79,211 research outputs found

    Planning in Decentralized POMDPs with Predictive Policy Representations

    Get PDF
    We discuss the problem of policy representation in stochastic and partially observable systems, and address the case where the policy is a hidden parameter of the planning problem. We propose an adaptation of the Predictive State Representations (PSRs) to this problem by introducing tests (sequences of actions and observations) on policies. The new model, called the Predictive Policy Representations (PPRs), is potentially more compact than the other representations, such as decision trees or Finite-State Controllers (FSCs). In this paper, we show how PPRs can be used to improve the performances of a point-based algorithm for DEC-POMDP

    ToyArchitecture: Unsupervised Learning of Interpretable Models of the World

    Full text link
    Research in Artificial Intelligence (AI) has focused mostly on two extremes: either on small improvements in narrow AI domains, or on universal theoretical frameworks which are usually uncomputable, incompatible with theories of biological intelligence, or lack practical implementations. The goal of this work is to combine the main advantages of the two: to follow a big picture view, while providing a particular theory and its implementation. In contrast with purely theoretical approaches, the resulting architecture should be usable in realistic settings, but also form the core of a framework containing all the basic mechanisms, into which it should be easier to integrate additional required functionality. In this paper, we present a novel, purposely simple, and interpretable hierarchical architecture which combines multiple different mechanisms into one system: unsupervised learning of a model of the world, learning the influence of one's own actions on the world, model-based reinforcement learning, hierarchical planning and plan execution, and symbolic/sub-symbolic integration in general. The learned model is stored in the form of hierarchical representations with the following properties: 1) they are increasingly more abstract, but can retain details when needed, and 2) they are easy to manipulate in their local and symbolic-like form, thus also allowing one to observe the learning process at each level of abstraction. On all levels of the system, the representation of the data can be interpreted in both a symbolic and a sub-symbolic manner. This enables the architecture to learn efficiently using sub-symbolic methods and to employ symbolic inference.Comment: Revision: changed the pdftitl

    Learning a world model and planning with a self-organizing, dynamic neural system

    Full text link
    We present a connectionist architecture that can learn a model of the relations between perceptions and actions and use this model for behavior planning. State representations are learned with a growing self-organizing layer which is directly coupled to a perception and a motor layer. Knowledge about possible state transitions is encoded in the lateral connectivity. Motor signals modulate this lateral connectivity and a dynamic field on the layer organizes a planning process. All mechanisms are local and adaptation is based on Hebbian ideas. The model is continuous in the action, perception, and time domain.Comment: 9 pages, see http://www.marc-toussaint.net
    corecore