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ABSTRACT
We propose a new perspective on adversarial attacks against deep
reinforcement learning agents. Our main contribution is CopyCAT,
a targeted attack able to consistently lure an agent into following
an outsider’s policy. It is pre-computed, therefore fast inferred, and
could thus be usable in a real-time scenario. We show its effective-
ness on Atari 2600 games in the novel read-only setting. In this
setting, the adversary cannot directly modify the agent’s state –its
representation of the environment– but can only attack the agent’s
observation –its perception of the environment. Directly modify-
ing the agent’s state would require a write-access to the agent’s
inner workings and we argue that this assumption is too strong in
realistic settings.

1 INTRODUCTION
We are interested in the problem of attacking sequential control
systems that use deep neural policies. In the context of supervised
learning, previous work developed methods to attack neural classi-
fiers by crafting so-called “adversarial examples”. These are mali-
cious inputs particularly successful at fooling deep networks with
high-dimensional input-data like images. Within the framework of
sequential-decision-making, previous works used these adversarial
examples only to break neural policies. Yet the attacks they build
are rarely applicable in a real-time setting as they require to craft
a new adversarial input at each time step. Besides, these methods
use the strong assumption of having a write-access to what we call
the agent’s state, the actual input of the neural policy built by the
algorithm from the observations. When taking this assumption,
the adversary –the algorithm attacking the agent– is not placed at
the interface between the agent and the environment where the
system is the most vulnerable. We wish to design an attack with a
more general purpose than just shattering a neural policy as well
as working in a more realistic setting.

Our main contribution is CopyCAT, an algorithm for taking
full-control of neural policies. It produces a simple attack that is:
(1) targeted towards a policy, i.e., it aims at matching a neural pol-
icy’s behavior with the one of an arbitrary policy; (2) only altering
observation of the environment rather than complete agent’s state;
(3) composed of a finite set of pre-computed state-independent
masks. This way it requires no additional time at inference hence
it could be usable in a real-time setting.

We introduce CopyCAT in the white-box scenario (Sec. 3), with
read-only access to the weights and the architecture of the neural
policy. This is a realistic setting as prior work showed that after
training substitute models, one could transfer an attack computed
on these to the inaccessible attacked model [20]. The context is the
following: (1) We are given any agent using a neural-network for

decision-making (e.g., the Q-network for value-based agents, the
policy network for actor-critic or imitation learning methods) and a
target policy we want the agent to follow. (2) The only thing one
can alter is the observation the agent receives from the environ-
ment and not the full input of the neural controller (the state). In
other words, we are granted a read-only access to the agent’s inner
workings. In the case of Atari 2600 games, the agents builds its
state by stacking the last four observations. Attacking the agent’s
state means writing in the agent’s memory of the last observations.
(3) The computed attack should be inferred fast enough to be used
in real-time.

We stress the fact that targeting a policy is a more general scheme
than untargeted attacks where the goal is to stop the agent from
taking its preferred action (hoping for it to take the worst). It is
also more general than the targeted scheme of previous works
where one wants the agent to take its least preferred action or to
reach a specific state. In our setting, one can either hard-code or
train a target policy. This policy could be minimizing the agent’s
true reward but also maximizing the reward for another task. For
instance, this could mean taking full control of an autonomous
vehicle, possibly bringing it to any place of your choice.

We exemplify this approach on the classical benchmark of Atari
2600 games (Sec.5). We show that taking control of a trained deep
RL agent so that its behavior matches a desired policy can be done
with this very simple attack. We believe such an attack reveals
the vulnerability of autonomous agents. As one could lure them
into following catastrophic behaviors, autonomous cars, robots
or any agent with high dimensional inputs are exposed to such
manipulation. This suggests that it would be worth studying new
defense mechanisms that could be specific to RL agents, but this is
out of the scope of this paper.

Section 6 presents experiments studying various aspects of the
proposed method, as the use of CopyCAT in the black-box setting or
in environments with a more complex perception. These results as-
sess the possibility of using the proposed method in various settings
even though some of these experiments are still preliminary.

