4,017 research outputs found

    Multi-criteria Evolution of Neural Network Topologies: Balancing Experience and Performance in Autonomous Systems

    Full text link
    Majority of Artificial Neural Network (ANN) implementations in autonomous systems use a fixed/user-prescribed network topology, leading to sub-optimal performance and low portability. The existing neuro-evolution of augmenting topology or NEAT paradigm offers a powerful alternative by allowing the network topology and the connection weights to be simultaneously optimized through an evolutionary process. However, most NEAT implementations allow the consideration of only a single objective. There also persists the question of how to tractably introduce topological diversification that mitigates overfitting to training scenarios. To address these gaps, this paper develops a multi-objective neuro-evolution algorithm. While adopting the basic elements of NEAT, important modifications are made to the selection, speciation, and mutation processes. With the backdrop of small-robot path-planning applications, an experience-gain criterion is derived to encapsulate the amount of diverse local environment encountered by the system. This criterion facilitates the evolution of genes that support exploration, thereby seeking to generalize from a smaller set of mission scenarios than possible with performance maximization alone. The effectiveness of the single-objective (optimizing performance) and the multi-objective (optimizing performance and experience-gain) neuro-evolution approaches are evaluated on two different small-robot cases, with ANNs obtained by the multi-objective optimization observed to provide superior performance in unseen scenarios

    Culture and Cancer

    Get PDF
    Genetic mechanisms, since they broadly involve information transmission, should be translatable into information dynamics formalism. From this perspective we reconsider the adaptive mutator, one possible means of 'second order selection' by which a highly structured 'language' of environment and development writes itself onto the variation upon which evolutionary selection and tumorigenesis operate. Our approach uses recent results in the spirit of the Large Deviations Program of applied probability that permit transfer of phase transition approaches from statistical mechanics to information theory, generating evolutionary and developmental punctuation in what we claim to be a highly natural manner

    Toward Cultural Oncology: The Evolutionary Information Dynamics of Cancer

    Get PDF
    'Racial' disparities among cancers, particularly of the breast and prostate, are something of a mystery. For the US, in the face of slavery and its sequelae, centuries of interbreeding have greatly leavened genetic differences between 'Blacks' and 'whites', but marked contrasts in disease prevalence and progression persist. 'Adjustment' for socioeconomic status and lifestyle, while statistically accounting for much of the variance in breast cancer, only begs the question of ultimate causality. Here we propose a more basic biological explanation that extends the theory of immune cognition to include elaborate tumor control mechanisms constituting the principal selection pressure acting on pathologically mutating cell clones. The interplay between them occurs in the context of an embedding, highly structured, system of culturally specific psychosocial stress which we find is able to literally write an image of itself onto disease progression. The dynamics are analogous to punctuated equilibrium in simple evolutionary proces

    Evolutionary model type selection for global surrogate modeling

    Get PDF
    Due to the scale and computational complexity of currently used simulation codes, global surrogate (metamodels) models have become indispensable tools for exploring and understanding the design space. Due to their compact formulation they are cheap to evaluate and thus readily facilitate visualization, design space exploration, rapid prototyping, and sensitivity analysis. They can also be used as accurate building blocks in design packages or larger simulation environments. Consequently, there is great interest in techniques that facilitate the construction of such approximation models while minimizing the computational cost and maximizing model accuracy. Many surrogate model types exist ( Support Vector Machines, Kriging, Neural Networks, etc.) but no type is optimal in all circumstances. Nor is there any hard theory available that can help make this choice. In this paper we present an automatic approach to the model type selection problem. We describe an adaptive global surrogate modeling environment with adaptive sampling, driven by speciated evolution. Different model types are evolved cooperatively using a Genetic Algorithm ( heterogeneous evolution) and compete to approximate the iteratively selected data. In this way the optimal model type and complexity for a given data set or simulation code can be dynamically determined. Its utility and performance is demonstrated on a number of problems where it outperforms traditional sequential execution of each model type

    Hawaiian Picture‐Winged Drosophila Exhibit Adaptive Population Divergence along a Narrow Climatic Gradient on Hawaii Island

