
Pliable Index Coding via
Conflict-Free Colorings of Hypergraphs

Prasad Krishnan, Rogers Mathew, Subrahmanyam Kalyanasundaram

Abstract—In the pliable index coding (PICOD) problem, a
server is to serve multiple clients, each of which possesses a
unique subset of the complete message set as side information
and requests a new message which it does not have. The goal of
the server is to do this using as few transmissions as possible. This
work presents a hypergraph coloring approach to the PICOD
problem. A conflict-free coloring of a hypergraph is known from
literature as an assignment of colors to its vertices so that each
edge of the graph contains one uniquely colored vertex. For a
given PICOD problem represented by a hypergraph consisting
of messages as vertices and request-sets as edges, we present
achievable PICOD schemes using conflict-free colorings of the
PICOD hypergraph. Various graph theoretic parameters arising
out of such colorings (and some new coloring variants) then give a
number of upper bounds on the optimal PICOD length, which we
study in this work. Our achievable schemes based on hypergraph
coloring include scalar as well as vector linear PICOD schemes.
For the scalar case, using the correspondence with conflict-free
coloring, we show the existence of an achievable scheme which
has length O(log2 Γ), where Γ refers to a parameter of the
hypergraph that captures the maximum ‘incidence’ number of
other edges on any edge. This result improves upon known
achievability results in PICOD literature, in some parameter
regimes.

Due to space restrictions, the full version of this paper
containing proofs of claims, additional examples and results,
is made available in [1].

I. INTRODUCTION

The Index Coding problem introduced by Birk and Kol in
[2] consists of a system with a server containing m messages
and n receivers connected by a broadcast channel. Each
receiver has a subset of the messages at the server as side-
information and demands a particular new message. The goal
of the index coding problem is to design a transmission scheme
at the server which uses minimum number of transmissions to
serve all receivers, also called the length of the index code. The
index coding problem is a canonical problem in information
theory and has been addressed by a variety of techniques (see
[3]–[6] for instance).

A variant of the index coding problem, called pliable index
coding (PICOD), was introduced by Brahma and Fragouli
in [7]. The pliable index coding problem relaxes the index
coding setup, such that each receiver requests any message
which is not present in its side-information (i.e., any message
from its request-set). It was shown in [7] that finding the
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optimal length of a PICOD problem is NP-hard in general.
However the existence of a code with length O(min{logm(1+
log+( n

logm )),m, n}) was proved using a probabilistic argu-
ment (where log+(x) = max{0, log(x)}). When m = nδ

for some constant δ > 0, this means that O(log2 n) is
sufficient. Some algorithms for designing pliable index codes
based on greedy and set-cover techniques were also presented
and compared in [7]. In [8], a polynomial-time algorithm
was presented for general PICOD problems which achieves
a length O(log2 n). Thus, unlike the index coding problem
which has instances for which the required length can be O(n)
(for instance, the directed n-cycle problem [3]), much fewer
transmissions are sufficient in general for PICOD instances.
For several special classes of PICOD problems, distinguished
by the structure of the side-information or request-sets of the
receivers, achievability and converse results were presented
in [9]–[12]. Pliable index coding has also been proposed for
efficient data exchange in real-world applications, such as in
the data shuffling phase of distributed computing [13].

In this work, we present a graph coloring approach to
pliable index coding. A conflict-free coloring of a hypergraph
is an assignment of labels to its vertices so that each edge
of the graph contains at least one vertex which has a label
distinct from others. Conflict-free colorings were introduced
by Even et al. in [14], motivated by a problem of frequency
assignment in wireless communications. Since then, it has
been extensively studied in the context of general hypergraphs,
hypergraphs induced by neighborhoods in graphs, hypergraphs
induced by simple paths in a graph, hypergraphs that naturally
arise in geometry, etc. See [15] for a survey on conflict-free
colorings. In [2]–[4], the (classical) index coding problem is
represented by a directed graph, and vertex colorings of this
graph were shown to give index codes. Our present work can
be considered a parallel for the PICOD problem where we use
conflict-free colorings of a hypergraph representing the PICOD
problem to obtain pliable index codes.