2 BACKGROUND
In Reinforcement Learning (RL), an agent interacts sequentially
with a dynamic environment so as to learn an optimal control. To
do so, the problem is modeled as a Markov Decision Process. It is a
tuple {S,A, P , r ,γ } with S the state space, A the action space we
consider as finite in the present work, P the transition kernel defin-
ing the dynamics of the environment, r a bounded reward function
and γ ∈ (0, 1) a discount factor. The policy π maps states to distribu-
tions over actions: π (·|s). The (random) discounted return is defined
as G =

∑
t ≥0 γ

t rt . The policy π is trained to maximize the agent
expected discounted return. The function V π (s) = Eπ [G |s0 = s]
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denotes the value function of policy π (where Eπ [·] denotes the
expectation over all possible trajectories generated by policy π ). We
also call µ0 the initial state distribution and ρ(π ) = Es∼µ0 [V π (s)]
the expected cumulative reward starting from µ0. Value-based al-
gorithms [8, 18] use the value function, or more frequently the
action-value function Qπ (s,a) = Eπ [G |s0 = s,a0 = a], to com-
pute π . To handle large state spaces, deep RL uses deep neural
networks for function approximation. For instance, value-based
deep RL parametrizes the action-value function Qω with a neural
network of parameters ω and deep actor-critics [17] directly pa-
rametrize their policy πθ with a neural network of parameters θ .
In both cases, the taken action is inferred by a forward-pass in a
neural network.

Adversarial examples were introduced in the context of su-
pervised classification. Given a classifier C , an input x , a bound
ϵ on a norm ∥.∥, an adversarial example is an input x ′ = x + η
such that C(x) , C(x ′) while ∥x − x ′∥ ≤ ϵ . Fast Gradient Sign
Method (FGSM) [7] is a widespread method for generating adver-
sarial examples for the L∞ norm. From a linear approximation of
C , it computes the attack η as:

η = ϵ · sign(∇x l(θ ,x ,y)), (1)

with l(θ ,x ,y) the loss of the classifier and y the true label.
As an adversary, one wishes to maximize the loss l(θ ,x + η,y)

w.r.t. η. Presented this way, it is an untargeted attack. It pushes C
towards misclassifying x ′ in any other label than y. It can easily be
turned into a targeted attack by, instead of l(θ ,x + η,y), optimizing
for −l(θ ,x + η,ytarget) with ytarget the label the adversary wants C
to predict for x ′. This attack, optimized for the L∞ norm can also
be turned into an L2 attack by taking:

η = ϵ · ∇x l(θ ,x ,y)
∥∇x l(θ ,x ,y)∥2

. (2)

As shown by Eqs. (1) and (2), these attacks are computed with
one single step of gradient, hence the term “fast”. These two attacks
can be turned into –more efficient, yet slower– iterative methods
[3, 6] by taking several successive steps of gradients. These methods
will be referred to as iterative-FGSM.

When using deep networks to compute its policy, an RL agent
can be fooled the same way as a supervised classifier. As a policy
can be seen as a mapping S → A, untargeted FGSM (1) can be
applied to a deep RL agent to stop it from taking its preferred
action: a∗ = argmaxa∈A π (a |s). Similarly targeted FGSM can be
used to lure the agent into taking a specific action. Yet, this would
mean having to compute a new attack at each time step, which is
generally not feasible in a real-time setting. Moreover, with this
formulation, it needs to directly modify the agent’s state, the input
of the neural policy, which is a strong assumption.

3 THE COPYCAT ATTACK
In this work, we propose CopyCAT. It is an attack whose goal is to
lure an agent into having a given behavior, the latter being specified
by another policy. CopyCAT’s goal is not only to lure the agent into
taking specific actions but to fully control its behavior. Formally,
CopyCAT is composed of a set of additive masks ∆ = {δa }a∈A
that can be used to drive a policy π to follow any policy π target.
Each additive mask δa is pre-computed to lure π into taking a

specific action a when added to the current observation regardless
of the content of the observation. It is, in this sense, a universal
attack. CopyCAT is an attack on raw observations and, as ∆ is
pre-computed, it can be used online in a real-time setting with no
additional computation.

