914,147 research outputs found

    Consistent ICP for the registration of sparse and inhomogeneous point clouds

    Get PDF
    In this paper, we derive a novel iterative closest point (ICP) technique that performs point cloud alignment in a robust and consistent way. Traditional ICP techniques minimize the point-to-point distances, which are successful when point clouds contain no noise or clutter and moreover are dense and more or less uniformly sampled. In the other case, it is better to employ point-to-plane or other metrics to locally approximate the surface of the objects. However, the point-to-plane metric does not yield a symmetric solution, i.e. the estimated transformation of point cloud p to point cloud q is not necessarily equal to the inverse transformation of point cloud q to point cloud p. In order to improve ICP, we will enforce such symmetry constraints as prior knowledge and make it also robust to noise and clutter. Experimental results show that our method is indeed much more consistent and accurate in presence of noise and clutter compared to existing ICP algorithms

    RL-GAN-Net: A Reinforcement Learning Agent Controlled GAN Network for Real-Time Point Cloud Shape Completion

    Full text link
    We present RL-GAN-Net, where a reinforcement learning (RL) agent provides fast and robust control of a generative adversarial network (GAN). Our framework is applied to point cloud shape completion that converts noisy, partial point cloud data into a high-fidelity completed shape by controlling the GAN. While a GAN is unstable and hard to train, we circumvent the problem by (1) training the GAN on the latent space representation whose dimension is reduced compared to the raw point cloud input and (2) using an RL agent to find the correct input to the GAN to generate the latent space representation of the shape that best fits the current input of incomplete point cloud. The suggested pipeline robustly completes point cloud with large missing regions. To the best of our knowledge, this is the first attempt to train an RL agent to control the GAN, which effectively learns the highly nonlinear mapping from the input noise of the GAN to the latent space of point cloud. The RL agent replaces the need for complex optimization and consequently makes our technique real time. Additionally, we demonstrate that our pipelines can be used to enhance the classification accuracy of point cloud with missing data.Comment: Accepted to IEEE CVPR 201
    corecore