Any PICOD problem can be equivalently represented using
a hypergraph H with the vertices representing the messages,
and the request-sets as hyperedges. We show that conflict-free
colorings (and several other new variants) of this hypergraph
then give achievability schemes for PICOD. Using this con-
nection, we show that O(log2 Γ) transmissions are sufficient
for any PICOD problem, where Γ is a parameter associated
with the intersection between edges of the PICOD hypergraph.
This result improves over known achievability results [7], [8]
for some parameter ranges.

Our specific contributions and organization of this paper are
as follows.

• After briefly reviewing the PICOD problem setup in
Section II and conflict-free colorings in Section III, we
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define in Section III-A a generalization of conflict-free
coloring called k-fold conflict-free colorings that we shall
use in this work.

• In Section IV, we show that a k-fold conflict-free coloring
of the hypergraph H which represents the given PICOD
problem results in a k-vector pliable index code. Thus, the
conflict-free chromatic number, i.e. the minimum number
of colors in any conflict-free coloring, bounds the optimal
PICOD length from above (Theorem 2).

• In Section IV-A, we define the notion of conflict-free
collection of colorings of hypergraphs, and show that
this notion gives a refined upper bound (which we call
the conflict-free covering number) than the conflict-free
chromatic number (Theorem 3). Using such conflict-
free collections, we show that O(log2 Γ) transmissions
suffice for scalar PICOD schemes, where Γ refers to
the maximum ‘incidence’ number of other edges on any
single edge (Theorem 4). Our proof for Theorem 4 uses
a probabilistic argument, but this can be converted into
a polynomial time algorithm using known techniques
(Remark IV-C).

• We show separation (gaps) between the various parame-
ters presented in this work (Example 1, Lemma 3).

We conclude the paper in Section V with directions for future
work. The full version of this paper, available in [1], discusses
PICOD schemes arising from ‘local’ versions of the conflict-
free number and the conflict-free covering number (reminis-
cent of [4] for the original index coding problem). These
further improve the achievable lengths of PICOD schemes over
the parameters defined in this work.

Notations: Let [n] , {1, . . . , n} for positive integer n. For
sets A,B we denote by A\B the set of elements in A but
not in B. We abuse notation to denote A\{b} as A\b. The
set of k-subsets of any set A is given by

(
A
k

)
. The span of

a set of vectors U is denoted by span(U). The dimension
of a subspace W is denoted by dim(W ). Unless mentioned
explicitly, all logarithms in the paper are to the base e. ∅
denotes the empty set.

II. PLIABLE INDEX CODING PROBLEM

We briefly review the pliable index coding problem, intro-
duced in [7]. Consider a communication problem defined as
follows. There are m messages denoted by {xi : i ∈ [m]}
where xi lies in some finite alphabet A. These m messages
are available at a server. Consider n receivers indexed by [n].
Assume that there is a noise-free broadcast channel between
the server and the receivers. Each receiver r has some subset
of messages available apriori, as side-information, which we
denote as {xi : i ∈ Sr}. Let the indices of the symbols
not available as side-information at receiver r be denoted
as Ir , [m]\Sr. We call {xi : i ∈ Ir} as the request-
set of receiver r. Each receiver r demands from the source
any symbol from its request-set. The messages indexed by
[m], the receivers indexed by [n], and the request-sets I ,
{Ir : r ∈ [n]} together define a (n,m, I)-pliable index coding
problem (PICOD problem). We assume that |Ir| ≥ 1,∀r, as
any receiver with |Ir| = 0 can be removed from the problem

description as it has all the symbols. Consider a hypergraph H
with vertex set V = [m] and edge set I = {Ir : r ∈ [n]}. Then
this hypergraph equivalently captures the PICOD problem.