Notations. We denote π the attacked policy and π target the tar-
get policy. At time step t , the policy π outputs an action at taking
the state st as input. The agent state is internally computed from
the past observations and we denote f the observations-to-state
function: st = f (ot ,o1:t−1) with o1:t−1 = (o1,o2...ot−1).

Data Collection. In order to be pre-computed, CopyCAT needs
to gather data from the agent. By watching the agent interacting
with the environment, CopyCAT gathers a datasetD of K episodes
made of observations:D = (okt )

k ∈(1:K )
t ∈(1,Tk )

. We recall that the objective
in this setting is for CopyCAT to work with a read-only access to
the inner workings of the agent. We thus stress that D is made
of observations rather than states. If CopyCAT is successful, π is
going to behave as π target and thus may experience observations
out of the distribution represented in D. Yet, as will be shown,
CopyCAT transfers to unseen observations. We hypothesize that,
as we build a universal attack, the learned attack is able to move the
whole support of observations in a region of RN where π chooses
a precise action.

Training. A natural strategy for building an adversarial exam-
ple targeted towards label ŷ is the following. Given a classifier
P(y |x) parametrized with a neural network and an input example
x , one computes the adversarial example x̂ = x + δ by maximizing
logP(ŷ |x̂) subject to the constraint: ∥δ ∥∞ = ∥x − x̂ ∥∞ ≤ ϵ . The
adversary then performs either one step of gradient (FGSM) or uses
an iterative method [13] to solve the optimization problem.

Instead, CopyCAT is built for its masks to be working whatever
the observation it is applied to. For each a ∈ A we build δa , the
additional masks luring π into taking action a, by maximizing
over δa :

E
okt ∈D

[
logπ (a | f (okt +δa ,ok1:t−1))+α ∥δa ∥2

]
s.t. ∥δa ∥∞ < ϵ . (3)

We restrict the method to the case where f , the function build-
ing the agent’s inner state from the observations, is differentiable.
The Eq. 3 can be optimized by alternating between gradient steps
with adaptive learning rate [11] on mini-batches and projection
steps onto the L∞-ball of radius ϵ . Unlike FGSM, CopyCAT is a
full optimization method. It does not take only one single step of
gradient.

CopyCAT has twomain parameters: ϵ ∈ R+, a hard constraint on
the L∞ norm of the attack and α ∈ R+, a regularization parameter
on the L2 norm of the attack.

Inference. Once ∆ is computed, the attack can be used on π to
make it follow any policy π target. At each time step t and given past
observations, π target infers an action a

target
t . The corresponding

mask δatargett
∈ ∆ is applied to the last observation ot before being

passed to the agent. No optimization is made at inference and
CopyCAT can thus be used in a setting where the adversary is not
let unlimited time to compute an attack between two time-steps.
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4 RELATEDWORK
Vulnerabilities of neural classifiers were highlighted by Szegedy
et al. [26] and several methods were developed to create the so-
called adversarial examples, maliciously crafted inputs fooling deep
networks. In sequential-decision-making, previous works use them
to attack deep reinforcement learning agents. However these at-
tacks are not always realistic. The method from Huang et al. [10]
uses fast-gradient-sign method [7] for the sole purpose of destroy-
ing the agent’s performance. What’s more, it has to craft a new
attack at each time step. This implies back-propagating through
the agent’s network, which is not feasible in real-time. Moreover, it
modifies directly the state of the agent by writing in its memory,
which is a strong assumption to take on what component of the
agent can be altered. The approach of Lin et al. [15] allows the num-
ber of attacked states to be divided by four, yet it uses the heavy
optimization scheme from Carlini and Wagner [3] to craft their
adversarial examples. This is, in general, not doable in a real-time
setting. They also take the same strong assumption of having a
“read & write-access” to the agent’s inner workings. To the best
of our knowledge, they are the first to introduce a targeted attack.
However, the setting is restricted to targeting one “dangerous state”.
Pattanaik et al. [21] proposes a method to lure the agent into taking
its least preferred action in order to reduce its performance but
still uses computationally heavy iterative methods at each time
step. Pinto et al. [22] proposed an adversarial method for robust
training of agents but only considered attacks on the dynamic of
the environment, not on the visual perception of the agent. Zhang
et al. [27] and Ruderman et al. [23] developed adversarial environ-
ment generation to study agent’s generalization and worst-case
scenarios. Those are different from this present work where we
enlighten how an adversary might take control of a neural policy.

