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Abstract— We present a mobile robot exploration strategy
that computes trajectories that minimize both path and map
entropies. The method evaluates joint entropy reduction and
computes a potential field in robot configuration space using
these joint entropy reduction estimates. The exploration trajec-
tory is computed descending on the gradient of these field. The
technique uses Pose SLAM as its estimation backbone. Very
efficient kernel convolution mechanisms are used to evaluate
entropy reduction for each sensor ray, and for each possible
robot orientation, taking frontiers and obstacles into account.
In the end, the computation of this field on the entire C-space
is shown to be very efficient computationally. The approach
is tested in simulations in a common publicly available dataset
comparing favorably both in quality of estimates and execution
time against another entropy reduction strategy that uses
occupancy maps.

I. INTRODUCTION

We consider the problem of autonomous mobile robot
exploration. The problem is posed as that of reducing both
localization and map uncertainties. Exploration strategies
driven by uncertainty reduction date back to the seminal work
of Whaite [1] for the acquisition of 3-D models of objects
from range data. Within the context of SLAM, it is the work
of Feder et al. [2], who first proposed a metric to evaluate
uncertainty reduction as the sum of the independent robot
and landmark entropies with an exploration horizon of one
step to autonomously produce occupancy maps. Bourgault et
al. [3] alternatively proposed a utility function for exploration
that trades off the potential reduction of vehicle localization
uncertainty, measured as entropy over a feature-based map,
and the information gained over an occupancy grid. In
contrast to these approaches, which independently consider
the reduction of vehicle and map entropies, Vidal et al., [4]
tackled the issue of joint robot and map entropy reduction,
taking into account robot and map cross correlations for the
Visual SLAM EKF case.

Action selection in SLAM can also be approached as an
optimization problem using receding horizon strategies [5],
[6], [7]. Multi-step look ahead exploration in the context
of SLAM makes sense only for situations in which the
concatenation of prior estimates without measurement ev-
idence remain accurate for large motion sequences. For
highly unstructured scenarios and poor odometry models,
this is hardly the case. In this work we compute trajectories
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Fig. 1. Potential field values for one C-space orientation layer. The
blue regions indicate competing exploratory and loop closure candidate
configurations at that robot orientation.

descending on the gradient of a potential field computed from
both path and map entropy reduction estimates.

One technique that tackles the problem of exploration
in SLAM as a one step look ahead entropy minimization
problem makes use of Rao-Blackwellized particle filters [8].
The technique extends the classical frontier-based explo-
ration method [9] to the full SLAM case. When using particle
filters for exploration, only a very narrow action space can be
evaluated due to the complexity in computing the expected
information gain. The main bottleneck is the generation of
the expected measurements that each action sequence would
produce, which is generated by a ray-casting operation in the
map of each particle. In contrast, measurement predictions
in a Pose SLAM implementation, such as ours, can be
computed much faster, having only one map posterior per
action to evaluate, instead of the many that a particle filter
requires. Moreover, in [8], the cost of choosing a given
action is subtracted from the expected information gain with
a user selected weighting factor. In our approach, the cost
of long action sequences is taken into consideration during
the selection of goal candidates, using the same information
metrics that help us keep the robot localized during path
execution.

In [10] our group proposed a solution to the exploration
problem that maximizes information gain in both the map
and path estimates. The method evaluates both exploratory
and loop closure candidate trajectories, computing entropy



reduction estimates from a coarse resolution realization of
occupancy maps. The final trajectory is computed using A*
in the occupancy grid, just as [11] does so over an initial
reference trajectory. The computational bottleneck of [10]
was in the estimation of the occupancy map. In this paper we
present an alternative method, in which we compute directly
the global entropy reduction estimate for each possible robot
configuration. The use of very efficient kernel convolutions
allow us to compute this estimate very fast and without the
need to reduce the grid resolution.

To find candidate exploration paths, the entropy reduction
grid in C-space is transformed into a potential field, taking
into account frontiers and obstacles. The path is obtained
by gradient descent on this field. Potential methods have
been previously used for exploration [12], [13], but different
than our approach, these methods directly evaluate boundary
conditions on deterministic maps of obstacles and fron-
tiers, without taking uncertainty into account. Our method
combines both the idea of gradient descent to a desired
exploratory or loop closing location, and the minimization
of joint map and path entropy.