A pliable index code (PIC) consists of a collection of (a) an
encoding function at the server which encodes the m messages
to an `-length codeword, denoted by φ : Am → A` and (b)
decoding functions {ψr : r ∈ [n]} where ψr : A`×A|Sr| → A
denotes the decoding function at receiver r such that

ψr (φ({xi : i ∈ [m]}), {xi : i ∈ Sr}) = xd, for some d ∈ Ir.

The quantity ` is called the length of the PIC. We are interested
to design pliable index codes which have small `.

In this work we assume A = Fk for some finite field
F and integer k ≥ 1. Thus the message xi is represented
as xi = (xi,1, . . . , xi,k) ∈ Fk. We refer to these codes
as k-vector PICs, while the k = 1 case is also called
scalar PIC. We focus on linear PICs, i.e., one in which the
encoding and decoding functions are linear. In that case, the
encoder φ is represented by a ` × mk matrix (denoted by
G) such that φ({xi : i ∈ [m]}) = GxT , where x =
(x1,1, . . . , x1,k, . . . , xm,1, . . . , xm,k). We denote the smallest `
such that there is a linear k-vector PIC for the PICOD problem
given by the hypergraph H as `∗k(H).

The following definition and lemma (which is proved in [8])
describe when G can lead to correct decoding at the receivers.

Definition 1. For a (n,m, I)-PICOD problem, a matrix G
with mk columns indexed as Gi,j : i ∈ [m], j ∈ [k], is said
to satisfy receiver r ∈ [n], if the following property (P) is
satisfied by G

(P) There exists some d ∈ Ir such that dim(span({Gd,j :
j ∈ [k]})) = k and

span({Gd,j : j ∈ [k]})⋂
span ({Gi,j : ∀i ∈ Ir\d, j ∈ [k]}) = {0},

Lemma 1 ([8] Lemmas 1 and 6). A matrix G with mk columns
is the encoder of a PIC for a (n,m, I)-PICOD problem if and
only if the property (P) of Definition 1 is true for each receiver
r ∈ [n].

Lemma 2 below is useful to prove achievability results for
PICOD problems in this work.

Lemma 2. For a (n,m,I)-PICOD problem, let {Gp : p ∈
[P ]} denote a collection of matrices, where Gp is of size Lp×
mk, such that for each r ∈ [n], there exists some matrix Gp

which satisfies receiver r. Then the matrix G =

G
1

...
GP

 of

size (
∑
p∈[P ] Lp)×mk is the encoder of a PIC for the given

PICOD problem.

Proof: For each r ∈ [n], there exists some matrix Gp such
that Property (P) holds for r (with respect to some d ∈ Ir).
By simple linear algebra, we see that the matrix G too must
satisfy property (P) for receiver r (with respect to d ∈ Ir), and
hence satisfies r. Applying Lemma 1, the proof is complete.
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(a) (b) (c)

Figure 1: Figure (a) shows a hypergraph H with 6 vertices and edge set E = {{1, 2, 3}, {1, 5}, {2, 4}, {4, 5, 6}}. Figure (b) represents a
1-fold conflict-free coloring with 4 colors, with the color classes {1}, {2, 3}, {5}, {4, 6}. Figure (c) shows a 2-fold conflict-free coloring
using the colors {R,G,B,C}.

III. CONFLICT-FREE COLORINGS OF HYPERGRAPHS

In this section we review the definition of conflict-free
colorings of a hypergraph and discuss some existing results
in this regard. Further we also define the more general notion
of k-fold conflict-free colorings, hence subsuming the existing
notion within the k = 1 case.

Let H = (V, E) be a hypergraph. Let C : V → [L]
be a coloring of V , where L is a positive integer. Consider
a hyperedge E ∈ E . We say C is a conflict-free coloring
for the hyperedge E if there is a vertex v ∈ E such that
C(v) 6= C(u), ∀u ∈ E \ {v}. That is, in such a coloring, E
contains a vertex whose color is distinct from that of every
other vertex in E. We say C is a conflict-free coloring of the
hypergraph H if C is a conflict-free coloring for every E ∈ E .
The conflict-free chromatic number ofH, denoted by χCF (H),
is the minimum L such that there is a conflict-free coloring
C : V → [L] of H. The following theorem on conflict-free
coloring on hypergraphs is due to Pach and Tardos [16], which
we will use to obtain one of our main results (Theorem 4 and
hence Corollary 1) in Section IV-B.

