1,626 research outputs found

    Combinatorics of bicubic maps with hard particles

    Get PDF
    We present a purely combinatorial solution of the problem of enumerating planar bicubic maps with hard particles. This is done by use of a bijection with a particular class of blossom trees with particles, obtained by an appropriate cutting of the maps. Although these trees have no simple local characterization, we prove that their enumeration may be performed upon introducing a larger class of "admissible" trees with possibly doubly-occupied edges and summing them with appropriate signed weights. The proof relies on an extension of the cutting procedure allowing for the presence on the maps of special non-sectile edges. The admissible trees are characterized by simple local rules, allowing eventually for an exact enumeration of planar bicubic maps with hard particles. We also discuss generalizations for maps with particles subject to more general exclusion rules and show how to re-derive the enumeration of quartic maps with Ising spins in the present framework of admissible trees. We finally comment on a possible interpretation in terms of branching processes.Comment: 41 pages, 19 figures, tex, lanlmac, hyperbasics, epsf. Introduction and discussion/conclusion extended, minor corrections, references adde

    A Nearly Tight Sum-of-Squares Lower Bound for the Planted Clique Problem

    Full text link
    We prove that with high probability over the choice of a random graph GG from the Erd\H{o}s-R\'enyi distribution G(n,1/2)G(n,1/2), the nO(d)n^{O(d)}-time degree dd Sum-of-Squares semidefinite programming relaxation for the clique problem will give a value of at least n1/2c(d/logn)1/2n^{1/2-c(d/\log n)^{1/2}} for some constant c>0c>0. This yields a nearly tight n1/2o(1)n^{1/2 - o(1)} bound on the value of this program for any degree d=o(logn)d = o(\log n). Moreover we introduce a new framework that we call \emph{pseudo-calibration} to construct Sum of Squares lower bounds. This framework is inspired by taking a computational analog of Bayesian probability theory. It yields a general recipe for constructing good pseudo-distributions (i.e., dual certificates for the Sum-of-Squares semidefinite program), and sheds further light on the ways in which this hierarchy differs from others.Comment: 55 page

    Constant Factor Approximation for Balanced Cut in the PIE model

    Full text link
    We propose and study a new semi-random semi-adversarial model for Balanced Cut, a planted model with permutation-invariant random edges (PIE). Our model is much more general than planted models considered previously. Consider a set of vertices V partitioned into two clusters LL and RR of equal size. Let GG be an arbitrary graph on VV with no edges between LL and RR. Let ErandomE_{random} be a set of edges sampled from an arbitrary permutation-invariant distribution (a distribution that is invariant under permutation of vertices in LL and in RR). Then we say that G+ErandomG + E_{random} is a graph with permutation-invariant random edges. We present an approximation algorithm for the Balanced Cut problem that finds a balanced cut of cost O(Erandom)+npolylog(n)O(|E_{random}|) + n \text{polylog}(n) in this model. In the regime when Erandom=Ω(npolylog(n))|E_{random}| = \Omega(n \text{polylog}(n)), this is a constant factor approximation with respect to the cost of the planted cut.Comment: Full version of the paper at the 46th ACM Symposium on the Theory of Computing (STOC 2014). 32 page

    Towards a better approximation for sparsest cut?

    Full text link
    We give a new (1+ϵ)(1+\epsilon)-approximation for sparsest cut problem on graphs where small sets expand significantly more than the sparsest cut (sets of size n/rn/r expand by a factor lognlogr\sqrt{\log n\log r} bigger, for some small rr; this condition holds for many natural graph families). We give two different algorithms. One involves Guruswami-Sinop rounding on the level-rr Lasserre relaxation. The other is combinatorial and involves a new notion called {\em Small Set Expander Flows} (inspired by the {\em expander flows} of ARV) which we show exists in the input graph. Both algorithms run in time 2O(r)poly(n)2^{O(r)} \mathrm{poly}(n). We also show similar approximation algorithms in graphs with genus gg with an analogous local expansion condition. This is the first algorithm we know of that achieves (1+ϵ)(1+\epsilon)-approximation on such general family of graphs

    Multicritical continuous random trees

    Full text link
    We introduce generalizations of Aldous' Brownian Continuous Random Tree as scaling limits for multicritical models of discrete trees. These discrete models involve trees with fine-tuned vertex-dependent weights ensuring a k-th root singularity in their generating function. The scaling limit involves continuous trees with branching points of order up to k+1. We derive explicit integral representations for the average profile of this k-th order multicritical continuous random tree, as well as for its history distributions measuring multi-point correlations. The latter distributions involve non-positive universal weights at the branching points together with fractional derivative couplings. We prove universality by rederiving the same results within a purely continuous axiomatic approach based on the resolution of a set of consistency relations for the multi-point correlations. The average profile is shown to obey a fractional differential equation whose solution involves hypergeometric functions and matches the integral formula of the discrete approach.Comment: 34 pages, 12 figures, uses lanlmac, hyperbasics, eps
    corecore