76,940 research outputs found
Reproduction and Dispersal of Biological Soil Crust Organisms
Biological soil crusts (BSCs) consist of a diverse and highly integrated community of organisms that effectively colonize and collectively stabilize soil surfaces. BSCs vary in terms of soil chemistry and texture as well as the environmental parameters that combine to support unique combinations of organisms—including cyanobacteria dominated, lichen-dominated, and bryophyte-dominated crusts. The list of organismal groups that make up BSC communities in various and unique combinations include—free living, lichenized, and mycorrhizal fungi, chemoheterotrophic bacteria, cyanobacteria, diazotrophic bacteria and archaea, eukaryotic algae, and bryophytes. The various BSC organismal groups demonstrate several common characteristics including—desiccation and extreme temperature tolerance, production of various soil binding chemistries, a near exclusive dependency on asexual reproduction, a pattern of aerial dispersal over impressive distances, and a universal vulnerability to a wide range of human-related perturbations. With this publication, we provide literature-based insights as to how each organismal group contributes to the formation and maintenance of the structural and functional attributes of BSCs, how they reproduce, and how they are dispersed. We also emphasize the importance of effective application of molecular and microenvironment sampling and assessment tools in order to provide cogent and essential answers that will allow scientists and land managers to better understand and manage the biodiversity and functional relationships of soil crust communities
Changes in plant species richness distribution in Tibetan alpine grasslands under different precipitation scenarios
Species richness is the core of biodiversity-ecosystem functioning (BEF) research. Nevertheless, it is difficult to accurately predict changes in plant species richness under different climate scenarios, especially in alpine biomes. In this study, we surveyed plant species richness from 2009 to 2017 in 75 alpine meadows (AM), 199 alpine steppes (AS), and 71 desert steppes (DS) in the Tibetan Autonomous Region, China. Along with 20 environmental factors relevant to species settlement, development, and survival, we first simulated the spatial pattern of plant species richness under current climate conditions using random forest modelling. Our results showed that simulated species richness matched well with observed values in the field, showing an evident decrease from meadows to steppes and then to deserts. Summer precipitation, which ranked first among the 20 environmental factors, was further confirmed to be the most critical driver of species richness distribution. Next, we simulated and compared species richness patterns under four different precipitation scenarios, increasing and decreasing summer precipitation by 20% and 10%, relative to the current species richness pattern. Our findings showed that species richness in response to altered precipitation was grassland-type specific, with meadows being sensitive to decreasing precipitation, steppes being sensitive to increasing precipitation, and deserts remaining resistant. In addition, species richness at low elevations was more sensitive to decreasing precipitation than to increasing precipitation, implying that droughts might have stronger influences than wetting on species composition. In contrast, species richness at high elevations (also in deserts) changed slightly under different precipitation scenarios, likely due to harsh physical conditions and small species pools for plant recruitment and survival. Finally, we suggest that policymakers and herdsmen pay more attention to alpine grasslands in central Tibet and at low elevations where species richness is sensitive to precipitation changes
Global assessment of nitrogen deposition effects on terrestrial plant diversity : a synthesis
Atmospheric nitrogen (N) deposition is it recognized threat to plant diversity ill temperate and northern parts of Europe and North America. This paper assesses evidence from field experiments for N deposition effects and thresholds for terrestrial plant diversity protection across a latitudinal range of main categories of ecosystems. from arctic and boreal systems to tropical forests. Current thinking on the mechanisms of N deposition effects on plant diversity, the global distribution of G200 ecoregions, and current and future (2030) estimates of atmospheric N-deposition rates are then used to identify the risks to plant diversity in all major ecosystem types now and in the future. This synthesis paper clearly shows that N accumulation is the main driver of changes to species composition across the whole range of different ecosystem types by driving the competitive interactions that lead to composition change and/or making conditions unfavorable for some species. Other effects such its direct toxicity of nitrogen gases and aerosols long-term negative effects of increased ammonium and ammonia availability, soil-mediated effects of acidification, and secondary stress and disturbance are more ecosystem, and site-specific