II. POSE SLAM

The proposed exploration strategy uses Pose SLAM as
its estimation backbone. In Pose SLAM [14], a probabilistic
estimate of the robot pose history is maintained as a sparse
graph. State transitions result from the composition of motion
commands uk to previous poses,

xk = f(xk−1, uk) = xk−1 ⊕ uk , (1)

and the registration of sensory data also produces relative
motion constraints, but now between non-consecutive poses,

zik = h(xi, xk) = 	xi ⊕ xk. (2)

Graph links indicate geometric relative constraints be-
tween robot poses, and the density of the graph is rigorously
controlled using information measures. In Pose SLAM, all
decisions to update the graph, either by adding more nodes
or by closing loops, are taken in terms of overall information
gain.

Pose SLAM does not maintain a grid representation of
the environment. It only encodes relations about robot poses.
The environment however, can be synthesized at any instance
in time using the pose means in the graph and the row
sensor data. The resolution at which the map is synthesized
depends on the foreseen use of this map. For instance, in [10]
occupancy grid maps at very coarse resolution are produced
to evaluate the effect of candidate trajectories in entropy
reduction. But in [15] for instance, there is no need to render
a map to plan optimal trajectories in a belief roadmap.

In this paper, we use the Pose SLAM estimate and raw
sensor data to evaluate entropy reduction at each cell of a
robot configuration space grid.

III. LOG ODDS OCCUPANCY GRID

The quality of the occupancy grid produced is a key
element of our exploration strategy. The mapping of frontiers
near obstacles in the presence of uncertainty might drive the
robot to areas near collision, a situation we need to avoid.
Moreover, there is a compromise between tractability and
accuracy in choosing the resolution at which the occupancy
cells are discretized. In [10], our group devised a strategy
to decide exploratory actions independent of grid cell size.
Information gain was measured as a scalar over the whole
occupancy map, with little variation depending on cell size.
The key was to treat localization uncertainty independently
of the occupancy map. In that work however, the computation
of the occupancy map, although made at low resolution,
required repeated ray-casting at each iteration of raw sensor
data for each robot pose in the Pose SLAM graph. This
process is computationally expensive and was computed only
for a number of nearest neighbor poses.

In this paper we provide a more accurate computation of
occupancy maps, which is necessary for the proper compu-
tation of potential information fields. We do so for all poses
in the Pose SLAM graph, and not only a limited number of
them. Moreover, the resolution at which the occupancy grid
map is computed is finer than what we were able to compute
in [10]. Instead of repeating the ray-casting operation at
each iteration, we store local log odds occupancy maps
at each robot pose, and aggregate them efficiently for the
computation of a global log odds occupancy map.

A. Grid map aggregation

Once for each robot pose xk, the raw sensor data is ray-
casted to accumulate evidence for each cell cij in a log odds
occupancy grid in local coordinates

mij = log
p(cij)

1− p(cij)
. (3)

Fig. 2 shows the local log odds occupancy grids computed
for a number of robot poses. Negative values mean free
space, and positive values mean obstacles. A value of 0
means unexplored. During open loop, each local map is
aggregated into the global log odds occupancy map. To
relate them in a common reference frame, each local map is
rotated via sheers and translated using very efficient image
processing routines. Only at loop closure, the occupancy map
is recomputed from scratch using all previously stored local
log odds maps but oriented according to the new estimated
robot poses. The result is shown in Fig 3a.

B. Frontiers, obstacles, and free cells

Cell classification can be solved for directly from Eq. 3.
Note however that map aggregation was computed only at
the mean pose estimates. To smooth out misclassified and
unobserved cells and to classify free cells, obstacles and
frontier cells (unobserved close to a free cell) morphological
opening and closing operations on the global log odds map
are used. The resulting detection of frontiers, obstacles and
free cells is exemplified in Fig. 3b.



Fig. 2. A number of log odds occupancy maps in local coordinates.

(a) (b)

Fig. 3. (a) Aggregated log odds occupancy map. (b) Classified frontier
cells (white), obstacle cells (black), free cells (light grey) and unobserved
cells (dark grey).

IV. EXPLORATION WITH POTENTIAL INFORMATION
FIELDS

Our purpose at each exploratory step is to find a path that
drives the robot to those locations in the map that reduce the
uncertainty in classification of free and occupied cells. That
is, as in [10], to drive the robot to minimize the joint robot
path and map entropies.

