269 research outputs found

    An Inverse Dynamics Approach to Control Lyapunov Functions

    Get PDF
    With the goal of moving towards implementation of increasingly dynamic behaviors on underactuated systems, this paper presents an optimization-based approach for solving full-body dynamics based controllers on underactuated bipedal robots. The primary focus of this paper is on the development of an alternative approach to the implementation of controllers utilizing control Lyapunov function based quadratic programs. This approach utilizes many of the desirable aspects from successful inverse dynamics based controllers in the literature, while also incorporating a variant of control Lyapunov functions that renders better convergence in the context of tracking outputs. The principal benefits of this formulation include a greater ability to add costs which regulate the resulting behavior of the robot. In addition, the model error-prone inertia matrix is used only once, in a non-inverted form. The result is a successful demonstration of the controller for walking in simulation, and applied on hardware in real-time for dynamic crouching

    Feedback Control of an Exoskeleton for Paraplegics: Toward Robustly Stable Hands-free Dynamic Walking

    Get PDF
    This manuscript presents control of a high-DOF fully actuated lower-limb exoskeleton for paraplegic individuals. The key novelty is the ability for the user to walk without the use of crutches or other external means of stabilization. We harness the power of modern optimization techniques and supervised machine learning to develop a smooth feedback control policy that provides robust velocity regulation and perturbation rejection. Preliminary evaluation of the stability and robustness of the proposed approach is demonstrated through the Gazebo simulation environment. In addition, preliminary experimental results with (complete) paraplegic individuals are included for the previous version of the controller.Comment: Submitted to IEEE Control System Magazine. This version addresses reviewers' concerns about the robustness of the algorithm and the motivation for using such exoskeleton

    A contact-implicit direct trajectory optimization scheme for the study of legged maneuverability

    Get PDF
    For legged robots to move safely in unpredictable environments, they need to be manoeuvrable, but transient motions such as acceleration, deceleration and turning have been the subject of little research compared to constant-speed gait. They are difficult to study for two reasons: firstly, the way they are executed is highly sensitive to factors such as morphology and traction, and secondly, they can potentially be dangerous, especially when executed rapidly, or from high speeds. These challenges make it an ideal topic for study by simulation, as this allows all variables to be precisely controlled, and puts no human, animal or robotic subjects at risk. Trajectory optimization is a promising method for simulating these manoeuvres, because it allows complete motion trajectories to be generated when neither the input actuation nor the output motion is known. Furthermore, it produces solutions that optimize a given objective, such as minimizing the distance required to stop, or the effort exerted by the actuators throughout the motion. It has consequently become a popular technique for high-level motion planning in robotics, and for studying locomotion in biomechanics. In this dissertation, we present a novel approach to studying motion with trajectory optimization, by viewing it more as “trajectory generation” – a means of generating large quantities of synthetic data that can illuminate the differences between successful and unsuccessful motion strategies when studied in aggregate. One distinctive feature of this approach is the focus on whole-body models, which capture the specific morphology of the subject, rather than the highly-simplified “template” models that are typically used. Another is the use of “contact-implicit” methods, which allow an appropriate footfall sequence to be discovered, rather than requiring that it be defined upfront. Although contact-implicit methods are not novel, they are not widely-used, as they are computationally demanding, and unnecessary when studying comparatively-predictable constant speed locomotion. The second section of this dissertation describes innovations in the formulation of these trajectory optimization problems as nonlinear programming problems (NLPs). This “direct” approach allows these problems to be solved by general-purpose, open-source algorithms, making it accessible to scientists without the specialized applied mathematics knowledge required to solve NLPs. The design of the NLP has a significant impact on the accuracy of the result, the quality of the solution (with respect to the final value of the objective function), and the time required to solve the proble

    Motion Planning and Control for the Locomotion of Humanoid Robot

    Get PDF
    This thesis aims to contribute on the motion planning and control problem of the locomotion of humanoid robots. For the motion planning, various methods were proposed in different levels of model dependence. First, a model free approach was proposed which utilizes linear regression to estimate the relationship between foot placement and moving velocity. The data-based feature makes it quite robust to handle modeling error and external disturbance. As a generic control philosophy, it can be applied to various robots with different gaits. To reduce the risk of collecting experimental data of model-free method, based on the simplified linear inverted pendulum model, the classic planning method of model predictive control was explored to optimize CoM trajectory with predefined foot placements or optimize them two together with respect to the ZMP constraint. Along with elaborately designed re-planning algorithm and sparse discretization of trajectories, it is fast enough to run in real time and robust enough to resist external disturbance. Thereafter, nonlinear models are utilized for motion planning by performing forward simulation iteratively following the multiple shooting method. A walking pattern is predefined to fix most of the degrees of the robot, and only one decision variable, foot placement, is left in one motion plane and therefore able to be solved in milliseconds which is sufficient to run in real time. In order to track the planned trajectories and prevent the robot from falling over, diverse control strategies were proposed according to the types of joint actuators. CoM stabilizer was designed for the robots with position-controlled joints while quasi-static Cartesian impedance control and optimization-based full body torque control were implemented for the robots with torque-controlled joints. Various scenarios were set up to demonstrate the feasibility and robustness of the proposed approaches, like walking on uneven terrain, walking with narrow feet or straight leg, push recovery and so on

    Preference-Based Learning for Exoskeleton Gait Optimization

    Get PDF
    This paper presents a personalized gait optimization framework for lower-body exoskeletons. Rather than optimizing numerical objectives such as the mechanical cost of transport, our approach directly learns from user preferences, e.g., for comfort. Building upon work in preference-based interactive learning, we present the CoSpar algorithm. CoSpar prompts the user to give pairwise preferences between trials and suggest improvements; as exoskeleton walking is a non-intuitive behavior, users can provide preferences more easily and reliably than numerical feedback. We show that CoSpar performs competitively in simulation and demonstrate a prototype implementation of CoSpar on a lower-body exoskeleton to optimize human walking trajectory features. In the experiments, CoSpar consistently found user-preferred parameters of the exoskeleton’s walking gait, which suggests that it is a promising starting point for adapting and personalizing exoskeletons (or other assistive devices) to individual users
    • …
    corecore