Theorem 1 (Theorem 1.2 in [16]). For any positive integers t
and Γ, the conflict-free chromatic number of any hypergraph
in which each edge is of size at least 2t − 1 and each
edge intersects at most Γ others is O(tΓ1/t log Γ). There is a
randomized polynomial time algorithm to find such a coloring.

A. Generalizing conflict-free colorings to k-fold colorings
We now generalize the idea of conflict-free colorings to k-

fold conflict-free colorings. To the best of our knowledge this
generalized notion is not available in literature.

Definition 2. A k-fold coloring of a hypergraph H = (V, E)
is an assignment of k-sized subsets of [L] to the vertices V ,
given by C : V →

(
[L]
k

)
. A k-fold coloring C is conflict-

free for edge E ∈ E if there exists some v ∈ E such that
C(v) ∩ C(v′) = ∅, for each v′ ∈ E\v. A coloring C is a k-
fold conflict-free coloring for H if C is a k-fold conflict-free
coloring for each edge in E . We define the k-fold conflict-free
chromatic number of H as the minimum L such that a k-fold
conflict-free coloring of H exists as defined above, and denote
it by Xk,CF (H).

For convenience of definition above, we have used the
set [L] to represent the set of labels in the coloring. More
generally, we could (and will) use any finite set as the set of
labels.

Remark 1. The k = 1 case of Definition 2 corresponds to the
usual conflict-free coloring. Thus X1,CF (H) = XCF (H).

Fig. 1 gives an example of 1-fold and 2-fold conflict-free
coloring. Clearly, Xk,CF (H) ≤ kXCF (H) as we can always
obtain a k-fold conflict-free coloring from a 1-fold conflict-
free coloring by expanding each color into k unique colors.
However we show an example here for which this inequality
is strict.

Example 1. Consider the hypergraph given by vertex set V =
{a, . . . , e} and E = {{a, c}, {b, e}, {b, d}, {c, e}, {a, d}} .
Consider any 1-fold coloring of this graph. If only two
colors were allowed, then it is easy to check that we get a
contradiction as we seek to satisfy the conflict-free property.
It is also easy to find a conflict-free coloring with 3 colors,
for instance, give color 1 to vertices {a, b}, color 2 to {c, d}
and color 3 to vertex e. Thus X1,CF = 3.

By similar arguments as above we can show that there
cannot be a 2-fold conflict-free coloring with 4 colors. Now
consider the following 2-fold coloring with 5 colors denoted
by {1, . . . , 5}. Let set {1, 2} be assigned to vertex a, {2, 3}
to b, {3, 4} to c, {4, 5} to d and {5, 1} to e. It is easy
to check that this is a 2-fold conflict-free coloring. Thus
X2,CF (H) = 5 < 6 = 2(X1,CF (H)).

IV. RELATIONSHIP OF PIC TO CONFLICT-FREE COLORING

In this section, we show that a k-fold conflict-free coloring
of the hypergraph H(V = [m], I) gives a k-vector linear
PIC scheme for the PICOD problem given by H. To do this,
we define the following matrix associated with a conflict-free
coloring of H.

Definition 3 (Indicator Matrix associated to a coloring). Let
C : V →

(
[L]
k

)
denote a k-fold coloring of H(V,I). Let

C(i) = {Ci,1, . . . , Ci,k} denote the subset assigned to the
vertex i ∈ [m]. Consider a standard basis of the L-dimensional
vector space over F, denoted by {e1, . . . , eL}. Now consider
the matrix L × mk matrix G (with columns indexed as
{Gi,j : i ∈ [m], j ∈ [k]}) constructed as follows.
• For each i ∈ [m], j ∈ [k], column Gi,j of G is fixed to

be eCi,j .
We call G as the indicator matrix associated with the coloring
C.