The objective is to find a scalar function φ defined over
all C-space cells such that its gradient ∇φ will consist of
a path with largest joint path and map entropy decrease.
Unfortunately, the entropy decrease at any given C-space
cell is not independent of the path taken to arrive to such
pose. The reason is that different routes induce different
reduction of path and map entropies. Take for instance two
different routes to the same C-space cell, one that goes close
to previously visited locations, and one that does not. In
the former, the robot would be able to close loops, and
thus maintain bounded localization uncertainty. Conversely,
an exploratory route would instead reduce the map entropy.
To compute the reduction in both map and path entropies
at any given cell in C-space, we assume that the robot can
’suddenly’ appear at that location. This simplification will
allow us to compute entropy variations over all C-space cells.

In contrast to our approach, [13] define a potential scalar
function using attraction and repulsion fields on frontiers
and the current robot pose, with some boundary conditions
on obstacles. Choosing frontiers as attractors poses some
challenges. Frontiers are unexplored areas next to free cells

Fig. 4. Pose a: Frontiers method’s exploratory goal. Pose b: Optimal map
entropy reduction goal in C-space.

which have a significant probability of being yet unseen
obstacles. The use of potential fields to reach frontiers
produces perpendicular robot configurations at the arriving
locations, thus making the robot face these new obstacles
directly, with the consequent unavoidable collision. Other
methods that select frontiers as goal locations during ex-
ploration that are not based on potential fields share the
same inconvenience [16]. We instead set as attractors not the
frontiers, but the robot configurations at which joint entropy
reduction is maximized. These poses are not necessarily
close to frontiers, but can be at any configuration in the free
space. In addition, these attractors will also guarantee larger
reductions in map entropy since more frontier cells can be
observed from these locations than from the frontier. See
Fig 4.

The joint state entropy is approximated, as in [10], as the
sum of the entropy of the map m and the entropy of the path
x, given all motions u and observations z,

H(x,m|u, z) = H(x|u, z) +
∫
x

p(x|u, z)H(m|x, u, z)dx

≈ H(x|u, z) +H(m|u, z). (4)

We evaluate joint entropy reduction on these two terms
separately for each discretized robot configuration in C-
space, treat this entropy reduction as an information field
and smooth it to avoid discontinuities. We finally compute
the exploration path as the gradient of this field.

A. Map entropy reduction

In contrast to [10], in which we compute the reduction
in entropy for a limited set of final configurations, we now
compute it for the entire discretized C-space. For a map with
size cell l, its entropy can be computed as a scalar value.

H(m|u, z) = −l2
∑
c∈m

(p(c) log p(c)+(1−p(c)) log(1−p(c))).

(5)
The reduction in entropy that is attained after moving to a

new location and sensing new data (u′, z′) depends basically
on the number of cells that will change its status from
unknown to discovered: either obstacle or free. Estimating
the number of discovered free cells is impossible, we may
predict how many cells will ve discovered. We are content
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Fig. 5. (a) Occupancy map with obstacles (black), frontiers (white) and free cells (light grey). (b) Obstacle occlusion mask in one ray direction. (c)
Correlation of map entropy decrease in one ray direction after variable resolution update. (d) Sum over entire sensor spread for one robot orientation.

with measuring only entropy reduction as the increase in
the number of discovered frontier cells. This problem is as
simple as convolving the sensor range at the hypothesized
robot pose with the current frontier map.

We are able to compute this entropy change very effi-
ciently with the following three steps:

1) Obstacle occlusion mask. We generate a 3-dimensional
grid. Its dimensions are x, y, and the direction of
each laser ray. For each ray orientation layer, an
obstacle occlusion mask is created, i.e. a 3D binary
mask annotated with neighbor obstacles along each
ray direction. The mask is computed with a one-
dimensional convolution with an inverse exponential
motion kernel over a positive value for frontier cells
and a negative value for obstacles. Binary thresholding
these values effectively avoids the updating of entropy
reduction behind obstacles. See Fig 5b.

