66,783 research outputs found

    Ramsey-type theorems for lines in 3-space

    Full text link
    We prove geometric Ramsey-type statements on collections of lines in 3-space. These statements give guarantees on the size of a clique or an independent set in (hyper)graphs induced by incidence relations between lines, points, and reguli in 3-space. Among other things, we prove that: (1) The intersection graph of n lines in R^3 has a clique or independent set of size Omega(n^{1/3}). (2) Every set of n lines in R^3 has a subset of n^{1/2} lines that are all stabbed by one line, or a subset of Omega((n/log n)^{1/5}) such that no 6-subset is stabbed by one line. (3) Every set of n lines in general position in R^3 has a subset of Omega(n^{2/3}) lines that all lie on a regulus, or a subset of Omega(n^{1/3}) lines such that no 4-subset is contained in a regulus. The proofs of these statements all follow from geometric incidence bounds -- such as the Guth-Katz bound on point-line incidences in R^3 -- combined with Tur\'an-type results on independent sets in sparse graphs and hypergraphs. Although similar Ramsey-type statements can be proved using existing generic algebraic frameworks, the lower bounds we get are much larger than what can be obtained with these methods. The proofs directly yield polynomial-time algorithms for finding subsets of the claimed size.Comment: 18 pages including appendi

    Point-plane incidences and some applications in positive characteristic

    Full text link
    The point-plane incidence theorem states that the number of incidences between nn points and mnm\geq n planes in the projective three-space over a field FF, is O(mn+mk),O\left(m\sqrt{n}+ m k\right), where kk is the maximum number of collinear points, with the extra condition n<p2n< p^2 if FF has characteristic p>0p>0. This theorem also underlies a state-of-the-art Szemer\'edi-Trotter type bound for point-line incidences in F2F^2, due to Stevens and de Zeeuw. This review focuses on some recent, as well as new, applications of these bounds that lead to progress in several open geometric questions in FdF^d, for d=2,3,4d=2,3,4. These are the problem of the minimum number of distinct nonzero values of a non-degenerate bilinear form on a point set in d=2d=2, the analogue of the Erd\H os distinct distance problem in d=2,3d=2,3 and additive energy estimates for sets, supported on a paraboloid and sphere in d=3,4d=3,4. It avoids discussing sum-product type problems (corresponding to the special case of incidences with Cartesian products), which have lately received more attention.Comment: A survey, with some new results, for the forthcoming Workshop on Pseudorandomness and Finite Fields in at RICAM in Linz 15-19 October, 2018; 24p

    Sphere tangencies, line incidences, and Lie's line-sphere correspondence

    Full text link
    Two spheres with centers pp and qq and signed radii rr and ss are said to be in contact if pq2=(rs)2|p-q|^2 = (r-s)^2. Using Lie's line-sphere correspondence, we show that if FF is a field in which 1-1 is not a square, then there is an isomorphism between the set of spheres in F3F^3 and the set of lines in a suitably constructed Heisenberg group that is embedded in (F[i])3(F[i])^3; under this isomorphism, contact between spheres translates to incidences between lines. In the past decade there has been significant progress in understanding the incidence geometry of lines in three space. The contact-incidence isomorphism allows us to translate statements about the incidence geometry of lines into statements about the contact geometry of spheres. This leads to new bounds for Erd\H{o}s' repeated distances problem in F3F^3, and improved bounds for the number of point-sphere incidences in three dimensions. These new bounds are sharp for certain ranges of parameters.Comment: 20 pages, 2 figures. v2: minor changes in response to referee comments. To appear in Math. Proc. Camb. Philos. So

    On the number of tetrahedra with minimum, unit, and distinct volumes in three-space

    Full text link
    We formulate and give partial answers to several combinatorial problems on volumes of simplices determined by nn points in 3-space, and in general in dd dimensions. (i) The number of tetrahedra of minimum (nonzero) volume spanned by nn points in \RR^3 is at most 2/3n3O(n2){2/3}n^3-O(n^2), and there are point sets for which this number is 3/16n3O(n2){3/16}n^3-O(n^2). We also present an O(n3)O(n^3) time algorithm for reporting all tetrahedra of minimum nonzero volume, and thereby extend an algorithm of Edelsbrunner, O'Rourke, and Seidel. In general, for every k,d\in \NN, 1kd1\leq k \leq d, the maximum number of kk-dimensional simplices of minimum (nonzero) volume spanned by nn points in \RR^d is Θ(nk)\Theta(n^k). (ii) The number of unit-volume tetrahedra determined by nn points in \RR^3 is O(n7/2)O(n^{7/2}), and there are point sets for which this number is Ω(n3loglogn)\Omega(n^3 \log \log{n}). (iii) For every d\in \NN, the minimum number of distinct volumes of all full-dimensional simplices determined by nn points in \RR^d, not all on a hyperplane, is Θ(n)\Theta(n).Comment: 19 pages, 3 figures, a preliminary version has appeard in proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 200

    Incidences between points and lines in three dimensions

    Get PDF
    We give a fairly elementary and simple proof that shows that the number of incidences between mm points and nn lines in R3{\mathbb R}^3, so that no plane contains more than ss lines, is O(m1/2n3/4+m2/3n1/3s1/3+m+n) O\left(m^{1/2}n^{3/4}+ m^{2/3}n^{1/3}s^{1/3} + m + n\right) (in the precise statement, the constant of proportionality of the first and third terms depends, in a rather weak manner, on the relation between mm and nn). This bound, originally obtained by Guth and Katz~\cite{GK2} as a major step in their solution of Erd{\H o}s's distinct distances problem, is also a major new result in incidence geometry, an area that has picked up considerable momentum in the past six years. Its original proof uses fairly involved machinery from algebraic and differential geometry, so it is highly desirable to simplify the proof, in the interest of better understanding the geometric structure of the problem, and providing new tools for tackling similar problems. This has recently been undertaken by Guth~\cite{Gu14}. The present paper presents a different and simpler derivation, with better bounds than those in \cite{Gu14}, and without the restrictive assumptions made there. Our result has a potential for applications to other incidence problems in higher dimensions
    corecore