5 ATARI EXPERIMENTS
We wish to build an attack targeted towards the policy π target. At
a time step t , the attack is said to be successful if π under attack
indeed chooses the targeted action selected by π target. When π is
not attacked, the attack success rate corresponds to the agreement
rate between π and π target, measuring how often the policies agree
along an unattacked trajectory of π .

Note that we only deal with trained policies and no learning of
neural policies is involved. In other words, π and π target are trained
and frozen policies.

What we really want to test is the ability of CopyCAT to lure
π into having a specific behavior. For this reason, measuring the
attack success rate is not enough. Having a high success rate does
not necessarily mean the macroscopic behavior of the attacked
agent matches the desired one as will be shown further in this
section.

Cumulative reward as a proxy for behavior. We design the
following setup. The agent has a policy π trained with DQN [18].
The policy π target is trained with Rainbow [8]. We select Atari
games [1] with a clear difference in terms of performance between
the two algorithms (where Rainbow obtains higher average cu-
mulative reward than DQN). This way, in addition to measuring
the attack success rate, we can compare the cumulative reward ob-
tained by π under attack ρ(π ) to ρ(π target) as a proxy of how well

π ’s behavior is matching the behavior induced by π target. In this
setup, if the attacked policy indeed gets cumulative rewards as high
as the ones obtained by π target, it will mean that we did not simply
turned some actions into other actions we targeted, but that the
whole behavior induced by π under attack matches the one induced
by π target. This idea that, in reinforcement learning, cumulative
reward is the right way to monitor an agent’s behavior has been
used and developed by the inverse reinforcement learning literature.
Ng et al. [19] argued that the value of a policy, i.e. its cumulative
reward, is the most compact, robust and transferable description of
its induced behavior. We argue that measuring cumulative reward
is thus a reasonable proxy for monitoring the behavior of π under
attack. At this point, we would like to carefully defuse a possible
misunderstanding. Our goal is not to show that DQN’s performance
can be improved by being attacked. We simply want to show that
its behavior can be fully manipulated by an opponent and we use
the obtained cumulative reward as a proxy for the behavior under
attack.

Baseline. We set the objective of building a real-time targeted
attack. We thus need to compare our algorithm to baselines appli-
cable to this scenario. The fastest state-of-the-art targeted method
can be seen as a variation of Huang et al. [10]. It applies targeted
FGSM at each time step t to compute a new attack. It first infers
the action atarget and then back-propagates through the attacked
network to compute their attack. CopyCAT only infers atarget and
then applies the corresponding pre-computed mask. Both methods
can thus be considered usable in real-time yet CopyCAT is still
faster at inference. We set the objective of attacking only observa-
tions rather than complete states so we do not need a write-access
to the agent’s inner workings. DQN stacks four consecutive frames
to build its inner state. We thus compare CopyCAT to a version
of the method from Huang et al. [10] where the gradient induc-
ing the FGSM attack is only computed w.r.t the last observation,
so it produces an attack comparable to CopyCAT, i.e., on a single
observation. The gradient from Eq. 1: ∇st l(θ , st ,atarget) becomes
∇ot l(θ , f (ot ,o1:t−1),atarget). To keep the comparison fair, atarget is
always computed with the exact same policy π target as in CopyCAT.
The policy π target : S → A is fixed.

