6 research outputs found

    Planning Order Releases for an Assembly System with Random Operation Times

    No full text
    A multi-stage assembly network is considered. A number of end items should be delivered at a certain time. Otherwise a delay cost is incurred. End items and components that are delivered before they are needed will cause holding costs. All operation times are independent stochastic variables. The objective is to choose starting times for different operations in order to minimize the total expected costs. We suggest an approximate decomposition technique that is based on repeated application of the solution of a simpler single-stage problem. The performance of our approximate technique is compared to exact results in a numerical study

    Planning order releases for an assembly system with random operation times

    No full text

    Planification des réapprovisionnements sous incertitudes pour les systèmes d’assemblage à plusieurs niveaux

    Get PDF
    In the current industrial context, the offer is largely higher than the demand. Therefore, the customers are more and more exigent. To distance themselves, companies need to offer to their customers the best quality products, the best costs, and with controlled lead times as short as possible. Last years, the struggle for reducing costs was accentuated within companies. However, stocks represent an important financial asset, and therefore, it is essential to control them. In addition, a bad management of stocks led either to delays in delivery, which generate additional production costs, either to the unnecessary inventory. The latter one can occur at different levels (from components at the last level to finished product), it costs money and immobilize funds. That is why, planners have to look for efficient methods of production and supply planning, to know exactly for each component, and when to order and in which quantity.The aim of this doctoral thesis is to investigate the supply planning in an uncertain environment. We are interested in a replenishment planning for multi-level assembly systems under a fixed demand and uncertainty of components lead times.We consider that each component has a fixed unit inventory cost; the finished product has an inventory cost and a backlogging cost per unit of time. Then, a general mathematical model for replenishment planning of multi-level assembly systems, genetic algorithm and branch and bound method are presented to calculate and to optimize the expected value of the total cost which equals to the sum of the inventory holding costs for the components, the backlogging and the inventory holding costs for the finished product. We can state by the different results that the convergence of the GA doesn't depend only on the number of components in the last level but also on the number of levels, the type of the BOM and the backlogging cost for the finished product.Dans le contexte actuel marqué par l’instabilité des marchés, les clients sont de plus en plus exigeants. un client qui n’est pas approvisionné à une date souhaitée peut soit remettre son achat à plus tard, soit aller chercher le produit chez un concurrent. de plus, l’entreprise doit faire face à de multiples imprévisibilités internes, de la concurrence ou d’événements extérieurs. ces aléas induisent de l'incertitude dans la planification de la production et génèrent des sources nombreuses de retard, de désynchronisation et de pertes de productivité. ce travail de thèse s’intègre dans la problématique de la planification de la production dans un environnement incertain. nous étudions des problèmes de la planification des réapprovisionnements pour un système d’assemblage à plusieurs niveaux, quand les délais d’approvisionnement sont incertains. nous avons choisi comme indicateur de performance l’espérance du coût total moyen qui est égal à la somme du coût de stockage des composants, le coût de rupture du produit fini et le coût de stockage du produit fini. des propriétés théoriques, des modèles analytiques ainsi que des méthodes d’optimisation ont été proposés. nous avons montré que la résolution du problème ne dépend pas seulement de la méthode de résolution et du nombre de niveaux, mais aussi du coût de rupture en produit fini et de la structure du système d’assemblage

    13th International Conference on Modeling, Optimization and Simulation - MOSIM 2020

    Get PDF
    Comité d’organisation: Université Internationale d’Agadir – Agadir (Maroc) Laboratoire Conception Fabrication Commande – Metz (France)Session RS-1 “Simulation et Optimisation” / “Simulation and Optimization” Session RS-2 “Planification des Besoins Matières Pilotée par la Demande” / ”Demand-Driven Material Requirements Planning” Session RS-3 “Ingénierie de Systèmes Basées sur les Modèles” / “Model-Based System Engineering” Session RS-4 “Recherche Opérationnelle en Gestion de Production” / "Operations Research in Production Management" Session RS-5 "Planification des Matières et des Ressources / Planification de la Production” / “Material and Resource Planning / Production Planning" Session RS-6 “Maintenance Industrielle” / “Industrial Maintenance” Session RS-7 "Etudes de Cas Industriels” / “Industrial Case Studies" Session RS-8 "Données de Masse / Analyse de Données” / “Big Data / Data Analytics" Session RS-9 "Gestion des Systèmes de Transport” / “Transportation System Management" Session RS-10 "Economie Circulaire / Développement Durable" / "Circular Economie / Sustainable Development" Session RS-11 "Conception et Gestion des Chaînes Logistiques” / “Supply Chain Design and Management" Session SP-1 “Intelligence Artificielle & Analyse de Données pour la Production 4.0” / “Artificial Intelligence & Data Analytics in Manufacturing 4.0” Session SP-2 “Gestion des Risques en Logistique” / “Risk Management in Logistics” Session SP-3 “Gestion des Risques et Evaluation de Performance” / “Risk Management and Performance Assessment” Session SP-4 "Indicateurs Clés de Performance 4.0 et Dynamique de Prise de Décision” / ”4.0 Key Performance Indicators and Decision-Making Dynamics" Session SP-5 "Logistique Maritime” / “Marine Logistics" Session SP-6 “Territoire et Logistique : Un Système Complexe” / “Territory and Logistics: A Complex System” Session SP-7 "Nouvelles Avancées et Applications de la Logique Floue en Production Durable et en Logistique” / “Recent Advances and Fuzzy-Logic Applications in Sustainable Manufacturing and Logistics" Session SP-8 “Gestion des Soins de Santé” / ”Health Care Management” Session SP-9 “Ingénierie Organisationnelle et Gestion de la Continuité de Service des Systèmes de Santé dans l’Ere de la Transformation Numérique de la Société” / “Organizational Engineering and Management of Business Continuity of Healthcare Systems in the Era of Numerical Society Transformation” Session SP-10 “Planification et Commande de la Production pour l’Industrie 4.0” / “Production Planning and Control for Industry 4.0” Session SP-11 “Optimisation des Systèmes de Production dans le Contexte 4.0 Utilisant l’Amélioration Continue” / “Production System Optimization in 4.0 Context Using Continuous Improvement” Session SP-12 “Défis pour la Conception des Systèmes de Production Cyber-Physiques” / “Challenges for the Design of Cyber Physical Production Systems” Session SP-13 “Production Avisée et Développement Durable” / “Smart Manufacturing and Sustainable Development” Session SP-14 “L’Humain dans l’Usine du Futur” / “Human in the Factory of the Future” Session SP-15 “Ordonnancement et Prévision de Chaînes Logistiques Résilientes” / “Scheduling and Forecasting for Resilient Supply Chains
    corecore