2) Frontier convolution. For each ray orientation layer, a
convolution is made with a one-dimensional motion
kernel in all non-occlusion cells. This convolution
spreads entropy reduction for observations of frontiers
for each ray orientation. One frontier cell may receive
different rays casts, thus it is necessary to compensate
this in order not to overestimate the number of frontier
cells observed. Ray cast density at each cell r is a
function of the distance from the robot to that cell and
the angle β between two consecutive sensor rays

n =
1

r tanβ
. (6)

Thus, our convolution kernel compensate this over-
estimation of frontier ray castings at each cell. To
this end, each cell in our kernel is weighted with
min(1, r tanβ). The result of this frontier convolution
is shown in Fig. 5c.

3) Sum over entire sensor spread. We now define a second
3D grid of C-space to annotate entropy reduction
for each hypothetical robot pose. Once the frontier
convolution layers for all ray directions have been
computed, we sum all the layers within the sensor
orientation range to update the corresponding cell in
the C-space entropy reduction grid. The result of this

step is shown in frame d of the same Figure.
Finally, since we already have localization uncertainties

encoded in the Pose SLAM graph, these can be used to
weight our entropy reduction estimates. The motivation be-
hind this is that exploration activities that depart from well
localized priors will be weighted higher than explorations
that depart from uncertain locations. A noise free motion
command gives a lower bound to the marginal path posterior
equal to current marginal pose. Thus, it suffices to weight
the entire entropy reduction map with this lower bound, the
determinant of the current marginal covariance |Σkk|.

B. Path entropy reduction

To compute the first term in Eq. 4, the entropy of the path
could be approximated without taking into account correla-
tion between poses [10], by averaging over the individual
pose marginals

H(x|u, z) ≈ 1

N

N∑
i=1

ln((2πe)(n/2)|Σii|), (7)

Evaluating this term is not necessary since we are in-
terested in entropy change, i.e., information gain. And, as
stated before, we are not evaluating entropy change for just
one posterior pose, but for the whole discretized C-space.
Assuming a noise free platform for the evaluation of the
final leg in the path, the jump from the current pose to each
configuration will produce the same marginal posterior, with
zero information gain, except at loop closure.

For a configuration i in the C-space, the path entropy
reduction of a loop closure with pose j is given precisely
by its information gain.

Iij =
1

2
ln

Sij
|Σy|

(8)

with Σy the sensor covariance, and Sij the innovation
covariance of the Pose SLAM update.

The parameter match area of the sensor is defined as the
intervals in x, y and θ where loops can be closed by the
sensor. Thus, a loop can be closed in each configuration in
the C-space inside the match area of any previous pose of
the trajectory. Instead of iterating over each cell in the C-
space and searching for its loop closure candidates in the



Fig. 6. The C-space entropy change grid is cropped at a desired value v
and smoothed with a harmonic function to produce the desired information
potential field. The zone (a) represents a region with steep entropy reduction
within the sensor range to guarantee loop closure. Zone (b) represents an
area worth exploring.

Pose SLAM graph, the iteration proceeds the other way. For
each pose in the Pose SLAM graph, we annotate the cells
inside their match area in the C-space with the corresponding
information gain.

C. Potential field and gradient path

For our C-space entropy change grid (information grid)
resulting from the sum of map and path entropy reduction
previously explained,to become the scalar function φ, we still
need one more step. To avoid long valleys with no entropy
change, the grid is turned into a potential field, by cropping
it first to a desired value v of 60% to define attraction areas.
And then, smoothing it using a harmonic function of the
form

φxyθ =
1

6
(φx±yθ + φxy±θ + φxyθ±) (9)

where the superscript ± is used to indicate neighbor cells in
the C-space grid. See Figs 1 and 6.

D. Obstacle avoidance and boundary conditions

In our computation of the entropy grid we have considered
obstacles to adequately propagate entropy change along
sensor rays taking into account occlusions, but we have still
not penalized configurations that get close to them. We resort
to the use of boundary conditions

∇φ(x) = g(x) ∀x ∈ Sboundary (10)

as in [13], with the difference that instead of using Neumann
boundary conditions to guarantee flow parallel to obstacles,
we still want some repulsive perpendicular effect from them.
This effect can be achieved by mirroring weighted inner cell
values near obstacles. A unity weight (w = 1) means parallel
traverse along the obstacle boundary, and larger values of w
induce repulsion. In the method reported here we start each
each planning step with low repulsion w to avoid bottleneck
local minima and increasing it and re-planning in case of
a collision path. The final path is obtained traversing the
gradient field from the current robot configuration to the
robot configuration with largest joint entropy reduction. A
C-space orientation layer of potential fields resulting of the
method is shown in Fig.1.

