21,922 research outputs found

    Goal reasoning for autonomous agents using automated planning

    Get PDF
    Mención Internacional en el título de doctorAutomated planning deals with the task of finding a sequence of actions, namely a plan, which achieves a goal from a given initial state. Most planning research consider goals are provided by a external user, and agents just have to find a plan to achieve them. However, there exist many real world domains where agents should not only reason about their actions but also about their goals, generating new ones or changing them according to the perceived environment. In this thesis we aim at broadening the goal reasoning capabilities of planningbased agents, both when acting in isolation and when operating in the same environment as other agents. In single-agent settings, we firstly explore a special type of planning tasks where we aim at discovering states that fulfill certain cost-based requirements with respect to a given set of goals. By computing these states, agents are able to solve interesting tasks such as find escape plans that move agents in to safe places, hide their true goal to a potential observer, or anticipate dynamically arriving goals. We also show how learning the environment’s dynamics may help agents to solve some of these tasks. Experimental results show that these states can be quickly found in practice, making agents able to solve new planning tasks and helping them in solving some existing ones. In multi-agent settings, we study the automated generation of goals based on other agents’ behavior. We focus on competitive scenarios, where we are interested in computing counterplans that prevent opponents from achieving their goals. We frame these tasks as counterplanning, providing theoretical properties of the counterplans that solve them. We also show how agents can benefit from computing some of the states we propose in the single-agent setting to anticipate their opponent’s movements, thus increasing the odds of blocking them. Experimental results show how counterplans can be found in different environments ranging from competitive planning domains to real-time strategy games.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidenta: Eva Onaindía de la Rivaherrera.- Secretario: Ángel García Olaya.- Vocal: Mark Robert

    Efficient Multi-agent Epistemic Planning: Teaching Planners About Nested Belief

    Get PDF
    Many AI applications involve the interaction of multiple autonomous agents, requiring those agents to reason about their own beliefs, as well as those of other agents. However, planning involving nested beliefs is known to be computationally challenging. In this work, we address the task of synthesizing plans that necessitate reasoning about the beliefs of other agents. We plan from the perspective of a single agent with the potential for goals and actions that involve nested beliefs, non-homogeneous agents, co-present observations, and the ability for one agent to reason as if it were another. We formally characterize our notion of planning with nested belief, and subsequently demonstrate how to automatically convert such problems into problems that appeal to classical planning technology for solving efficiently. Our approach represents an important step towards applying the well-established field of automated planning to the challenging task of planning involving nested beliefs of multiple agents

    How Much Control is Enough? Monitoring and Enforcement under Stalin.

    Get PDF
    In hierarchies, agents’ hidden actions increase principals' transactions costs and give rise to a demand for monitoring and enforcement. The fact that the latter are costly raises questions about their scope, organisation, and type. How much control is enough? The paper uses historical records to examine Stalin’s answers to this question. We find that Stalin's behaviour was consistent with his aiming to maximise the efficiency of the Soviet system of control subject to the loyalty of his inspectors and the risk of a “chaos of orders” arising from parallel centres of power.Casymmetric information, principal-agent problem, transaction costs, hierarchy, USSR

    Towards a Unified View of AI Planning and Reactive Synthesis

    Get PDF
    International audienceAutomated planning and reactive synthesis are well-established techniques for sequential decision making. In this paper we examine a collection of AI planning problems with temporally extended goals, specified in Linear Temporal Logic (LTL). We characterize these so-called LTL planning problems as two-player games and thereby establish their correspondence to reactive synthesis problems. This unifying view furthers our understanding of the relationship between plan and program synthesis, establishing complexity results for LTL planning tasks. Building on this correspondence, we identify restricted fragments of LTL for which plan synthesis can be realized more efficiently
    • 

    corecore