FGSM-L∞ has the same parameter ϵ as CopyCAT, bounding the
L∞ norm of the attack. CopyCAT has an additional regularization
parameter α allowing the attack to have, for a same ϵ , a lower
energy and thus be less detectable. We will compare CopyCAT to
the attack fromHuang et al. [10] showing how behaviors of π under
attacks match π target when these attacks are of equal energy.

Full optimization-based attackswould not be inferred fast enough
to be used in a sequential decision making problem at each time
step.

Experimental setup. We always turn the sticky actions on,
which make the problem stochastic [16]. An attacked observation
is always clipped to the valid image range, 0 to 255. For Atari
games, DQN uses as its inner state a stack of four observations:
f (oi ,o1:i−1) = [oi , ...,oi−3]. For learning the masks of ∆, we gather
trajectories generated by π in order to fillD with 10k observations.
We use a batch size of 8 and the Adam optimizer [11] with a learn-
ing rate of 0.05. Each point of each plot is the average result over 5
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policy π seeds and 80 runs for each seed. Only one seed is used for
π target to keep comparison in terms of cumulative reward fair.

Attack energy. As CopyCAT has an extra parameter α , we test
its influence on the L2 norm of the produced attack. For a given ϵ ,
FGSM-L∞ computes an attack η of maximal energy. As given by
Eq. 1, its L2 norm is ∥η∥2 =

√
Nϵ2 with N the input dimension. For

a given ϵ , CopyCAT produces |A| masks. We show in Fig. 1 the
largest L2 norm of the |A| masks for a varying α (plain curves) and
compare it to the norm of the FGSM-L∞ attack (dashed lines). We
want to stress that the attacks are agnostic to the training algorithm
so the results are easily transferred to other agents using neural
policies trained with another algorithm.

Figure 1: Influence of parameters ϵ and α on the maximal
L2 norm of ∆: maxa∈A ∥δa ∥2. CopyCAT is attacking DQN on
HERO.

As can be seen on Fig. 1, for a given ϵ and for the range of tested
α , the attack produced by CopyCAT has lower energy than FGSM-
L∞. This is especially significant for higher values of ϵ , e.g higher
than 0.05.

Influence of parameters over the resulting behavior. Wewish
to show how the agent behaves under attack. As explained before,
this analysis is twofold. First, we study results in terms of attack suc-
cess rate –rate of action chosen by π matching atarget when shown
attacked observations– as done in supervised learning. Second, we
study the behavior matching through the cumulative rewards under
attack ρ(π ).

What we wish to verify in the following experiment is Copy-
CAT’s ability to lure an agent into following a specific behavior.
If the attack success rate is high (close to 1), we know that, on a
supervised-learning perspective, our attack is successful: it lures the
agent into taking specific actions. If, in addition, the average cumu-
lative reward obtained by the agent under attack reaches ρ(π target)
it means that the attack is really successful in terms of behavior. We
recall that we attack a policy with a target policy reaching higher
average cumulative reward.

We show on Fig. 2, 3 and 4 (three different games) the attack
success rate (left) and the cumulative reward (right) for CopyCAT
(plain curves) for different values of the parameters α and ϵ , as well
as for unattacked π (green dashed line) and π target (black dashed
lines). We observe a gap between having a high success rate and

Figure 2: Influence of parameters ϵ and α on the average be-
havior of the agent playing Space Invaders under CopyCAT
attack . On the left, the attack success rate. On the right, the
average cumulative reward.

Figure 3: Influence of parameters ϵ and α on the average be-
havior of the agent playing HERO under CopyCAT attack .
On the left, the attack success rate. On the right, the average
cumulative reward.

forcing the behavior of π to match the one of π target. There seems
to exist a threshold corresponding to the minimal success rate
required for the behaviors to match. For example, as seen on the
left, CopyCAT with ϵ = 5 and α < 10−5 (green curve) is enough to
get a 85% success rate on the attack. However, as seen on the right,
it is not enough to get the behavior of π under attack to match the
one of the target policy as the reward obtained under attack never
reaches ρ(π target).

