3,869 research outputs found

    Power domination in maximal planar graphs

    Full text link
    Power domination in graphs emerged from the problem of monitoring an electrical system by placing as few measurement devices in the system as possible. It corresponds to a variant of domination that includes the possibility of propagation. For measurement devices placed on a set S of vertices of a graph G, the set of monitored vertices is initially the set S together with all its neighbors. Then iteratively, whenever some monitored vertex v has a single neighbor u not yet monitored, u gets monitored. A set S is said to be a power dominating set of the graph G if all vertices of G eventually are monitored. The power domination number of a graph is the minimum size of a power dominating set. In this paper, we prove that any maximal planar graph of order n \ge 6 admits a power dominating set of size at most (n--2)/4

    Some Results on incidence coloring, star arboricity and domination number

    Full text link
    Two inequalities bridging the three isolated graph invariants, incidence chromatic number, star arboricity and domination number, were established. Consequently, we deduced an upper bound and a lower bound of the incidence chromatic number for all graphs. Using these bounds, we further reduced the upper bound of the incidence chromatic number of planar graphs and showed that cubic graphs with orders not divisible by four are not 4-incidence colorable. The incidence chromatic numbers of Cartesian product, join and union of graphs were also determined.Comment: 8 page

    A Linear Kernel for Planar Total Dominating Set

    Full text link
    A total dominating set of a graph G=(V,E)G=(V,E) is a subset DVD \subseteq V such that every vertex in VV is adjacent to some vertex in DD. Finding a total dominating set of minimum size is NP-hard on planar graphs and W[2]-complete on general graphs when parameterized by the solution size. By the meta-theorem of Bodlaender et al. [J. ACM, 2016], there exists a linear kernel for Total Dominating Set on graphs of bounded genus. Nevertheless, it is not clear how such a kernel can be effectively constructed, and how to obtain explicit reduction rules with reasonably small constants. Following the approach of Alber et al. [J. ACM, 2004], we provide an explicit kernel for Total Dominating Set on planar graphs with at most 410k410k vertices, where kk is the size of the solution. This result complements several known constructive linear kernels on planar graphs for other domination problems such as Dominating Set, Edge Dominating Set, Efficient Dominating Set, Connected Dominating Set, or Red-Blue Dominating Set.Comment: 33 pages, 13 figure

    (Total) Vector Domination for Graphs with Bounded Branchwidth

    Full text link
    Given a graph G=(V,E)G=(V,E) of order nn and an nn-dimensional non-negative vector d=(d(1),d(2),,d(n))d=(d(1),d(2),\ldots,d(n)), called demand vector, the vector domination (resp., total vector domination) is the problem of finding a minimum SVS\subseteq V such that every vertex vv in VSV\setminus S (resp., in VV) has at least d(v)d(v) neighbors in SS. The (total) vector domination is a generalization of many dominating set type problems, e.g., the dominating set problem, the kk-tuple dominating set problem (this kk is different from the solution size), and so on, and its approximability and inapproximability have been studied under this general framework. In this paper, we show that a (total) vector domination of graphs with bounded branchwidth can be solved in polynomial time. This implies that the problem is polynomially solvable also for graphs with bounded treewidth. Consequently, the (total) vector domination problem for a planar graph is subexponential fixed-parameter tractable with respectto kk, where kk is the size of solution.Comment: 16 page

    Edge Roman domination on graphs

    Full text link
    An edge Roman dominating function of a graph GG is a function f ⁣:E(G){0,1,2}f\colon E(G) \rightarrow \{0,1,2\} satisfying the condition that every edge ee with f(e)=0f(e)=0 is adjacent to some edge ee' with f(e)=2f(e')=2. The edge Roman domination number of GG, denoted by γR(G)\gamma'_R(G), is the minimum weight w(f)=eE(G)f(e)w(f) = \sum_{e\in E(G)} f(e) of an edge Roman dominating function ff of GG. This paper disproves a conjecture of Akbari, Ehsani, Ghajar, Jalaly Khalilabadi and Sadeghian Sadeghabad stating that if GG is a graph of maximum degree Δ\Delta on nn vertices, then γR(G)ΔΔ+1n\gamma_R'(G) \le \lceil \frac{\Delta}{\Delta+1} n \rceil. While the counterexamples having the edge Roman domination numbers 2Δ22Δ1n\frac{2\Delta-2}{2\Delta-1} n, we prove that 2Δ22Δ1n+22Δ1\frac{2\Delta-2}{2\Delta-1} n + \frac{2}{2\Delta-1} is an upper bound for connected graphs. Furthermore, we provide an upper bound for the edge Roman domination number of kk-degenerate graphs, which generalizes results of Akbari, Ehsani, Ghajar, Jalaly Khalilabadi and Sadeghian Sadeghabad. We also prove a sharp upper bound for subcubic graphs. In addition, we prove that the edge Roman domination numbers of planar graphs on nn vertices is at most 67n\frac{6}{7}n, which confirms a conjecture of Akbari and Qajar. We also show an upper bound for graphs of girth at least five that is 2-cell embeddable in surfaces of small genus. Finally, we prove an upper bound for graphs that do not contain K2,3K_{2,3} as a subdivision, which generalizes a result of Akbari and Qajar on outerplanar graphs
    corecore