2,254 research outputs found

    Pliable Index Coding via Conflict-Free Colorings of Hypergraphs

    Get PDF
    In the pliable index coding (PICOD) problem, a server is to serve multiple clients, each of which possesses a unique subset of the complete message set as side information and requests a new message which it does not have. The goal of the server is to do this using as few transmissions as possible. This work presents a hypergraph coloring approach to the PICOD problem. A \textit{conflict-free coloring} of a hypergraph is known from literature as an assignment of colors to its vertices so that each edge of the graph contains one uniquely colored vertex. For a given PICOD problem represented by a hypergraph consisting of messages as vertices and request-sets as edges, we present achievable PICOD schemes using conflict-free colorings of the PICOD hypergraph. Various graph theoretic parameters arising out of such colorings (and some new variants) then give a number of upper bounds on the optimal PICOD length, which we study in this work. Our achievable schemes based on hypergraph coloring include scalar as well as vector linear PICOD schemes. For the scalar case, using the correspondence with conflict-free coloring, we show the existence of an achievable scheme which has length O(log2Γ),O(\log^2\Gamma), where Γ\Gamma refers to a parameter of the hypergraph that captures the maximum `incidence' number of other edges on any edge. This result improves upon known achievability results in PICOD literature, in some parameter regimes.Comment: 21 page

    Making recommendations bandwidth aware

    Full text link
    This paper asks how much we can gain in terms of bandwidth and user satisfaction, if recommender systems became bandwidth aware and took into account not only the user preferences, but also the fact that they may need to serve these users under bandwidth constraints, as is the case over wireless networks. We formulate this as a new problem in the context of index coding: we relax the index coding requirements to capture scenarios where each client has preferences associated with messages. The client is satisfied to receive any message she does not already have, with a satisfaction proportional to her preference for that message. We consistently find, over a number of scenarios we sample, that although the optimization problems are in general NP-hard, significant bandwidth savings are possible even when restricted to polynomial time algorithms

    Bounding the Optimal Length of Pliable Index Coding via a Hypergraph-based Approach

    Full text link
    In pliable index coding (PICOD), a number of clients are connected via a noise-free broadcast channel to a server which has a list of messages. Each client has a unique subset of messages at the server as side-information and requests for any one message not in the side-information. A PICOD scheme of length \ell is a set of \ell encoded transmissions broadcast from the server such that all clients are satisfied. Finding the optimal (minimum) length of PICOD and designing PICOD schemes that have small length are the fundamental questions in PICOD. In this paper, we use a hypergraph-based approach to derive new achievability and converse results for PICOD. We present an algorithm which gives an achievable scheme for PICOD with length at most Δ(H)\Delta(\mathcal{H}), where Δ(H)\Delta(\mathcal{H}) is the maximum degree of any vertex in a hypergraph that represents the PICOD problem. We also give a lower bound for the optimal PICOD length using a new structural parameter associated with the PICOD hypergraph called the nesting number. We extend some of our results to the PICOD problem where each client demands tt messages, rather than just one. Finally, we identify a class of problems for which our converse is tight, and also characterize the optimal PICOD lengths of problems with Δ(H){1,2,3}\Delta(\mathcal{H})\in\{1,2,3\}.Comment: Accepted at the IEEE Information Theory Workshop, 202
    corecore