7,610 research outputs found

    Calibration and Sensitivity Analysis of a Stereo Vision-Based Driver Assistance System

    Get PDF
    Az http://intechweb.org/ alatti "Books" fĂŒl alatt kell rĂĄkeresni a "Stereo Vision" cĂ­mre Ă©s az 1. fejezetre

    Probabilistic RGB-D Odometry based on Points, Lines and Planes Under Depth Uncertainty

    Full text link
    This work proposes a robust visual odometry method for structured environments that combines point features with line and plane segments, extracted through an RGB-D camera. Noisy depth maps are processed by a probabilistic depth fusion framework based on Mixtures of Gaussians to denoise and derive the depth uncertainty, which is then propagated throughout the visual odometry pipeline. Probabilistic 3D plane and line fitting solutions are used to model the uncertainties of the feature parameters and pose is estimated by combining the three types of primitives based on their uncertainties. Performance evaluation on RGB-D sequences collected in this work and two public RGB-D datasets: TUM and ICL-NUIM show the benefit of using the proposed depth fusion framework and combining the three feature-types, particularly in scenes with low-textured surfaces, dynamic objects and missing depth measurements.Comment: Major update: more results, depth filter released as opensource, 34 page

    Vision-Based Navigation III: Pose and Motion from Omnidirectional Optical Flow and a Digital Terrain Map

    Full text link
    An algorithm for pose and motion estimation using corresponding features in omnidirectional images and a digital terrain map is proposed. In previous paper, such algorithm for regular camera was considered. Using a Digital Terrain (or Digital Elevation) Map (DTM/DEM) as a global reference enables recovering the absolute position and orientation of the camera. In order to do this, the DTM is used to formulate a constraint between corresponding features in two consecutive frames. In this paper, these constraints are extended to handle non-central projection, as is the case with many omnidirectional systems. The utilization of omnidirectional data is shown to improve the robustness and accuracy of the navigation algorithm. The feasibility of this algorithm is established through lab experimentation with two kinds of omnidirectional acquisition systems. The first one is polydioptric cameras while the second is catadioptric camera.Comment: 6 pages, 9 figure

    Dense Piecewise Planar RGB-D SLAM for Indoor Environments

    Full text link
    The paper exploits weak Manhattan constraints to parse the structure of indoor environments from RGB-D video sequences in an online setting. We extend the previous approach for single view parsing of indoor scenes to video sequences and formulate the problem of recovering the floor plan of the environment as an optimal labeling problem solved using dynamic programming. The temporal continuity is enforced in a recursive setting, where labeling from previous frames is used as a prior term in the objective function. In addition to recovery of piecewise planar weak Manhattan structure of the extended environment, the orthogonality constraints are also exploited by visual odometry and pose graph optimization. This yields reliable estimates in the presence of large motions and absence of distinctive features to track. We evaluate our method on several challenging indoors sequences demonstrating accurate SLAM and dense mapping of low texture environments. On existing TUM benchmark we achieve competitive results with the alternative approaches which fail in our environments.Comment: International Conference on Intelligent Robots and Systems (IROS) 201

    Efficient generic calibration method for general cameras with single centre of projection

    Get PDF
    Generic camera calibration is a non-parametric calibration technique that is applicable to any type of vision sensor. However, the standard generic calibration method was developed with the goal of generality and it is therefore sub-optimal for the common case of cameras with a single centre of projection (e.g. pinhole, fisheye, hyperboloidal catadioptric). This paper proposes novel improvements to the standard generic calibration method for central cameras that reduce its complexity, and improve its accuracy and robustness. Improvements are achieved by taking advantage of the geometric constraints resulting from a single centre of projection. Input data for the algorithm is acquired using active grids, the performance of which is characterised. A new linear estimation stage to the generic algorithm is proposed incorporating classical pinhole calibration techniques, and it is shown to be significantly more accurate than the linear estimation stage of the standard method. A linear method for pose estimation is also proposed and evaluated against the existing polynomial method. Distortion correction and motion reconstruction experiments are conducted with real data for a hyperboloidal catadioptric sensor for both the standard and proposed methods. Results show the accuracy and robustness of the proposed method to be superior to those of the standard method

    Keyframe-based monocular SLAM: design, survey, and future directions

    Get PDF
    Extensive research in the field of monocular SLAM for the past fifteen years has yielded workable systems that found their way into various applications in robotics and augmented reality. Although filter-based monocular SLAM systems were common at some time, the more efficient keyframe-based solutions are becoming the de facto methodology for building a monocular SLAM system. The objective of this paper is threefold: first, the paper serves as a guideline for people seeking to design their own monocular SLAM according to specific environmental constraints. Second, it presents a survey that covers the various keyframe-based monocular SLAM systems in the literature, detailing the components of their implementation, and critically assessing the specific strategies made in each proposed solution. Third, the paper provides insight into the direction of future research in this field, to address the major limitations still facing monocular SLAM; namely, in the issues of illumination changes, initialization, highly dynamic motion, poorly textured scenes, repetitive textures, map maintenance, and failure recovery
    • 

    corecore