Using the indicator matrix associated with a conflict-free
coloring of H, we shall prove our first bound on `∗k(H).
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(a) (b) (c) (d)

Figure 2: Figure (a) shows the hypergraph K7 which is the complete graph on 7 vertices. It requires 7 colors for a conflict-free coloring,
thus XCF (K7) = 7. The three figures (b),(c) and (d) depict a collection of 1-fold conflict-free colorings, each figure corresponding to one
coloring using 2 colors. Note that only those edges satisfied by the coloring are represented in (b), (c), and (d). In (b), the two color classes
are {1, 4, 5, 7} and {2, 3, 6}. In (c), they are {2, 4, 6, 7} and {1, 3, 5} and in (d) they are {1, 2, 4} and {3, 5, 6, 7}. It can be checked that
each edge of K7 is conflict-free in at least one of these colorings. Thus αCF (H) ≤ 6 < XCF (H).

Theorem 2. `∗k(H) ≤ Xk,CF (H).

Proof: Let C : V →
(
[L]
k

)
denote a k-fold conflict-free

coloring of H. We first show that there exists a L-length
k-vector linear PIC for the problem defined by H. Let G
denote the indicator matrix associated with the coloring C
as defined in Definition 3. Let C(i) = {Ci,1, . . . , Ci,k} be the
set assigned to vertex i. We show that G satisfies Lemma 1
and hence is a valid encoder for a k-vector linear PIC.

In any conflict-free coloring of H, every edge Ir of H has a
vertex d such that C(d)∩C(i) = ∅,∀i ∈ Ir \d. Then, clearly,
{eCd,j : j ∈ [k]} ∩ {eCi,j : j ∈ [k]} = ∅, for any i ∈ Ir\d.
This also means span({eCd,j : j ∈ [k]}) ∩ span({eCi,j :
i ∈ Ir\d, j ∈ [k]}) = {0}, as the vectors {e1, . . . , eL} are
basis vectors. Further, as |{Cd,j : j ∈ [k]}| = k, hence
dim(span({eCd,j : j ∈ [k]})) = k. Thus, G satisfies every
receiver r and is thus a valid encoder by Lemma 1. By
definition of Xk,CF (H), the proof is complete.

Example 2. Consider the PICOD problem represented by the
hypergraph H with vertex set V = {1, . . . , 8} and edge set
E = {{1, 2, 4, 6}, {1, 2, 3, 5}, {2, 3, 4, 7}, {1, 3, 4, 8},
{2, 5, 6, 7}, {1, 5, 6, 8}, {3, 5, 7, 8}, {4, 6, 7, 8}}. Consider a
coloring C which assigns color 1 to vertices {1, 2, 3, 4} and
color 2 to vertices {5, 6, 7, 8}. Note that this is a valid (1-fold)
conflict-free coloring of H. The indicator matrix associated
with this coloring is given by

G =

[
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

]
.

It can be checked that the above matrix satisfies the condition
in Lemma 1 for the PICOD problem defined by H.

A. Conflict-free coverings and PICOD

In the following discussion, we will define a new parameter
called the k-fold conflict-free covering number, which will
improve upon the upper bound on the optimal length as given
in Theorem 2.

Definition 4 (Conflict-free collection, conflict-free covering
number). Let H = (V, E) be a hypergraph. Let C =
{C1, . . . , CP } where each Cp : V →

(
[Lp]
k

)
is a k-fold

coloring of the hypergraph H. We say C is a conflict-free
collection of k-fold colorings of H, if for every E ∈ E , there

exists a Cp ∈ C such that Cp is a k-fold conflict-free coloring
for E. The quantity αk,CF (H) , minC

∑P
p=1 Lp representing

the minimum sum
∑P
p=1 Lp over all possible collections C

(over all P ) as defined above, is called the k-fold conflict-
free covering number of H. We denote the number α1,CF (H)
simply as αCF (H).

The following observation is easy to show, as any k-
fold conflict-free coloring C of H also gives a conflict-free
collection containing just C.

Observation 1. αk,CF (H) ≤ χk,CF (H).

