32 research outputs found

    Resonance graphs of plane bipartite graphs as daisy cubes

    Full text link
    We characterize all plane bipartite graphs whose resonance graphs are daisy cubes and therefore generalize related results on resonance graphs of benzenoid graphs, catacondensed even ring systems, as well as 2-connected outerplane bipartite graphs. Firstly, we prove that if GG is a plane elementary bipartite graph other than K2K_2, then the resonance graph R(G)R(G) is a daisy cube if and only if the Fries number of GG equals the number of finite faces of GG, which in turn is equivalent to GG being homeomorphically peripheral color alternating. Next, we extend the above characterization from plane elementary bipartite graphs to all plane bipartite graphs and show that the resonance graph of a plane bipartite graph GG is a daisy cube if and only if GG is weakly elementary bipartite and every elementary component of GG other than K2K_2 is homeomorphically peripheral color alternating. Along the way, we prove that a Cartesian product graph is a daisy cube if and only if all of its nontrivial factors are daisy cubes

    Decomposition theorem on matchable distributive lattices

    Full text link
    A distributive lattice structure M(G){\mathbf M}(G) has been established on the set of perfect matchings of a plane bipartite graph GG. We call a lattice {\em matchable distributive lattice} (simply MDL) if it is isomorphic to such a distributive lattice. It is natural to ask which lattices are MDLs. We show that if a plane bipartite graph GG is elementary, then M(G){\mathbf M}(G) is irreducible. Based on this result, a decomposition theorem on MDLs is obtained: a finite distributive lattice L\mathbf{L} is an MDL if and only if each factor in any cartesian product decomposition of L\mathbf{L} is an MDL. Two types of MDLs are presented: J(m×n)J(\mathbf{m}\times \mathbf{n}) and J(T)J(\mathbf{T}), where m×n\mathbf{m}\times \mathbf{n} denotes the cartesian product between mm-element chain and nn-element chain, and T\mathbf{T} is a poset implied by any orientation of a tree.Comment: 19 pages, 7 figure

    Outerplane bipartite graphs with isomorphic resonance graphs

    Full text link
    We present novel results related to isomorphic resonance graphs of 2-connected outerplane bipartite graphs. As the main result, we provide a structure characterization for 2-connected outerplane bipartite graphs with isomorphic resonance graphs. Moreover, two additional characterizations are expressed in terms of resonance digraphs and via local structures of inner duals of 2-connected outerplane bipartite graphs, respectively

    The maximum forcing number of polyomino

    Full text link
    The forcing number of a perfect matching MM of a graph GG is the cardinality of the smallest subset of MM that is contained in no other perfect matchings of GG. For a planar embedding of a 2-connected bipartite planar graph GG which has a perfect matching, the concept of Clar number of hexagonal system had been extended by Abeledo and Atkinson as follows: a spanning subgraph CC of is called a Clar cover of GG if each of its components is either an even face or an edge, the maximum number of even faces in Clar covers of GG is called Clar number of GG, and the Clar cover with the maximum number of even faces is called the maximum Clar cover. It was proved that if GG is a hexagonal system with a perfect matching MM and K′K' is a set of hexagons in a maximum Clar cover of GG, then G−K′G-K' has a unique 1-factor. Using this result, Xu {\it et. at.} proved that the maximum forcing number of the elementary hexagonal system are equal to their Clar numbers, and then the maximum forcing number of the elementary hexagonal system can be computed in polynomial time. In this paper, we show that an elementary polyomino has a unique perfect matching when removing the set of tetragons from its maximum Clar cover. Thus the maximum forcing number of elementary polyomino equals to its Clar number and can be computed in polynomial time. Also, we have extended our result to the non-elementary polyomino and hexagonal system

    A Maximum Resonant Set of Polyomino Graphs

    Full text link
    A polyomino graph HH is a connected finite subgraph of the infinite plane grid such that each finite face is surrounded by a regular square of side length one and each edge belongs to at least one square. In this paper, we show that if KK is a maximum resonant set of HH, then H−KH-K has a unique perfect matching. We further prove that the maximum forcing number of a polyomino graph is equal to its Clar number. Based on this result, we have that the maximum forcing number of a polyomino graph can be computed in polynomial time. We also show that if KK is a maximal alternating set of HH, then H−KH-K has a unique perfect matching.Comment: 13 pages, 6 figure
    corecore