Overall, we observe on Fig. 2-right, Fig. 3-right and Fig. 4-right
that with ϵ high enough ϵ ≥ 0.04 and α < 10−6, CopyCAT is able
to consistently lure the agent into following the behaviour induced
by π target.

Comparison to Huang et al. [10]. We compare CopyCAT to
the targeted version of FGSM on a setup where the gradient is
computed only on the last observation. As in the last paragraph,
we study both the attack success rate and the average cumulative
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Figure 4: Influence of parameters ϵ and α on the average be-
havior of the agent playing Air Raid under CopyCAT attack .
On the left, the attack success rate. On the right, the average
cumulative reward.

reward under attack. We ask the question: is CopyCAT able to lure
the agent into following the targeted behavior? Is it better at this
task than FGSM in the real-time and read-only setting?

Figure 5: CopyCAT against FGSM for policy targeted attacks
in Space Invaders. On the left, the attack success rate. On the
right, the average cumulative reward under attack.

We show on Fig. 5, 6 and 7 (three different games) the success rate
of CopyCAT and FGSM (y-axis, left) and the average cumulative
reward under attack (y-axis, right). These values are plotted (i)
against the L2 norm of the attack for FGSM and (ii) against the
largest L2 norm of the masks: maxa∈A ∥δa ∥2 for CopyCAT. We
only plot the standard deviation on the attack success rate because
it corresponds to the intrinsic noise of CopyCAT. We do not plot it
for cumulative reward for the reason that one seed of π target has a
great variance (with the sticky actions) and matching π target, even
perfectly, implies matching the variance of its cumulative rewards.
The same phenomenon can be observed on Fig. 2 and 3: CopyCAT is
not itself unstable (left figures, when α decreases or ϵ increases, the
rate of successful attacks consistently increases). Yet the cumulative

Figure 6: CopyCAT against FGSM for policy targeted attacks
in HERO. On the left, the attack success rate. On the right,
the average cumulative reward under attack.

Figure 7: CopyCAT against FGSM for policy targeted attacks
in Air Raid. On the left, the attack success rate. On the right,
the average cumulative reward under attack.

reward is noisier, as the behavior of π is now matching with a high-
variance policy. As observed on Fig. 5-right, Fig. 6-left and Fig. 7-
left, FGSM is able to turn a potentially significant part of the taken
actions into the targeted actions (maximal success rate around 75%
on Space Invaders). However, it is never able to make π ’s behavior
matchwith π target’s behavior as seen on Fig. 5-right, Fig. 6-right and
Fig. 7-right. The average cumulative reward obtained by π under
FGSM attack never reaches the one of π target. On the contrary,
CopyCAT is able to successfully lure π into following the desired
macroscopic behavior. First, it turns more than 99% of the taken
actions into the targeted actions. Second, it makes ρ(π ) under attack
reach ρ(π target). Moreover, it does so using only a finite set of masks
while the baselines compute a new attack at each time step.

An example of CopyCAT is shown on Fig. 8. The patch δa aiming
at action a: "no-op" (i.e. do nothing) is applied to an agent playing
Space Invaders. The patch itself can be seen on the right (gray
represents a zero pixel, black negative and white positive). The
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Figure 8: DQN playing Space Invaders. On the left, the unattacked current observation. In the middle, a mask of CopyCAT is
applied to lure the agent into taking the "no-op" action. Parameters used are: ϵ = 3 · 10−2, α = 1.3 · 10−5. The L2 norm of the
corresponding mask (shown on the right) is 0.78. For this same ϵ , FGSM-L∞ would produce an attack of L2 norm: 2.52

unattacked observation is on the left, and the attacked one on the
right. Below the images is provided the action taken by the same
policy π when shown the different situations in an online setting.

6 ADDITIONAL EXPERIMENTS
In this section, we provide additional experiments to study further
various aspects of the proposed approach. We build experiments to
assess the possibility that CopyCAT would be successfully applica-
ble in harder contexts, with very dissimilar policies π and π target,
in the much more complex black-box setting or in environments
with more realistic images than Atari.