    Get PDF
    1. Anthropogenic influences on global processes and climatic conditions are increasingly affecting ecosystems throughout the world. 2. Hawaii Island’s native ecosystems are well studied and local long‐term climatic trends well documented, making these ecosystems ideal for evaluating how native taxa may respond to a warming environment. 3.This study documents adaptive divergence of populations of a Hawaiian picture‐winged Drosophila, D. sproati, that are separated by only 7 km and 365 m in elevation. 4.Representative laboratory populations show divergent behavioral and physiological responses to an experimental low‐intensity increase in ambient temperature during maturation. The significant interaction of source population by temperature treatment for behavioral and physiological measurements indicates differential adaptation to temperature for the two populations. 5.Significant differences in gene expression among males were mostly explained by the source population, with eleven genes in males also showing a significant interaction of source population by temperature treatment. 6.The combined behavior, physiology, and gene expression differences between populations illustrate the potential for local adaptation to occur over a fine spatial scale and exemplify nuanced response to climate change

    Why aren't they locked in waiting games? Unlocking rules and the ecology of concepts in the semiconductor industry.

    No full text
    International audienceIn a multi-level perspective, regimes can be clearly described as long as they remain stable. To understand how regimes and niches interact during transition, the article contrasts two models of regimes in transition(s). The classical model of evolutionary niches suggests misalignments between rules and competition between niches. Transition management, technological innovation systems and works on transition pathways suggest a second model based on "unlocking rules", which support collective work on a structured set of emerging technologies. The latter model is illustrated with a case study on the International Technology Roadmap for Semiconductors (ITRS)

    Genetic algorithms with immigrants and memory schemes for dynamic shortest path routing problems in mobile ad hoc networks

    Get PDF
    This article is posted here with permission of IEEE - Copyright @ 2010 IEEEIn recent years, the static shortest path (SP) problem has been well addressed using intelligent optimization techniques, e.g., artificial neural networks, genetic algorithms (GAs), particle swarm optimization, etc. However, with the advancement in wireless communications, more and more mobile wireless networks appear, e.g., mobile networks [mobile ad hoc networks (MANETs)], wireless sensor networks, etc. One of the most important characteristics in mobile wireless networks is the topology dynamics, i.e., the network topology changes over time due to energy conservation or node mobility. Therefore, the SP routing problem in MANETs turns out to be a dynamic optimization problem. In this paper, we propose to use GAs with immigrants and memory schemes to solve the dynamic SP routing problem in MANETs. We consider MANETs as target systems because they represent new-generation wireless networks. The experimental results show that these immigrants and memory-based GAs can quickly adapt to environmental changes (i.e., the network topology changes) and produce high-quality solutions after each change.This work was supported by the Engineering and Physical Sciences Research Council of U.K. underGrant EP/E060722/

    Phylogenetic analysis of modularity in protein interaction networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In systems biology, comparative analyses of molecular interactions across diverse species indicate that conservation and divergence of networks can be used to understand functional evolution from a systems perspective. A key characteristic of these networks is their modularity, which contributes significantly to their robustness, as well as adaptability. Consequently, analysis of modular network structures from a phylogenetic perspective may be useful in understanding the emergence, conservation, and diversification of functional modularity.</p> <p>Results</p> <p>In this paper, we propose a phylogenetic framework for analyzing network modules, with applications that extend well beyond network-based phylogeny reconstruction. Our approach is based on identification of modular network components from each network separately, followed by projection of these modules onto the networks of other species to compare different networks. Subsequently, we use the conservation of various modules in each network to assess the similarity between different networks. Compared to traditional methods that rely on topological comparisons, our approach has key advantages in (<it>i</it>) avoiding intractable graph comparison problems in comparative network analysis, (<it>ii</it>) accounting for noise and missing data through flexible treatment of network conservation, and (<it>iii</it>) providing insights on the evolution of biological systems through investigation of the evolutionary trajectories of network modules. We test our method, M<smcaps>OPHY</smcaps>, on synthetic data generated by simulation of network evolution, as well as existing protein-protein interaction data for seven diverse species. Comprehensive experimental results show that M<smcaps>OPHY</smcaps> is promising in reconstructing evolutionary histories of extant networks based on conservation of modularity, it is highly robust to noise, and outperforms existing methods that quantify network similarity in terms of conservation of network topology.</p> <p>Conclusion</p> <p>These results establish modularity and network proximity as useful features in comparative network analysis and motivate detailed studies of the evolutionary histories of network modules.</p
    corecore