognition method. This leads to a significant increase in robustness of recognition over a larger set of commonly used objects.Comment: 12 page

    Polarized 3D: High-Quality Depth Sensing with Polarization Cues

    Get PDF
    Coarse depth maps can be enhanced by using the shape information from polarization cues. We propose a framework to combine surface normals from polarization (hereafter polarization normals) with an aligned depth map. Polarization normals have not been used for depth enhancement before. This is because polarization normals suffer from physics-based artifacts, such as azimuthal ambiguity, refractive distortion and fronto-parallel signal degradation. We propose a framework to overcome these key challenges, allowing the benefits of polarization to be used to enhance depth maps. Our results demonstrate improvement with respect to state-of-the-art 3D reconstruction techniques.Charles Stark Draper Laboratory (Doctoral Fellowship)Singapore. Ministry of Education (Academic Research Foundation MOE2013-T2-1-159)Singapore. National Research Foundation (Singapore University of Technology and Design

    Polarimetric Multi-View Inverse Rendering

    Full text link
    A polarization camera has great potential for 3D reconstruction since the angle of polarization (AoP) of reflected light is related to an object's surface normal. In this paper, we propose a novel 3D reconstruction method called Polarimetric Multi-View Inverse Rendering (Polarimetric MVIR) that effectively exploits geometric, photometric, and polarimetric cues extracted from input multi-view color polarization images. We first estimate camera poses and an initial 3D model by geometric reconstruction with a standard structure-from-motion and multi-view stereo pipeline. We then refine the initial model by optimizing photometric and polarimetric rendering errors using multi-view RGB and AoP images, where we propose a novel polarimetric rendering cost function that enables us to effectively constrain each estimated surface vertex's normal while considering four possible ambiguous azimuth angles revealed from the AoP measurement. Experimental results using both synthetic and real data demonstrate that our Polarimetric MVIR can reconstruct a detailed 3D shape without assuming a specific polarized reflection depending on the material.Comment: Paper accepted in ECCV 202

    High Resolution Surface Reconstruction of Cultural Heritage Objects Using Shape from Polarization Method

    Get PDF
    Nowadays, three-dimensional reconstruction is used in various fields like computer vision, computer graphics, mixed reality and digital twin. The three- dimensional reconstruction of cultural heritage objects is one of the most important applications in this area which is usually accomplished by close range photogrammetry. The problem here is that the images are often noisy, and the dense image matching method has significant limitations to reconstruct the geometric details of cultural heritage objects in practice. Therefore, displaying high-level details in three-dimensional models, especially for cultural heritage objects, is a severe challenge in this field. In this paper, the shape from polarization method has been investigated, a passive method with no drawbacks of active methods. In this method, the resolution of the depth maps can be dramatically increased using the information obtained from the polarization light by rotating a linear polarizing filter in front of a digital camera. Through these polarized images, the surface details of the object can be reconstructed locally with high accuracy. The fusion of polarization and photogrammetric methods is an appropriate solution for achieving high resolution three-dimensional reconstruction. The surface reconstruction assessments have been performed visually and quantitatively. The evaluations showed that the proposed method could significantly reconstruct the surfaces' details in the three-dimensional model compared to the photogrammetric method with 10 times higher depth resolution

    Polarimetric Multi-View Inverse Rendering

    Full text link
    A polarization camera has great potential for 3D reconstruction since the angle of polarization (AoP) and the degree of polarization (DoP) of reflected light are related to an object's surface normal. In this paper, we propose a novel 3D reconstruction method called Polarimetric Multi-View Inverse Rendering (Polarimetric MVIR) that effectively exploits geometric, photometric, and polarimetric cues extracted from input multi-view color-polarization images. We first estimate camera poses and an initial 3D model by geometric reconstruction with a standard structure-from-motion and multi-view stereo pipeline. We then refine the initial model by optimizing photometric rendering errors and polarimetric errors using multi-view RGB, AoP, and DoP images, where we propose a novel polarimetric cost function that enables an effective constraint on the estimated surface normal of each vertex, while considering four possible ambiguous azimuth angles revealed from the AoP measurement. The weight for the polarimetric cost is effectively determined based on the DoP measurement, which is regarded as the reliability of polarimetric information. Experimental results using both synthetic and real data demonstrate that our Polarimetric MVIR can reconstruct a detailed 3D shape without assuming a specific surface material and lighting condition.Comment: Paper accepted in IEEE Transactions on Pattern Analysis and Machine Intelligence (2022). arXiv admin note: substantial text overlap with arXiv:2007.0883

    Capturing and Reconstructing the Appearance of Complex {3D} Scenes

    No full text
    In this thesis, we present our research on new acquisition methods for reflectance properties of real-world objects. Specifically, we first show a method for acquiring spatially varying densities in volumes of translucent, gaseous material with just a single image. This makes the method applicable to constantly changing phenomena like smoke without the use of high-speed camera equipment. Furthermore, we investigated how two well known techniques -- synthetic aperture confocal imaging and algorithmic descattering -- can be combined to help looking through a translucent medium like fog or murky water. We show that the depth at which we can still see an object embedded in the scattering medium is increased. In a related publication, we show how polarization and descattering based on phase-shifting can be combined for efficient 3D~scanning of translucent objects. Normally, subsurface scattering hinders the range estimation by offsetting the peak intensity beneath the surface away from the point of incidence. With our method, the subsurface scattering is reduced to a minimum and therefore reliable 3D~scanning is made possible. Finally, we present a system which recovers surface geometry, reflectance properties of opaque objects, and prevailing lighting conditions at the time of image capture from just a small number of input photographs. While there exist previous approaches to recover reflectance properties, our system is the first to work on images taken under almost arbitrary, changing lighting conditions. This enables us to use images we took from a community photo collection website
    • …
    corecore