4,012 research outputs found

    The Complexity of Planning Problems With Simple Causal Graphs

    Full text link
    We present three new complexity results for classes of planning problems with simple causal graphs. First, we describe a polynomial-time algorithm that uses macros to generate plans for the class 3S of planning problems with binary state variables and acyclic causal graphs. This implies that plan generation may be tractable even when a planning problem has an exponentially long minimal solution. We also prove that the problem of plan existence for planning problems with multi-valued variables and chain causal graphs is NP-hard. Finally, we show that plan existence for planning problems with binary state variables and polytree causal graphs is NP-complete

    Structure and Complexity in Planning with Unary Operators

    Full text link
    Unary operator domains -- i.e., domains in which operators have a single effect -- arise naturally in many control problems. In its most general form, the problem of STRIPS planning in unary operator domains is known to be as hard as the general STRIPS planning problem -- both are PSPACE-complete. However, unary operator domains induce a natural structure, called the domain's causal graph. This graph relates between the preconditions and effect of each domain operator. Causal graphs were exploited by Williams and Nayak in order to analyze plan generation for one of the controllers in NASA's Deep-Space One spacecraft. There, they utilized the fact that when this graph is acyclic, a serialization ordering over any subgoal can be obtained quickly. In this paper we conduct a comprehensive study of the relationship between the structure of a domain's causal graph and the complexity of planning in this domain. On the positive side, we show that a non-trivial polynomial time plan generation algorithm exists for domains whose causal graph induces a polytree with a constant bound on its node indegree. On the negative side, we show that even plan existence is hard when the graph is a directed-path singly connected DAG. More generally, we show that the number of paths in the causal graph is closely related to the complexity of planning in the associated domain. Finally we relate our results to the question of complexity of planning with serializable subgoals

    CP-nets: A Tool for Representing and Reasoning withConditional Ceteris Paribus Preference Statements

    Full text link
    Information about user preferences plays a key role in automated decision making. In many domains it is desirable to assess such preferences in a qualitative rather than quantitative way. In this paper, we propose a qualitative graphical representation of preferences that reflects conditional dependence and independence of preference statements under a ceteris paribus (all else being equal) interpretation. Such a representation is often compact and arguably quite natural in many circumstances. We provide a formal semantics for this model, and describe how the structure of the network can be exploited in several inference tasks, such as determining whether one outcome dominates (is preferred to) another, ordering a set outcomes according to the preference relation, and constructing the best outcome subject to available evidence

    The Influence of k-Dependence on the Complexity of Planning

    Get PDF
    A planning problem is k-dependent if each action has at most k pre-conditions on variables unaffected by the action. This concept is well-founded since k is a constant for all but a few of the standard planning domains, and is known to have implications for tractability. In this paper, we present several new complexity results for P(k), the class of k-dependent planning problems with binary variables and polytree causal graphs. The problem of plan generation for P(k) is equivalent to determining how many times each variable can change. Using this fact, we present a polytime plan generation algorithm for P(2) and P(3). For constant k> 3, we introduce and use the notion of a cover to find conditions under which plan generation for P(k) is polynomial

    Potentials and Limits of Bayesian Networks to Deal with Uncertainty in the Assessment of Climate Change Adaptation Policies

    Get PDF
    Bayesian networks (BNs) have been increasingly applied to support management and decision-making processes under conditions of environmental variability and uncertainty, providing logical and holistic reasoning in complex systems since they succinctly and effectively translate causal assertions between variables into patterns of probabilistic dependence. Through a theoretical assessment of the features and the statistical rationale of BNs, and a review of specific applications to ecological modelling, natural resource management, and climate change policy issues, the present paper analyses the effectiveness of the BN model as a synthesis framework, which would allow the user to manage the uncertainty characterising the definition and implementation of climate change adaptation policies. The review will let emerge the potentials of the model to characterise, incorporate and communicate the uncertainty, with the aim to provide an efficient support to an informed and transparent decision making process. The possible drawbacks arising from the implementation of BNs are also analysed, providing potential solutions to overcome them.Adaptation to Climate Change, Bayesian Network, Uncertainty
    • …
    corecore