Fig. 2 gives an example hypergraph for which XCF (H) >
αCF (H). In the following theorem, we show that the optimal
length of k-vector code for H is bounded by αk,CF (H), thus
improving the bound in Theorem 2.

Theorem 3. `∗k(H) ≤ αk,CF (H).

Proof: Let C = {Cp : p ∈ [P ]} be a conflict-free
collection of k-fold colorings of H(V = [m], I), where
Cp : V →

(
[Lp]
k

)
. We will first show a PIC for H with length∑

p∈[P ] Lp. The proof then follows by definition of αk,CF (H).
Let Gp : p ∈ [P ] denote the indicator matrices as defined

in Definition 3 associated with the colorings Cp : p ∈ [P ]
respectively. By definition of the conflict-free collection, for
each Ir ∈ I we have by arguments similar to the proof of
Theorem 2, that there is some Gp which satisfies receiver

r. Then, by Lemma 2, the matrix G =

G
1

...
GP

 is a valid

encoder of a k-vector PIC to the given PICOD problem of
length

∑
p∈[P ] Lp. This completes the proof.

We now discuss the separation between αk,CF (H) and
Xk,CF (H) for the k = 1 case. This is a generalization of
example in Fig. 2.

Lemma 3. There exist a hypergraph H with n hyperedges for
which αCF (H) = Θ(log n) while XCF (H) = Θ(

√
n).

Proof: Consider the 2-uniform hypergraph with m ver-
tices and all the 2-sized subsets of [m] as hyperedges. Thus
n =

(
m
2

)
. It is easy to see that any conflict-free coloring of

this graph requires m = Θ(
√
n) colors.
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Let us now turn our attention to αCF (H). Consider a
conflict-free collection of P colorings Cp : p ∈ [P ], for
some integer P , each with number of colors Lp, such that∑
p∈P Lp = αCF (H). For each p ∈ [P ], let Gp be the

indicator matrix associated with the coloring Cp. Consider the

(αCF (H)×m) binary matrix G =

G
1

...
GP

. By Theorem 3, this

is a valid encoder for a PIC of H. Since every 2-sized subset
of [m] is a hyperedge in H, no two columns of G are thus
identical. Thus, αCF (H) ≥ log2m. In order to prove an upper
bound for αCF (H), let P := dlog2me. Given any assignment
of distinct P -bit binary vectors to the elements of [m], one
can construct a conflict-free collection of P colorings of H
given as Cp : [m]→ {c0p, c1p} for p ∈ [P ], where Cp(j) = c0p
(or = c1p) if the p-th bit in the binary vector associated with j
is 0 (respectively, 1). Thus, αCF (H) ≤ 2dlog2me.

B. An upper bound on αCF (H) and thus on `∗1(H)

In the remainder of this section, we focus on the scalar
(k = 1) case and prove an upper bound (in Theorem 4) on
αCF (H) (and thus on the optimal linear scalar PIC length)
based on a readily computable parameter associated with the
graphH. Towards that end we make the following observation.

Let H = (V, E), H1 = (V, E1), and H2 = (V, E2) be three
hypergraphs defined on the same vertex set V . We say H =
H1∪H2, if E = E1∪E2. We then have the observation which
follows by definition of αCF (H).

Observation 2. Let H = H1 ∪ H2. Then, αCF (H) ≤
αCF (H1) + αCF (H2).

Theorem 4. Let H = (V, E) be a hypergraph where every
hyperedge intersects with at most Γ other hyperedges, for any
Γ > e. Then, αCF (H) = O(log2 Γ).

Proof. Let κ := 2 log(Γ)−1. Let G = (V, EG) be a hypergraph
defined on the vertex set V with EG = {E ∈ E : |E| ≥ κ}.
From Theorem 1 and Observation 1, we know that αCF (G) =
O(log2 Γ). Let P := dlog κe. For 0 ≤ i ≤ P , let Hi = (V, Ei),
where Ei = {E ∈ E : ki

2 ≤ |E| < ki} and ki = κ
2i . Clearly,

H = G ∪ H0 ∪ H1 ∪ · · · ∪ HP . We shall use the following
claim whose proof uses the Lovász Local Lemma [17] and is
relegated to the longer version of our paper [1].