and often play a supporting role. N deposition effects in mediterranean ecosystems have now been identified, leading to a first estimate of an effect threshold. Importantly, ecosystems thought of as not N limited, such as tropical and subtropical systems, may be more vulnerable in the regeneration phase. in situations where heterogeneity in N availability is reduced by atmospheric N deposition, on sandy soils, or in montane areas. Critical loads are effect thresholds for N deposition. and the critical load concept has helped European governments make progress toward reducing N loads on sensitive ecosystems. More needs to be done in Europe and North America. especially for the more sensitive ecosystem types. including several ecosystems of high conservation importance. The results of this assessment Show that the Vulnerable regions outside Europe and North America which have not received enough attention are ecoregions in eastern and Southern Asia (China, India), an important part of the mediterranean ecoregion (California, southern Europe). and in the coming decades several subtropical and tropical parts of Latin America and Africa. Reductions in plant diversity by increased atmospheric N deposition may be more widespread than first thought, and more targeted Studies are required in low background areas, especially in the G200 ecoregions
Spatial and temporal structure of the spider community in the clay semi-desert of western Kazakhstan
The spatial and temporal structure of spider communities was studied in the clay semi-desert of the north-western Caspian Lowland, western Kazakhstan (49°23' N, 46°47' E). The soils and vegetation are complex, being composed of a mosaic of desert and steppe plant communities. Besides the native associations, there are plantations of different tree species. The ground-dwelling spider assemblages in the native habitats are the most diverse. The number of species inhabiting forest plantations is three times as small. Gnaphosidae is the leading family in the ground layer. They show high abundance and diversity levels during the whole season. Thomisidae, Lycosidae, Philodromidae, and Salticidae are abundant as well. The species diversity of herbage-dwelling spiders in different open native habitats is very similar. The spectrum of dominant families (Thomisidae, Oxyopidae, Araneidae, and Salticidae) and the seasonal dynamics of their ratio in desert and steppe associations have much in common. Spider assemblages of native and artificial habitats are characterised by change from multispecies polydominant spring-summer communities to impoverished imbalanced autumn ones. Seasonal changes in the species structure of mature spider groupings in native habitats are well pronounced, while the impact of seasonal conditions is even stronger than between-habitat differences. Complexes of typical species with different levels of habitat preference are revealed
The African great green wall project: What advice can scientists provide? : A summary of published results
Coexistence and relative abundance in annual plant assemblages: The roles of competition and colonization
Although an interspecific trade-off between competitive and colonizing ability can permit multispecies coexistence, whether this mechanism controls the structure of natural systems remains unresolved. We used models to evaluate the hypothesized importance of this trade-off for explaining coexistence and relative abundance patterns in annual plant assemblages. In a nonspatial model, empirically derived competition-colonization trade-offs related to seed mass were insufficient to generate coexistence. This was unchanged by spatial structure or interspecific variation in the fraction of seeds dispersing globally. These results differ from those of the more generalized competition-colonization models because the latter assume completely asymmetric competition, an assumption that appears unrealistic considering existing data for annual systems. When, for heuristic purposes, completely asymmetric competition was incorporated into our models, unlimited coexistence was possible. However, in the resulting abundance patterns, the best competitors/poorest colonizers were the most abundant, the opposite of that observed in natural systems. By contrast, these natural patterns were produced by competition-colonization models where environmental heterogeneity permitted species coexistence. Thus, despite the failure of the simple competition-colonization trade-off to explain coexistence in annual plant systems, this trade-off may be essential to explaining relative abundance patterns when other processes permit coexistence
Recommended from our members
Sun exposure drives Antarctic cryptoendolithic community structure and composition