6.1 Towards black-box targeted attacks
Papernot et al. [20] observed the transferability of adversarial exam-
ples between different models. Thanks to this transferability, one
is able to attack a model without having access to its weights. By
learning attacks on proxy models, one can build black-box adversar-
ial examples. However Kos and Song [12] enlightened the difficulty
for the state-of-the-art methods to build targeted adversarial ex-
amples in this black-box setting. Starting from the intuition that
universal attacks may transfer better between models, we enhanced
CopyCAT for it to work in the black-box setting.

We consider a setting where the adversary (1) is given a set of
proxy models {π1, ...,πn } trained with the same algorithm as π ,
(2) can also query the attacked model π , but (3) has no access to
its weights. In the black-box setting, CopyCAT is divided into two
steps: first training multiple additional masks, and second selecting
the highest performing ones.

Training. The ensemble-based method from Kos and Song [12]
computes its additional mask by attacking the classifier given by
the mean predictions of the proxy models. We instead consider that
our attack should be efficient against any convex combination of
the proxy models’ predictions. For each action a ∈ A, we compute

the mask δa by maximizing over 100 epochs on the dataset D:

E
okt ∈D

(α1 ...αp )∼∆

[
log

∑
1≤p≤n

αpπp (a | f (okt + δa ,ok1:t−1)) + α ∥δa ∥2
]

s.t. ∥δa ∥∞ < ϵ .

(4)

with ∆ the uniform distribution over the n-simplex. By sampling
uniformely over the simplex, we hope to build an attack fooling any
classifier with predictions in the convex hull of the proxy models’
predictions.

For each action, 100 masks are computed this way. These masks
are just computed with different random seeds.

Selection. We then compute a competition accuracy for each of
these random seeds. This accuracy is computed by querying π on
states built as follows. We take four consecutive observations in D,
apply 3 masks randomly selected among the previously computed
masks on the first 3 observations; the mask δa that is actually being
tested is applied on the last observation. The attack is considered
successful if π outputs the action a corresponding to δa . For each
action, the mask with the highest competition accuracy among the
100 computed masks is selected.

Inference. The selected masks are then used online as in the
white-box setting.

Results. Weprovide preliminary results for the considered black-
box setting. Four proxy models of DQN are used to attack π . Again,
it is attacked to make it follow the policy π target given by Rainbow.
The results can be found in Fig. 9. Each dot is an attack tested
over 80 new episodes. Y-axis is the mean success rate (middle) or
the cumulative reward (right). X-axis is the maximal norm of the
attack. The figure on the left gives the value of α (on the y-axis)
corresponding to each color.

We can observe on Fig. 9 that the proposed black-box attack is
effective, even if less efficient than its white-box counterpart. The
proposed black-box CopyCAT could certainly be improved, and we
let this for future work.
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Figure 9: CopyCAT attacking DQN on Air Raid, in the black-box setting to make it match Rainbow’s policy.

6.2 Attacking untrained DQN
In Sec. 5, the attacked agent was a trained DQN agent, while the
target policy was a trained Rainbow agent. If these agents have
clearly different behaviors, one could argue that they were initially
trained to solve the same task (getting the highest score as possible),
Rainbow achieving better results. To further assess CopyCAT’s
ability to lure a policy into following another policy, we therefore
attack an untrained DQN, with random weights, to follow the
policy π target still obtained from a trained Rainbow agent. These
two policies are dissimilar as one is random while the other is
trained to maximized the game’s score.

Figure 10: Untrained DQN attacked by CopyCAT to follow
Rainbow’s policy on Air Raid. Left: the attack success rate.
Right: the average cumulative reward.

We see on Fig. 10, 11, 12 that in this case, FGSM is able to lure
π into following π target at least as well as CopyCAT. This shows
that it is easier to fool an untrained network than a trained one. As
expected, trained networks are more robust to adversarial examples.
CopyCAT is also able to lure the agent into following π target.

