1,127 research outputs found

    CopyCAT: Taking Control of Neural Policies with Constant Attacks

    Get PDF
    We propose a new perspective on adversarial attacks against deep reinforcement learning agents. Our main contribution is CopyCAT, a targeted attack able to consistently lure an agent into following an outsider's policy. It is pre-computed, therefore fast inferred, and could thus be usable in a real-time scenario. We show its effectiveness on Atari 2600 games in the novel read-only setting. In this setting, the adversary cannot directly modify the agent's state -- its representation of the environment -- but can only attack the agent's observation -- its perception of the environment. Directly modifying the agent's state would require a write-access to the agent's inner workings and we argue that this assumption is too strong in realistic settings.Comment: AAMAS 202

    MTDeep: Boosting the Security of Deep Neural Nets Against Adversarial Attacks with Moving Target Defense

    Full text link
    Present attack methods can make state-of-the-art classification systems based on deep neural networks misclassify every adversarially modified test example. The design of general defense strategies against a wide range of such attacks still remains a challenging problem. In this paper, we draw inspiration from the fields of cybersecurity and multi-agent systems and propose to leverage the concept of Moving Target Defense (MTD) in designing a meta-defense for 'boosting' the robustness of an ensemble of deep neural networks (DNNs) for visual classification tasks against such adversarial attacks. To classify an input image, a trained network is picked randomly from this set of networks by formulating the interaction between a Defender (who hosts the classification networks) and their (Legitimate and Malicious) users as a Bayesian Stackelberg Game (BSG). We empirically show that this approach, MTDeep, reduces misclassification on perturbed images in various datasets such as MNIST, FashionMNIST, and ImageNet while maintaining high classification accuracy on legitimate test images. We then demonstrate that our framework, being the first meta-defense technique, can be used in conjunction with any existing defense mechanism to provide more resilience against adversarial attacks that can be afforded by these defense mechanisms. Lastly, to quantify the increase in robustness of an ensemble-based classification system when we use MTDeep, we analyze the properties of a set of DNNs and introduce the concept of differential immunity that formalizes the notion of attack transferability.Comment: Accepted to the Conference on Decision and Game Theory for Security (GameSec), 201
    corecore