17 research outputs found

    Planning under uncertainty using model predictive control for information gathering

    Full text link
    This paper considers trajectory planning problems for autonomous robots in information gathering tasks. The objective of the planning is to maximize the information gathered within a finite time horizon. It is assumed that either the Extended Kalman Filter (EKF) or the Extended Information Filter (EIF) is applied to estimate the features of interest and the information gathered is expressed by the covariance matrix or information matrix. It is shown that the planning process can be formulated as an optimal control problem for a nonlinear control system with a gradually identified model. This naturally leads to the Model Predictive Control (MPC) planning strategy, which uses the updated knowledge about the model to solve a finite horizon optimal control problem at each time step and only executes the first control action. The proposed MPC framework is demonstrated through solutions to two challenging information gathering tasks: (1) Simultaneous planning, localization, and map building (SPLAM) and (2) Multi-robot Geolocation. It is shown that MPC can effectively deal with dynamic constraints, multiple robots/features and a range of objective functions. © 2006 Elsevier Ltd. All rights reserved

    Learning to Prevent Monocular SLAM Failure using Reinforcement Learning

    Full text link
    Monocular SLAM refers to using a single camera to estimate robot ego motion while building a map of the environment. While Monocular SLAM is a well studied problem, automating Monocular SLAM by integrating it with trajectory planning frameworks is particularly challenging. This paper presents a novel formulation based on Reinforcement Learning (RL) that generates fail safe trajectories wherein the SLAM generated outputs do not deviate largely from their true values. Quintessentially, the RL framework successfully learns the otherwise complex relation between perceptual inputs and motor actions and uses this knowledge to generate trajectories that do not cause failure of SLAM. We show systematically in simulations how the quality of the SLAM dramatically improves when trajectories are computed using RL. Our method scales effectively across Monocular SLAM frameworks in both simulation and in real world experiments with a mobile robot.Comment: Accepted at the 11th Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP) 2018 More info can be found at the project page at https://robotics.iiit.ac.in/people/vignesh.prasad/SLAMSafePlanner.html and the supplementary video can be found at https://www.youtube.com/watch?v=420QmM_Z8v

    Mobile robot exploration with potential information fields

    Get PDF
    We present a mobile robot exploration strategy that computes trajectories that minimize both path and map entropies. The method evaluates joint entropy reduction and computes a potential ¿eld in robot con¿guration space using these joint entropy reduction estimates. The exploration trajectory is computed descending on the gradient of these ¿eld. The technique uses Pose SLAM as its estimation backbone. Very ef¿cient kernel convolution mechanisms are used to evaluate entropy reduction for each sensor ray, and for each possible robot orientation, taking frontiers and obstacles into account. In the end, the computation of this ¿eld on the entire C-space is shown to be very efficient computationally. The approach is tested in simulations in a common publicly available dataset comparing favorably both in quality of estimates and execution time against another entropy reduction strategy that uses occupancy mapsPeer ReviewedPostprint (published version

    Active SLAM in structured environments

    Full text link
    This paper considers the trajectory planning problem for line-feature based SLAM in structured indoor environments. The robot poses and line features are estimated using Smooth and Mapping (SAM) which is found to provide more consistent estimates than the Extended Kalman Filter (EKF). The objective of trajectory planning is to minimise the uncertainty of the estimates and to maximise coverage. Trajectory planning is performed using Model Predictive Control (MPC) with an attractor incorporating long term goals. This planning is demonstrated both in simulation and in a real-time experiment with a Pioneer2DX robot. ©2008 IEEE

    Active SLAM using model predictive control and attractor based exploration

    Full text link
    Active SLAM poses the challenge for an autonomous robot to plan efficient paths simultaneous to the SLAM process. The uncertainties of the robot, map and sensor measurements, and the dynamic and motion constraints need to be considered in the planning process. In this paper, the active SLAM problem is formulated as an optimal trajectory planning problem. A novel technique is introduced that utilises an attractor combined with local planning strategies such as Model Predictive Control (a.k.a. Receding Horizon) to solve this problem. An attractor provides high level task intentions and incorporates global information about the environment for the local planner, thereby eliminating the need for costly global planning with longer horizons. It is demonstrated that trajectory planning with an attractor results in improved performance over systems that have local planning alone. © 2006 IEEE

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved
    corecore