775 research outputs found

    Pointwise best approximation results for Galerkin finite element solutions of parabolic problems

    Full text link
    In this paper we establish a best approximation property of fully discrete Galerkin finite element solutions of second order parabolic problems on convex polygonal and polyhedral domains in the LL^\infty norm. The discretization method uses of continuous Lagrange finite elements in space and discontinuous Galerkin methods in time of an arbitrary order. The method of proof differs from the established fully discrete error estimate techniques and for the first time allows to obtain such results in three space dimensions. It uses elliptic results, discrete resolvent estimates in weighted norms, and the discrete maximal parabolic regularity for discontinuous Galerkin methods established by the authors in [16]. In addition, the proof does not require any relationship between spatial mesh sizes and time steps. We also establish a local best approximation property that shows a more local behavior of the error at a given point

    A posteriori error control for discontinuous Galerkin methods for parabolic problems

    Full text link
    We derive energy-norm a posteriori error bounds for an Euler time-stepping method combined with various spatial discontinuous Galerkin schemes for linear parabolic problems. For accessibility, we address first the spatially semidiscrete case, and then move to the fully discrete scheme by introducing the implicit Euler time-stepping. All results are presented in an abstract setting and then illustrated with particular applications. This enables the error bounds to hold for a variety of discontinuous Galerkin methods, provided that energy-norm a posteriori error bounds for the corresponding elliptic problem are available. To illustrate the method, we apply it to the interior penalty discontinuous Galerkin method, which requires the derivation of novel a posteriori error bounds. For the analysis of the time-dependent problems we use the elliptic reconstruction technique and we deal with the nonconforming part of the error by deriving appropriate computable a posteriori bounds for it.Comment: 6 figure

    An adaptive finite element method for laser surface hardening of steel problem

    Get PDF
    ACMAC’s PrePrint Repository aim is to enable open access to the scholarly output of ACMAC

    A Frame Work for the Error Analysis of Discontinuous Finite Element Methods for Elliptic Optimal Control Problems and Applications to C0C^0 IP methods

    Full text link
    In this article, an abstract framework for the error analysis of discontinuous Galerkin methods for control constrained optimal control problems is developed. The analysis establishes the best approximation result from a priori analysis point of view and delivers reliable and efficient a posteriori error estimators. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posed ness of the problem. Subsequently, applications of C0C^0 interior penalty methods for a boundary control problem as well as a distributed control problem governed by the biharmonic equation subject to simply supported boundary conditions are discussed through the abstract analysis. Numerical experiments illustrate the theoretical findings. Finally, we also discuss the variational discontinuous discretization method (without discretizing the control) and its corresponding error estimates.Comment: 23 pages, 5 figures, 1 tabl
    corecore