Claim 1. αCF (Hi) ≤ 2(d5ki log Γe).

Using Claim 1, we have
P∑
i=0

αCF (Hi) ≤ 2

P∑
i=0

d5ki log Γe ≤ 10 log Γ

P∑
i=0

ki + 2P + 2

≤ 10 log Γ
∑
i≥0

κ

2i
+ 2P + 2

≤ 20κ log Γ + 2P + 2 = O(log2 Γ) (1)

Now using Observation 2, we have that αCF (H) ≤ αCF (G)+
P∑
i=0

αCF (Hi). Using (1) now, the proof is complete.

Using Theorem 4 in conjunction with Theorem 3, we have
the following achievability result for the PICOD problem. The

achievability of lengths m,n are trivial consequences of the
problem setup.

Corollary 1. For any (n,m, I)-PICOD problem, let Γ =
maxr∈[n] |{r′ ∈ [n]\r : Ir ∩ Ir′ 6= ∅}|. Then there exists a
binary linear scalar PIC for the given problem with length
O(min{log2 Γ,m, n}). Thus `∗1(H) = O(min{log2 Γ,m, n}).
C. Comparison with known achievability results

The original work [7] showed the existence of an achievable
scheme with length O(min{logm(1 + log+( n

logm )),m, n})
(where log+(x) = max{0, log(x)}). For m = nδ for some
δ > 0, this means the existence of a PIC with length O(log2 n)
is guaranteed. Our result, Theorem 4, gives an upper bound
based on the parameter Γ of the hypergraph. Given the set
of vertices V and edges E of a hypergraph, the parameter Γ
can be determined in O(|V ||E|2) time by a simple algorithm
which runs through each edge computing its intersection with
all other edges. Further the parameter Γ ≤ |E| − 1 = n − 1
always, but it could be much smaller in general, as suggested
by the below example.

Example 3. Consider the hypergraph H = (V, E), where V =
[m], E = {{i, i + 1, i + 2} : i ∈ [m − 2]}} for m ≥ 3. Since
every hyperedge overlaps with at most 3 other edges, we have
Γ = 3. The result from [7] suggests the existence of a code
of length O(log2m), where by Theorem 4, we have a code
of constant length (as m grows).

Thus we see that the bound in Theorem 4 could be much
smaller than the bound from [7]. A more precise characteri-
zation of Γ in terms of |V | and |E| could offer more insights
on this gap between the two upper bounds.

In [8] an achievable scheme was presented for a PICOD
problem with n receivers with length O(log2 n). The algorithm
in [8] had running time polynomial in the problem parameters
m,n. our result also yields a polynomial time algorithm.
However, the algorithm does not follow immediately from the
proof. The main difficulty in getting a deterministic algorithm
is the presence of the Local Lemma in the proof. Deran-
domization of the Local Lemma to provide an constructive
algorithm has been studied [18], [19]. Applying Theorem 1.1
(1) in [19], we get a conflict-free coloring of a hypergraph
using O(tΓ

1+ε
t log Γ) colors, where t and Γ are as defined

in Theorem 1 and ε > 0 is a constant. This suffices to get
a deterministic polynomial time coloring algorithm for the
hypergraph G in the proof of Theorem 4 using O(log2 Γ)
colors. In a similar way, one can get polynomial time algo-
rithms for constructing conflict-free collection of colorings for
hypergraphs Hi in the proof such that the total number of
colors used across all the colorings in such a collection is
O(ki log Γ).

V. DISCUSSION

Through our conflict-free coloring approach, we have
proved the existence of a pliable index code with length
relying on the incidence parameter Γ. It would be interesting to
give a simpler polynomial-time algorithm for the same. Also,
future work could include explicit schemes for k-vector pliable
index coding which give non-trivial improvements over simple
extensions of scalar index codes.
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