61 research outputs found

    Practical application of pseudospectral optimization to robot path planning

    Get PDF
    To obtain minimum time or minimum energy trajectories for robots it is necessary to employ planning methods which adequately consider the platform’s dynamic properties. A variety of sampling, graph-based or local receding-horizon optimisation methods have previously been proposed. These typically use simplified kino-dynamic models to avoid the significant computational burden of solving this problem in a high dimensional state-space. In this paper we investigate solutions from the class of pseudospectral optimisation methods which have grown in favour amongst the optimal control community in recent years. These methods have high computational efficiency and rapid convergence properties. We present a practical application of such an approach to the robot path planning problem to provide a trajectory considering the robot’s dynamic properties. We extend the existing literature by augmenting the path constraints with sensed obstacles rather than predefined analytical functions to enable real world application

    Survey of the Application Fields and Modeling Methods of Automotive Vehicle Dynamics Models

    Get PDF
    In this paper, a review is presented on automotive vehicle dynamics modeling. Applied vehicle dynamics models from various application fields are analyzed and classified in the first section. Vehicle dynamics models may be simplified because of different reasons: several control/estimation/analysis methods are suitable only for simplified models (e.g. using control-oriented models), or because of the computational cost. Detailed/truth models of vehicle dynamics represent another field of vehicle dynamics modeling, these models play an important role in the virtual prototyping of vehicles. In the second section, the main modeling considerations of vehicle dynamics are presented in longitudinal, lateral and vertical directions. Various physical effects must be considered in the case of vehicle dynamics modeling, a lot of these effects are significant only in a specific direction of the vehicle body, which is the main potential of model simplification. The section presents vehicle modeling considerations in all of the three translational directions of the vehicle body
    corecore