8 research outputs found

    Robotic Manipulation under Transparency and Translucency from Light-field Sensing

    Full text link
    From frosted windows to plastic containers to refractive fluids, transparency and translucency are prevalent in human environments. The material properties of translucent objects challenge many of our assumptions in robotic perception. For example, the most common RGB-D sensors require the sensing of an infrared structured pattern from a Lambertian reflectance of surfaces. As such, transparent and translucent objects often remain invisible to robot perception. Thus, introducing methods that would enable robots to correctly perceive and then interact with the environment would be highly beneficial. Light-field (or plenoptic) cameras, for instance, which carry light direction and intensity, make it possible to perceive visual clues on transparent and translucent objects. In this dissertation, we explore the inference of transparent and translucent objects from plenoptic observations for robotic perception and manipulation. We propose a novel plenoptic descriptor, Depth Likelihood Volume (DLV), that incorporates plenoptic observations to represent depth of a pixel as a distribution rather than a single value. Building on the DLV, we present the Plenoptic Monte Carlo Localization algorithm, PMCL, as a generative method to infer 6-DoF poses of objects in settings with translucency. PMCL is able to localize both isolated transparent objects and opaque objects behind translucent objects using a DLV computed from a single view plenoptic observation. The uncertainty induced by transparency and translucency for pose estimation increases greatly as scenes become more cluttered. Under this scenario, we propose GlassLoc to localize feasible grasp poses directly from local DLV features. In GlassLoc, a convolutional neural network is introduced to learn DLV features for classifying grasp poses with grasping confidence. GlassLoc also suppresses the reflectance over multi-view plenoptic observations, which leads to more stable DLV representation. We evaluate GlassLoc in the context of a pick-and-place task for transparent tableware in a cluttered tabletop environment. We further observe that the transparent and translucent objects will generate distinguishable features in the light-field epipolar image plane. With this insight, we propose Light-field Inference of Transparency, LIT, as a two-stage generative-discriminative refractive object localization approach. In the discriminative stage, LIT uses convolutional neural networks to learn reflection and distortion features from photorealistic-rendered light-field images. The learned features guide generative object location inference through local depth estimation and particle optimization. We compare LIT with four state-of-the-art pose estimators to show our efficacy in the transparent object localization task. We perform a robot demonstration by building a champagne tower using the LIT pipeline.PHDRoboticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169707/1/zhezhou_1.pd

    TransNet: Transparent Object Manipulation Through Category-Level Pose Estimation

    Full text link
    Transparent objects present multiple distinct challenges to visual perception systems. First, their lack of distinguishing visual features makes transparent objects harder to detect and localize than opaque objects. Even humans find certain transparent surfaces with little specular reflection or refraction, like glass doors, difficult to perceive. A second challenge is that depth sensors typically used for opaque object perception cannot obtain accurate depth measurements on transparent surfaces due to their unique reflective properties. Stemming from these challenges, we observe that transparent object instances within the same category, such as cups, look more similar to each other than to ordinary opaque objects of that same category. Given this observation, the present paper explores the possibility of category-level transparent object pose estimation rather than instance-level pose estimation. We propose \textit{\textbf{TransNet}}, a two-stage pipeline that estimates category-level transparent object pose using localized depth completion and surface normal estimation. TransNet is evaluated in terms of pose estimation accuracy on a large-scale transparent object dataset and compared to a state-of-the-art category-level pose estimation approach. Results from this comparison demonstrate that TransNet achieves improved pose estimation accuracy on transparent objects. Moreover, we use TransNet to build an autonomous transparent object manipulation system for robotic pick-and-place and pouring tasks

    Efficient Belief Propagation for Perception and Manipulation in Clutter

    Full text link
    Autonomous service robots are required to perform tasks in common human indoor environments. To achieve goals associated with these tasks, the robot should continually perceive, reason its environment, and plan to manipulate objects, which we term as goal-directed manipulation. Perception remains the most challenging aspect of all stages, as common indoor environments typically pose problems in recognizing objects under inherent occlusions with physical interactions among themselves. Despite recent progress in the field of robot perception, accommodating perceptual uncertainty due to partial observations remains challenging and needs to be addressed to achieve the desired autonomy. In this dissertation, we address the problem of perception under uncertainty for robot manipulation in cluttered environments using generative inference methods. Specifically, we aim to enable robots to perceive partially observable environments by maintaining an approximate probability distribution as a belief over possible scene hypotheses. This belief representation captures uncertainty resulting from inter-object occlusions and physical interactions, which are inherently present in clutterred indoor environments. The research efforts presented in this thesis are towards developing appropriate state representations and inference techniques to generate and maintain such belief over contextually plausible scene states. We focus on providing the following features to generative inference while addressing the challenges due to occlusions: 1) generating and maintaining plausible scene hypotheses, 2) reducing the inference search space that typically grows exponentially with respect to the number of objects in a scene, 3) preserving scene hypotheses over continual observations. To generate and maintain plausible scene hypotheses, we propose physics informed scene estimation methods that combine a Newtonian physics engine within a particle based generative inference framework. The proposed variants of our method with and without a Monte Carlo step showed promising results on generating and maintaining plausible hypotheses under complete occlusions. We show that estimating such scenarios would not be possible by the commonly adopted 3D registration methods without the notion of a physical context that our method provides. To scale up the context informed inference to accommodate a larger number of objects, we describe a factorization of scene state into object and object-parts to perform collaborative particle-based inference. This resulted in the Pull Message Passing for Nonparametric Belief Propagation (PMPNBP) algorithm that caters to the demands of the high-dimensional multimodal nature of cluttered scenes while being computationally tractable. We demonstrate that PMPNBP is orders of magnitude faster than the state-of-the-art Nonparametric Belief Propagation method. Additionally, we show that PMPNBP successfully estimates poses of articulated objects under various simulated occlusion scenarios. To extend our PMPNBP algorithm for tracking object states over continuous observations, we explore ways to propose and preserve hypotheses effectively over time. This resulted in an augmentation-selection method, where hypotheses are drawn from various proposals followed by the selection of a subset using PMPNBP that explained the current state of the objects. We discuss and analyze our augmentation-selection method with its counterparts in belief propagation literature. Furthermore, we develop an inference pipeline for pose estimation and tracking of articulated objects in clutter. In this pipeline, the message passing module with the augmentation-selection method is informed by segmentation heatmaps from a trained neural network. In our experiments, we show that our proposed pipeline can effectively maintain belief and track articulated objects over a sequence of observations under occlusion.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163159/1/kdesingh_1.pd

    Robotics Dexterous Grasping: The Methods Based on Point Cloud and Deep Learning

    Get PDF
    Dexterous manipulation, especially dexterous grasping, is a primitive and crucial ability of robots that allows the implementation of performing human-like behaviors. Deploying the ability on robots enables them to assist and substitute human to accomplish more complex tasks in daily life and industrial production. A comprehensive review of the methods based on point cloud and deep learning for robotics dexterous grasping from three perspectives is given in this paper. As a new category schemes of the mainstream methods, the proposed generation-evaluation framework is the core concept of the classification. The other two classifications based on learning modes and applications are also briefly described afterwards. This review aims to afford a guideline for robotics dexterous grasping researchers and developers
    corecore