60 research outputs found

    Disproof of the List Hadwiger Conjecture

    Full text link
    The List Hadwiger Conjecture asserts that every KtK_t-minor-free graph is tt-choosable. We disprove this conjecture by constructing a K3t+2K_{3t+2}-minor-free graph that is not 4t4t-choosable for every integer t≥1t\geq 1

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    Thomassen's Choosability Argument Revisited

    Full text link
    Thomassen (1994) proved that every planar graph is 5-choosable. This result was generalised by {\v{S}}krekovski (1998) and He et al. (2008), who proved that every K5K_5-minor-free graph is 5-choosable. Both proofs rely on the characterisation of K5K_5-minor-free graphs due to Wagner (1937). This paper proves the same result without using Wagner's structure theorem or even planar embeddings. Given that there is no structure theorem for graphs with no K6K_6-minor, we argue that this proof suggests a possible approach for attacking the Hadwiger Conjecture

    Defective and Clustered Choosability of Sparse Graphs

    Full text link
    An (improper) graph colouring has "defect" dd if each monochromatic subgraph has maximum degree at most dd, and has "clustering" cc if each monochromatic component has at most cc vertices. This paper studies defective and clustered list-colourings for graphs with given maximum average degree. We prove that every graph with maximum average degree less than 2d+2d+2k\frac{2d+2}{d+2} k is kk-choosable with defect dd. This improves upon a similar result by Havet and Sereni [J. Graph Theory, 2006]. For clustered choosability of graphs with maximum average degree mm, no (1−ϵ)m(1-\epsilon)m bound on the number of colours was previously known. The above result with d=1d=1 solves this problem. It implies that every graph with maximum average degree mm is ⌊34m+1⌋\lfloor{\frac{3}{4}m+1}\rfloor-choosable with clustering 2. This extends a result of Kopreski and Yu [Discrete Math., 2017] to the setting of choosability. We then prove two results about clustered choosability that explore the trade-off between the number of colours and the clustering. In particular, we prove that every graph with maximum average degree mm is ⌊710m+1⌋\lfloor{\frac{7}{10}m+1}\rfloor-choosable with clustering 99, and is ⌊23m+1⌋\lfloor{\frac{2}{3}m+1}\rfloor-choosable with clustering O(m)O(m). As an example, the later result implies that every biplanar graph is 8-choosable with bounded clustering. This is the best known result for the clustered version of the earth-moon problem. The results extend to the setting where we only consider the maximum average degree of subgraphs with at least some number of vertices. Several applications are presented

    Defective 3-Paintability of Planar Graphs

    Get PDF
    A dd-defective kk-painting game on a graph GG is played by two players: Lister and Painter. Initially, each vertex is uncolored and has kk tokens. In each round, Lister marks a chosen set MM of uncolored vertices and removes one token from each marked vertex. In response, Painter colors vertices in a subset XX of MM which induce a subgraph G[X]G[X] of maximum degree at most dd. Lister wins the game if at the end of some round there is an uncolored vertex that has no more tokens left. Otherwise, all vertices eventually get colored and Painter wins the game. We say that GG is dd-defective kk-paintable if Painter has a winning strategy in this game. In this paper we show that every planar graph is 3-defective 3-paintable and give a construction of a planar graph that is not 2-defective 3-paintable.Comment: 21 pages, 11 figure
    • …
    corecore