Active Potential
Pose SLAM Information Fields

Occupancy map 47.41 s 8.2 s
Path plan 56.98 s 28.52 s
Final map entropy: 149.33 nats 123.84 nats
Final path entropy: −2.22 nats −2.08 nats
Planning steps: 20.3 18.4

TABLE I
AVERAGE COMPARISON OF ACTIVE POSE SLAM AND THE PROPOSED

EXPLORATION APPROACH.

V. SIMULATIONS

In order to evaluate the exploration strategy presented in
this paper and to compare the results with those of [10],
we simulated a robot exploring the widely used cave-like
two-dimensional environment available from [17], scaled to a
resolution of 20m×20m. Robot motion was simulated with
an odometric sensor with noise covariance Σu = diag(0.1m,
0.1m, 0.0026 rad)2. The robot is fitted with a laser range
finder sensor with a match area of ±3m in x and y,
and ±0.52 rad in orientation. That is, this is the maximum
range in configuration space for which we can guarantee
that a link between two poses can be established. Relative
motion constraints were measured using the iterative closest
point algorithm. Measurement noise covariance was fixed
at Σy = diag(0.05m, 0.05m, 0.0017 rad)2. Laser scans
were simulated by ray casting over a ground truth gridmap
of the environment using the true robot path. The initial
uncertainty of the robot pose was set to Σ0 = diag(0.1m,
0.1m, 0.09 rad)2. Informative loop closures were asserted at
I = 2.5 nats.

Table I summarizes average computation times for map
building and path planning, as well as final entropy values
after 7 simulations of 200 odometry steps each for the two
methods using the same simulation variables.

Plots a and b in Figure 8 show average map and path
entropy values, respectively, for the 7 simulation runs. The
plots show the reduction in map and path entropies for
both methods. In continuous blue, the proposed approach;
in dashed red, the result of Active Pose SLAM; the bold
lines indicate map entropy, and the thin lines indicate path
entropy.

From the plot, we observe that, in average, the proposed
method attains a steady state in map entropy at a significantly
lower number of simulation steps, without compromising
localization estimates. Path entropy is about the same. One
major advantage of the proposed approach is in execution
time. As also shown in the Table, despite the increase in the
dimensionality from 2D to 3D for the computation of the
entropy occupancy grids, the use of kernel convolutions pro-
vides a significant reduction in computation speed compared
to the traditional occupancy maps of Active Pose SLAM.
Furthermore, the computation of the gradient descent path
in our approach takes about half the time in average than
the A* planning method of Active Pose SLAM.

In all simulations, collision was detected 5 times or less
per experiment realization. Boundary condition weights were
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Fig. 7. Average entropies for the 7 simulation runs. In continuous blue, the proposed approach; in dashed red, the result of Active Pose SLAM. (a) Map
entropy. (b) Path entropy.

(a) (b)

Fig. 8. Final trajectories after two explorations of 200 simulation steps.
In red the robot path, in green the loop closure links. (a) Exploration with
Active Pose SLAM. (b) Exploration with Potential Information Fields.

reduced in those cases as explained in Sec. IV-D, and a new
collision free trajectory was found.

Plots b and c in Figure 8 show one realization of the
experiment. The red dots and lines indicate the executed
robot trajectories, the green lines indicate loop closures, and
the black dots render occupancy using the complete path
estimate.

VI. CONCLUSIONS

We have presented a mobile robot exploration strategy
that traverses a gradient descent on a C-space field based
on path and map entropy reduction estimates. The technique
makes use of very efficient convolutions first, to project
boundaries along sensor rays, and secondly, to integrate en-
tropy measures at independent robot orientation layers. The
method outperforms exploration methods that drive the robot
to frontiers and loop closures using the more conventional
grid-based occupancy maps, both in map and path quality,
and in computation speed.

In computing the gradient descent on the C-space field,
the method assumes an holonomic robot platform. We plan to
extend the method to account for non-holonomic restrictions.
Future work also includes an implementation in ROS and
comparison against competing approaches on real scenarios.
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