95 research outputs found

    Using hybrid transcription factors to study gene function in rice

    Get PDF

    Phloem fibres as motors of gravitropic behaviour of flax plants: Level of transcriptome

    Get PDF
    © 2018 CSIRO. Restoration of stem vertical position after plant inclination is a widely spread version of plant orientation in accordance with gravity vector direction. Gravitropic behaviour of flax plants involves the formation of curvature in stem region that has ceased elongation long in advance of stem inclination. The important participants of such behaviour are phloem fibres with constitutively formed tertiary cell wall (G-layer). We performed the large-scale transcriptome profiling of phloem fibres isolated from pulling and opposite sides of gravitropic curvature and compared with control plant fibres. Significant changes in transcript abundance take place for genes encoding proteins of several ion channels, transcription factors and other regulating elements. The largest number of upregulated genes belonged to the cell wall category; many of those were specifically upregulated in fibres of pulling stem side. The obtained data permit to suggest the mechanism of fibre participation in gravitropic reaction that involves the increase of turgor pressure and the rearrangements of cell wall structure in order to improve contractile properties, and to identify the regulatory elements that operate specifically in the fibres of the pulling stem side making gelatinous phloem fibres an important element of gravitropic response in herbaceous plants

    An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L.)

    Get PDF
    Chickpea (Cicer arietinum L.) is an important pulse legume crop. We previously reported a draft genome assembly of the desi chickpea cultivar ICC 4958. Here we report an advanced version of the ICC 4958 genome assembly (version 2.0) generated using additional sequence data and an improved genetic map. This resulted in 2.7-fold increase in the length of the pseudomolecules and substantial reduction of sequence gaps. The genome assembly covered more than 94% of the estimated gene space and predicted the presence of 30,257 protein-coding genes including 2230 and 133 genes encoding potential transcription factors (TF) and resistance gene homologs, respectively. Gene expression analysis identified several TF and chickpea-specific genes with tissue-specific expression and displayed functional diversification of the paralogous genes. Pairwise comparison of pseudomolecules in the desi (ICC 4958) and the earlier reported kabuli (CDC Frontier) chickpea assemblies showed an extensive local collinearity with incongruity in the placement of large sequence blocks along the linkage groups, apparently due to use of different genetic maps. Single nucleotide polymorphism (SNP)-based mining of intra-specific polymorphism identified more than four thousand SNPs differentiating a desi group and a kabuli group of chickpea genotypes

    A Drought-Inducible Transcription Factor Delays Reproductive Timing in Rice

    Full text link
    The molecular mechanisms underlying photoperiod or temperature control of flowering time have been recently elucidated, but how plants regulate flowering time in response to other external factors, such as water availability, remains poorly understood. Using a large-scale Hybrid Transcription Factor approach, we identified a bZIP transcriptional factor, O. sativa ABA responsive element binding factor 1 (OsABF1), which acts as a suppressor of floral transition in a photoperiod-independent manner. Simultaneous knockdown of both OsABF1 and its closest homologous gene, OsbZIP40, in rice (Oryza sativa) by RNA interference results in a significantly earlier flowering phenotype. Molecular and genetic analyses demonstrate that a drought regime enhances expression of the OsABF1 gene, which indirectly suppresses expression of the Early heading date 1 (Ehd1) gene that encodes a key activator of rice flowering. Furthermore, we identified a drought-inducible gene named OsWRKY104 that is under the direct regulation of OsABF1. Overexpression of OsWRKY104 can suppress Ehd1 expression and confers a later flowering phenotype in rice. Together, these findings reveal a novel pathway by which rice modulates heading date in response to the change of ambient water availability

    Control of Cotton Fibre Elongation by a Homeodomain Transcription Factor GhHOX3

    Get PDF
    Cotton fibres are unusually long, single-celled epidermal seed trichomes and a model for plant cell growth, but little is known about the regulation of fibre cell elongation. Here we report that a homeodomain-leucine zipper (HD-ZIP) transcription factor, GhHOX3, controls cotton fibre elongation. GhHOX3 genes are localized to the 12th homoeologous chromosome set of allotetraploid cotton cultivars, associated with quantitative trait loci (QTLs) for fibre length. Silencing of GhHOX3 greatly reduces (\u3e80%) fibre length, whereas its overexpression leads to longer fibre. Combined transcriptomic and biochemical analyses identify target genes of GhHOX3 that also contain the L1-box cis-element, including two cell wall loosening protein genes GhRDL1 and GhEXPA1. GhHOX3 interacts with GhHD1, another homeodomain protein, resulting in enhanced transcriptional activity, and with cotton DELLA, GhSLR1, repressor of the growth hormone gibberellin (GA). GhSLR1 interferes with the GhHOX3–GhHD1 interaction and represses target gene transcription. Our results uncover a novel mechanism whereby a homeodomain protein transduces GA signal to promote fibre cell elongation
    • …
    corecore