220,208 research outputs found
Dust-acoustic waves and stability in the permeating dusty plasma: II. Power-law distributions
The dust-acoustic waves and their stability driven by a flowing dusty plasma
when it cross through a static (target) dusty plasma (the so-called permeating
dusty plasma) are investigated when the components of the dusty plasma obey the
power-law q-distributions in nonextensive statistics. The frequency, the growth
rate and the stability condition of the dust-acoustic waves are derived under
this physical situation, which express the effects of the nonextensivity as
well as the flowing dusty plasma velocity on the dust-acoustic waves in this
dusty plasma. The numerical results illustrate some new characteristics of the
dust-acoustic waves, which are different from those in the permeating dusty
plasma when the plasma components are the Maxwellian distribution. In addition,
we show that the flowing dusty plasma velocity has a significant effect on the
dust-acoustic waves in the permeating dusty plasma with the power-law
q-distribution.Comment: 20 pages, 10 figures, 41 reference
Dynamics of electron beams in the solar corona plasma with density fluctuations
The problem of beam propagation in a plasma with small scale and low intensity inhomogeneities is investigated. It is shown that the electron beam propagates in a plasma as a beam-plasma structure and is a source of Langmuir waves. The plasma inhomogeneity changes the spatial distribution of the waves. The spatial distribution of the waves is fully determined by the distribution of plasma inhomogeneities. The possible applications to the theory of radio emission associated with electron beams are discussed
Compressive high-frequency waves riding on an Alfv\'en/ion-cyclotron wave in a multi-fluid plasma
In this paper, we study the weakly-compressive high-frequency plasma waves
which are superposed on a large-amplitude Alfv\'en wave in a multi-fluid plasma
consisting of protons, electrons, and alpha particles. For these waves, the
plasma environment is inhomogenous due to the presence of the low-frequency
Alfv\'en wave with a large amplitude, a situation that may apply to space
plasmas such as the solar corona and solar wind. The dispersion relation of the
plasma waves is determined from a linear stability analysis using a new
eigenvalue method that is employed to solve the set of differential wave
equations which describe the propagation of plasma waves along the direction of
the constant component of the Alfv\'en wave magnetic field. This approach also
allows one to consider weak compressive effects. In the presence of the
background Alfv\'en wave, the dispersion branches obtained differ significantly
from the situation of a uniform plasma. Due to compressibility, acoustic waves
are excited and couplings between various modes occur, and even an instability
of the compressive mode. In a kinetic treatment, these plasma waves would be
natural candidates for Landau-resonant wave-particle interactions, and may thus
via their damping lead to particle heating.Comment: 15 pages, 5 figure
Three-wave interactions of dispersive plasma waves propagating parallel to the magnetic field
Three-wave interactions of plasma waves propagating parallel to the mean
magnetic field at frequencies below the electron cyclotron frequency are
considered. We consider Alfv\'en--ion-cyclotron waves,
fast-magnetosonic--whistler waves, and ion-sound waves. Especially the weakly
turbulent low-beta plasmas like the solar corona are studied, using the
cold-plasma dispersion relation for the transverse waves and the
fluid-description of the warm plasma for the longitudinal waves. We analyse the
resonance conditions for the wave frequencies and wavenumbers , and
the interaction rates of the waves for all possible combinations of the three
wave modes, and list those reactions that are not forbidden.Comment: accepted for publication in Advanced Science Letter
Kinetic simulations of ladder climbing by electron plasma waves
The energy of plasma waves can be moved up and down the spectrum using
chirped modulations of plasma parameters, which can be driven by external
fields. Depending on whether the wave spectrum is discrete (bounded plasma) or
continuous (boundless plasma), this phenomenon is called ladder climbing (LC)
or autoresonant acceleration of plasmons. It was first proposed by Barth
\textit{et al.} [PRL \textbf{115}, 075001 (2015)] based on a linear fluid
model. In this paper, LC of electron plasma waves is investigated using fully
nonlinear Vlasov-Poisson simulations of collisionless bounded plasma. It is
shown that, in agreement with the basic theory, plasmons survive substantial
transformations of the spectrum and are destroyed only when their wave numbers
become large enough to trigger Landau damping. Since nonlinear effects decrease
the damping rate, LC is even more efficient when practiced on structures like
quasiperiodic Bernstein-Greene-Kruskal (BGK) waves rather than on Langmuir
waves \textit{per~se}
Resonant interaction between gravitational waves, electromagnetic waves and plasma flows
In magnetized plasmas gravitational and electromagnetic waves may interact
coherently and exchange energy between themselves and with plasma flows. We
derive the wave interaction equations for these processes in the case of waves
propagating perpendicular or parallel to the plasma background magnetic field.
In the latter case, the electromagnetic waves are taken to be circularly
polarized waves of arbitrary amplitude. We allow for a background drift flow of
the plasma components which increases the number of possible evolution
scenarios. The interaction equations are solved analytically and the
characteristic time scales for conversion between gravitational and
electromagnetic waves are found. In particular, it is shown that in the
presence of a drift flow there are explosive instabilities resulting in the
generation of gravitational and electromagnetic waves. Conversely, we show that
energetic waves can interact to accelerate particles and thereby \emph{produce}
a drift flow. The relevance of these results for astrophysical and cosmological
plasmas is discussed.Comment: 12 pages, 1 figure, typos corrected and numerical example adde
Nonlinear, relativistic Langmuir waves in astrophysical magnetospheres
Large amplitude, electrostatic plasma waves are relevant to physical processes occurring in the astrophysical magnetospheres wherein charged particles are accelerated to relativistic energies by strong waves emitted by pulsars, quasars, or radio galaxies. The nonlinear, relativistic theory of traveling Langmuir waves in a cold plasma is reviewed. The cases of streaming electron plasma, electronic plasma, and two-streams are discussed
On the nature of kink MHD waves in magnetic flux tubes
Magnetohydrodynamic (MHD) waves are often reported in the solar atmosphere
and usually classified as slow, fast, or Alfv\'en. The possibility that these
waves have mixed properties is often ignored. The goal of this work is to study
and determine the nature of MHD kink waves. This is done by calculating the
frequency, the damping rate and the eigenfunctions of MHD kink waves for three
widely different MHD waves cases: a compressible pressure-less plasma, an
incompressible plasma and a compressible plasma with non-zero plasma pressure
which allows for MHD radiation. In all three cases the frequency and the
damping rate are for practical purposes the same as they differ at most by
terms proportional to . In the magnetic flux tube the kink waves are
in all three cases, to a high degree of accuracy incompressible waves with
negligible pressure perturbations and with mainly horizontal motions. The main
restoring force of kink waves in the magnetised flux tube is the magnetic
tension force. The total pressure gradient force cannot be neglected except
when the frequency of the kink wave is equal or slightly differs from the local
Alfv\'{e}n frequency, i.e. in the resonant layer. Kink waves are very robust
and do not care about the details of the MHD wave environment. The adjective
fast is not the correct adjective to characterise kink waves. If an adjective
is to be used it should be Alfv\'{e}nic. However, it is better to realize that
kink waves have mixed properties and cannot be put in one single box
- …