AbstractThe harsh environmental conditions of the ice-free regions of Continental Antarctica are considered one of the closest Martian analogues on Earth. There, rocks play a pivotal role as substratum for life and endolithism represents a primary habitat for microorganisms when external environmental conditions become incompatible with active life on rock surfaces. Due to the thermal inertia of rock, the internal airspace of lithic substratum is where microbiota find a protected and buffered microenvironment, allowing life to spread throughout these regions with extreme temperatures and low water availability. The high degree of adaptation and specialization of the endolithic communities makes them highly resistant but scarsely resilient to any external perturbation and thus, any shifts in microbial community composition may serve as early-alarm systems of environmental perturbation, including climate change.Previous research concluded that altitude and distance from sea do not play as driving factors in shaping microbial abundance and diversity, while sun exposure was hypothesized as significant parameter influencing endolithic settlement and development. This study aims to explore our hypothesis that changes in sun exposure translate to shifts in community composition and abundances of main biological compartments (fungi, algae and bacteria) in the Antarctic cryptoendolithic communities. We performed a preliminary molecular survey, based on DGGE and qPCR tecniques, of 48 rocks with varying sun exposure, collected in Victoria Land along an altitudinal transect from 834 to 3100 m a.s.l.Our findings demonstrate that differences in sun radiation between north and south exposure influence temperature of rocks surface, availability of water and metabolic activity and also have significant impact on community composition and microbial abundance
Urbanization, environmental stabilization and temporal persistence of bird species: A view from Latin America
Background. A scarcely studied consequence of urbanization is the effect of temporal stabilization of the environment on bird communities. This alteration is thought to dampen environmental variations between day and night, seasons and years, promoting a temporal persistence of bird composition in urban areas. The aim of this study was to review current evidence of temporal stabilization of biotic and abiotic factors in urban environments and the potential effects of such stabilization on temporal variation of bird species presence at different temporal scales. Methods. I selected the literature by searching published articles and book chapters using Scopus and Google scholar. I only included articles that compared the temporal variation of bird composition or resources between different levels of urbanization. Results. In general, there is evidence of temporal stabilization of abiotic and biotic factors at the three time scales considered. At the diurnal scale, the main factor considered was artificial light in the context of light pollution. At the seasonal and interannual scales, several case studies found a smaller temporal variation of primary productivity in urban than in natural and rural areas. Bird species composition showed more stabilization in urban environments at the three temporal scales: (1) several case studies reported bird activity at night, associated with artificial light; (2) studies in urban parks and along urbanization gradients showed smaller seasonal variation of bird composition in the more urbanized areas; and (3) in general, case studies along urbanization gradients showed smaller interannual variation of bird composition in the more urbanized areas, although some studies showed no relationships or opposite trends than expected. Discussion. The published evidence suggests that urban areas dampen the natural cycles at several temporal scales. The stabilization of biotic and abiotic factors, such as light, temperature, food and habitat structure, is desynchronized from natural diurnal, seasonal and interannual cycles. However, there is a dearth of long-term comparisons of bird composition and studies that simultaneously analyze the relationship between resources and bird composition stabilization at the seasonal and interannual scales. More research is needed in the Southern hemisphere, where there is a lack of studies dealing with the seasonal and interannual variations of primary productivity along urbanization gradients and nocturnal activity of bird species. A future research agenda should include differentiation of spatial and temporal homogenization of avifaunas.Fil: Leveau, Lucas Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin
Environmental projects. Volume 7: Environmental resources document
The Goldstone Deep Space Communications Complex (GDSCC) in Barstow, California, is part of the NASA Deep Space Network, one of the world's largest and most sensitive scientific telecommunications and radio navigation networks. Goldstone is managed, directed and operated by the Jet Propulsion Laboratory of Pasadena, California. The GDSCC includes five distinct operational sites: Echo, Venus, Mars, Apollo, and Mojave Base. Within each site is a Deep Space Station (DPS), consisting of a large dish antenna and its support facilities. As required by NASA directives concerning the implementation of the National Environmental Policy Act, each NASA field installation is to publish an Environmental Resources Document describing the current environment at the installation, including any adverse effects that NASA operations may have on the local environment
- …
