5,075 research outputs found

    Network streaming and compression for mixed reality tele-immersion

    Get PDF
    Bulterman, D.C.A. [Promotor]Cesar, P.S. [Copromotor

    Machine Learning for Multimedia Communications

    Get PDF
    Machine learning is revolutionizing the way multimedia information is processed and transmitted to users. After intensive and powerful training, some impressive efficiency/accuracy improvements have been made all over the transmission pipeline. For example, the high model capacity of the learning-based architectures enables us to accurately model the image and video behavior such that tremendous compression gains can be achieved. Similarly, error concealment, streaming strategy or even user perception modeling have widely benefited from the recent learningoriented developments. However, learning-based algorithms often imply drastic changes to the way data are represented or consumed, meaning that the overall pipeline can be affected even though a subpart of it is optimized. In this paper, we review the recent major advances that have been proposed all across the transmission chain, and we discuss their potential impact and the research challenges that they raise

    Automatic 3D Building Detection and Modeling from Airborne LiDAR Point Clouds

    Get PDF
    Urban reconstruction, with an emphasis on man-made structure modeling, is an active research area with broad impact on several potential applications. Urban reconstruction combines photogrammetry, remote sensing, computer vision, and computer graphics. Even though there is a huge volume of work that has been done, many problems still remain unsolved. Automation is one of the key focus areas in this research. In this work, a fast, completely automated method to create 3D watertight building models from airborne LiDAR (Light Detection and Ranging) point clouds is presented. The developed method analyzes the scene content and produces multi-layer rooftops, with complex rigorous boundaries and vertical walls, that connect rooftops to the ground. The graph cuts algorithm is used to separate vegetative elements from the rest of the scene content, which is based on the local analysis about the properties of the local implicit surface patch. The ground terrain and building rooftop footprints are then extracted, utilizing the developed strategy, a two-step hierarchical Euclidean clustering. The method presented here adopts a divide-and-conquer scheme. Once the building footprints are segmented from the terrain and vegetative areas, the whole scene is divided into individual pendent processing units which represent potential points on the rooftop. For each individual building region, significant features on the rooftop are further detected using a specifically designed region-growing algorithm with surface smoothness constraints. The principal orientation of each building rooftop feature is calculated using a minimum bounding box fitting technique, and is used to guide the refinement of shapes and boundaries of the rooftop parts. Boundaries for all of these features are refined for the purpose of producing strict description. Once the description of the rooftops is achieved, polygonal mesh models are generated by creating surface patches with outlines defined by detected vertices to produce triangulated mesh models. These triangulated mesh models are suitable for many applications, such as 3D mapping, urban planning and augmented reality

    Fog Computing in Medical Internet-of-Things: Architecture, Implementation, and Applications

    Full text link
    In the era when the market segment of Internet of Things (IoT) tops the chart in various business reports, it is apparently envisioned that the field of medicine expects to gain a large benefit from the explosion of wearables and internet-connected sensors that surround us to acquire and communicate unprecedented data on symptoms, medication, food intake, and daily-life activities impacting one's health and wellness. However, IoT-driven healthcare would have to overcome many barriers, such as: 1) There is an increasing demand for data storage on cloud servers where the analysis of the medical big data becomes increasingly complex, 2) The data, when communicated, are vulnerable to security and privacy issues, 3) The communication of the continuously collected data is not only costly but also energy hungry, 4) Operating and maintaining the sensors directly from the cloud servers are non-trial tasks. This book chapter defined Fog Computing in the context of medical IoT. Conceptually, Fog Computing is a service-oriented intermediate layer in IoT, providing the interfaces between the sensors and cloud servers for facilitating connectivity, data transfer, and queryable local database. The centerpiece of Fog computing is a low-power, intelligent, wireless, embedded computing node that carries out signal conditioning and data analytics on raw data collected from wearables or other medical sensors and offers efficient means to serve telehealth interventions. We implemented and tested an fog computing system using the Intel Edison and Raspberry Pi that allows acquisition, computing, storage and communication of the various medical data such as pathological speech data of individuals with speech disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocardiogram (ECG)-based Q, R, S detection.Comment: 29 pages, 30 figures, 5 tables. Keywords: Big Data, Body Area Network, Body Sensor Network, Edge Computing, Fog Computing, Medical Cyberphysical Systems, Medical Internet-of-Things, Telecare, Tele-treatment, Wearable Devices, Chapter in Handbook of Large-Scale Distributed Computing in Smart Healthcare (2017), Springe

    Implementation of 4kUHD HEVC-content transmission

    Get PDF
    The Internet of things (IoT) has received a great deal of attention in recent years, and is still being approached with a wide range of views. At the same time, video data now accounts for over half of the internet traffic. With the current availability of beyond high definition, it is worth understanding the performance effects, especially for real-time applications. High Efficiency Video Coding (HEVC) aims to provide reduction in bandwidth utilisation while maintaining perceived video quality in comparison with its predecessor codecs. Its adoption aims to provide for areas such as television broadcast, multimedia streaming/storage, and mobile communications with significant improvements. Although there have been attempts at HEVC streaming, the literature/implementations offered do not take into consideration changes in the HEVC specifications. Beyond this point, it seems little research exists on real-time HEVC coded content live streaming. Our contribution fills this current gap in enabling compliant and real-time networked HEVC visual applications. This is done implementing a technique for real-time HEVC encapsulation in MPEG-2 Transmission Stream (MPEG-2 TS) and HTTP Live Streaming (HLS), thereby removing the need for multi-platform clients to receive and decode HEVC streams. It is taken further by evaluating the transmission of 4k UHDTV HEVC-coded content in a typical wireless environment using both computers and mobile devices, while considering well-known factors such as obstruction, interference and other unseen factors that affect the network performance and video quality. Our results suggest that 4kUHD can be streamed at 13.5 Mb/s, and can be delivered to multiple devices without loss in perceived quality

    Amplifying the Music Listening Experience through Song Comments on Music Streaming Platforms

    Full text link
    Music streaming services are increasingly popular among younger generations who seek social experiences through personal expression and sharing of subjective feelings in comments. However, such emotional aspects are often ignored by current platforms, which affects the listeners' ability to find music that triggers specific personal feelings. To address this gap, this study proposes a novel approach that leverages deep learning methods to capture contextual keywords, sentiments, and induced mechanisms from song comments. The study augments a current music app with two features, including the presentation of tags that best represent song comments and a novel map metaphor that reorganizes song comments based on chronological order, content, and sentiment. The effectiveness of the proposed approach is validated through a usage scenario and a user study that demonstrate its capability to improve the user experience of exploring songs and browsing comments of interest. This study contributes to the advancement of music streaming services by providing a more personalized and emotionally rich music experience for younger generations.Comment: In the Proceedings of ChinaVis 202
    • …
    corecore