Figure 11: Untrained DQN attacked by CopyCAT to follow
Rainbow’s policy on Space Invaders. Left: the attack success
rate. Right: the average cumulative reward.

Figure 12: Untrained DQN attacked by CopyCAT to follow
Rainbow’s policy on HERO. Left: the attack success rate.
Right: the average cumulative reward.
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6.3 More realistic images
Reinforcement learning led to great improvements for games [24] or
robots manipulation [14] but is not able yet to tackle realistic-image
environments. While this paper focuses on weaknesses of reinforce-
ment learning agents, the relevance of the proposed method would
be diminished if one could not compute universal adversarial ex-
amples on realistic datasets. We thus present this proof-of-concept,
showing the existence of universal adversarial examples on the
ImageNet [5] dataset. Note that Brown et al. [2] already showed the
existence of universal attacks but considered a patch completely
covering a part of the image rather than an additional mask on the
image.

We computed a universal attack on VGG16 [25], targeted towards
the label “tiger_shark”, the same way CopyCAT does. It is trained
on a small training set (10 batches of size 8), and tested on a random
subset of ImageNet validation dataset. The network is taken from
Keras pretrained models [4] and attacked in a white-box setting.
The same procedure as CopyCAT is used. 1000 images are randomly
selected in the validation set. Only 80 are used for training and the
rest is used for testing. The attack is trained with the same loss,
same learning rate and same batch size as CopyCAT, for 200 epochs.
The (rescaled) computed attack is shown in Fig. 13. Examples of
attacked images from the test set are visible on Fig. 14.

Figure 13: The rescaled attack for the target class
“tiger_shark”.

After 200 epochs, the train accuracy is 90% and the test accuracy
88.44%. This proof-of-concept experiment validates the existence of
universal adversarial examples on realistic images and shows that
CopyCAT’s scope is not reduced to Atari-like environments. More
generally, the existence of adversarial examples have been shown
to be a property of high-dimensional manifolds [7]. Going towards
more realistic images, hence higher dimensional images, should
on the opposite, allow CopyCAT to more easily find universal
adversarial examples.

7 CONCLUSION
In this work, we built and showed the effectiveness of CopyCAT,
a simple algorithm designed to attack neural policies in order to
manipulate them. We showed its ability to lure a policy into having
a desired behavior with a finite set of additive masks, usable in a
real-time setting while being applied only on observations of the
environment. We demonstrated the effectiveness of these universal

Figure 14: Top: images from the test set, unseen during the
training of the attack. Down: attacked images: (image + at-
tack). Below each image, the label predicted by VGG16.

masks in Atari games, in the white-box setting.We also investigated
an extension of CopyCAT in the black-box setting and validated the
possibility of using it on potentially more complex environments
with realistic observations.

As this work shows that one can easily manipulate a policy’s
behavior, a natural direction of work is to develop robust algo-
rithms, either able to keep their normal behaviors when attacked
or to detect attacks to treat them appropriately. Notice however
that in a sequential-decision-making setting, detecting an attack is
not enough as the agent cannot necessarily stop the process when
detecting an attack and may have to keep outputting actions for
incoming observations. It is thus an exciting direction of work to
develop algorithm that are able to maintain their behavior under
such manipulating attacks. Another interesting direction of work
in order to build real-life attacks is to further develop targeted at-
tacks on neural policies in the black-box scenario, with no access to
network’s weights and architecture. However, targeted adversarial
examples are harder to compute than untargeted ones and we may
experience more difficulties in reinforcement learning than super-
vised learning. Indeed, learned representations are known to be less
interpretable and the variability between different random seeds
to be higher than in supervised learning. Different policies trained
with the same algorithm may thus lead to S → A mappings with
very different decision boundaries. Transferring targeted examples
may not be easy. In order to attack a policy π , training imitation
models like the one from Hester et al. [9] to obtain proxy policies
that are both (i) solving the same task as π and (ii) similar map-
pings S → A may be the key to compute transferable adversarial
examples.
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