
Univ
ers

ity
 of

 C
ap

e T
ow

n
A Contact-Implicit Direct Trajectory Optimization
Scheme for the Study of Legged Maneuverability

University of Cape Town
Dept. of Electrical Engineering

Presented by:
Stacey Shield

Prepared for:
A/Prof. Amir Patel

Submitted to the Department of Electrical Engineering at the University of
Cape Town in partial fulfilment of the academic requirements for a Doctor

of Philosophy degree in Engineering.

July 1, 2022



Univ
ers

ity
 of

 C
ap

e T
ow

n

 

 

 

 

 

 

 

 

 

The copyright of this thesis vests in the author. No 
quotation from it or information derived from it is to be 
published without full acknowledgement of the source. 
The thesis is to be used for private study or non-
commercial research purposes only. 

 

Published by the University of Cape Town (UCT) in terms 
of the non-exclusive license granted to UCT by the author. 
 



Acknowledgments

Sometimes the light’s all shinin’ on me
Other times, I can barely see
Lately, it occurs to me
what a long, strange trip it’s been

I will now do my best to express the inexpressible gratitude I feel for my
“Fellowship of the Thesis”, who supported me in so many ways throughout
this long adventure.

Firstly, my supervisor, Amir Patel: thank you for your guidance, encour-
agement and enthusiasm. Whenever I was stuck in mental quicksand, your
undauntable optimism is what made me pull myself out and give the prob-
lem one last good go. It has been incredible to watch us all grow over this
time: me – from confused undergraduate to fledgling scientist, you – from
newly-minted Doctor to esteemed Associate Professor, and our lab – from
dusty darkness of the Control Lab storeroom to recognized research unit. I
can’t wait to see what we’ll do next!

I would also like to thank my colleagues in the electrical engineering de-
partment, especially Robyn Verrinder and Fred Nicolls, and my co-authors
and collaborators, especially Monica Daley. You were the unofficial mentors
who taught me so many unwritten lessons about academia, and the sounding
board that always bounced ideas back better. I’m delighted to keep working
with you in the future.

To my friends from the lab, the Pole Project, the Ferdies Art Group and
elsewhere: seeing you is what kept me from turning into a robot myself!
Thank you for all the fun distractions, creative outlets, shoulders to cry
on and Turkish-delight-flavored energy drinks that kept me going, and for
putting up with me through these years of missed plans, deadline-related
periods of radio silence and endless whining.

And finally, to my parents: this would never have been possible without your
unwavering support, from my first Lego robot to the end of my Ph.D. Thank
you for always giving me a home to come back to, and for your patience
throughout the most grueling stretches of this degree.

ii



Declaration

I know the meaning of plagiarism and declare that all the work in the doc-
ument, save for that which is properly acknowledged, is my own. This the-
sis/dissertation has been submitted to the Turnitin module and I confirm
that my supervisor has seen my report and any concerns revealed by such
have been resolved with my supervisor.

Signature:
Stacey Leigh Shield

Date: October 16, 2022

iii



A Contact-Implicit Direct Trajectory

Optimization Scheme for the Study of Legged

Maneuverability

Stacey Shield

Abstract

In recent years, impressive strides have been made in the development of
legged robots (both literally and figuratively), allowing the first commercially-
available platforms to step out of the lab and into homes and workplaces.
The speed and agility of these robots still lags far behind their fastest ani-
mal counterparts, however. One reason for this is that non-stationary legged
locomotion – particularly at the extremes of speed and rapid execution –
remains a largely untapped research area.

Simulation presents an attractive option for making inroads into this field,
as it addresses two key challenges:

1. the sensitivity of these maneuvers to wide range of internal and external
factors, and

2. the danger of performing these maneuvers experimentally.

In this dissertation, we explore the prospect of studying rapid, high-speed
legged maneuvers using trajectory optimization – a simulation method that
allows feasible motions to be generated and optimized from almost no a priori
information. Specifically, we will focus on the collocation approach, where
the trajectory optimization problem is transcribed to a nonlinear program
that can then be solved using an established open-source algorithm.

The first part describes our approach of using trajectory optimization primar-
ily as a synthetic data generation method, with each problem being solved
many times from different random starting points to obtain a large set of
solutions of varying quality. This collection of local minima can then be an-
alyzed in aggregate, to extract relationships between features-of-interest and
solution quality, and identify the characteristics that separate more successful
maneuvers from less successful ones. We demonstrate this approach through
two case studies: an investigation into the role of arms in assisting gait ter-
mination in bipeds, and a general investigation into the rapid termination of
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galloping in a fast quadruped.

Solving these large, nonlinear optimization problems hundreds of times from
random points is a significant technical challenge that required advances in
the problem formulation to better adapt this method to our demanding ap-
plication. These advances are covered in the second part of the dissertation.
The particular areas that we examined include:

• the use of high-order orthogonal collocation methods to construct the
trajectory,

• the incorporation of unscheduled unscheduled contact dynamics,

• the coordinates used to model the system, and

• the method of generating random initial seeds.
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Chapter 1

Introduction

1.1 Motivation: Studying Rapid maneuver-

ability

Fast, dynamic gait is certainly not a solved problem in legged robotics, but
compared to maneuverability, it is a well-defined one. Although we have
yet to build robots which can execute constant-speed gaits with the same
power, speed and robustness as animals do, we have a vocabulary of words
to describe them, like ”trot”, ”gallop” and ”canter”, which at least tell us
which foot should touch the ground next. This is more information than we
typically have for transient maneuvers.

Consider gait termination, the primary case study for this project. Footage
of dogs, cheetahs and horses stopping from high-speed gaits shows the ma-
neuver being performed in various ways (Figure 1.1), but without many more
examples, it is impossible to determine whether these differences should be
attributed to speed, morphology, external conditions, or the state of the body
when the action is initiated. It is also unclear whether these examples rep-
resent the most rapid way for each animal to stop, as they could also be
prioritizing a variety of objectives including energy efficiency, stability and
limb safety.

Acquiring enough examples to eliminate all these possible confounding vari-
ables would be an immense challenge, however: for fast-moving animals or
robots, the sudden stop is an emergency response typically reserved for sit-
uations so desperate that the danger inherent in performing the movement
is only surpassed by the danger of not performing it. Very little experimen-
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Figure 1.1: Cheetah, greyhound and horse stopping. Footage courtesy of Dr.
Robert Gilette and the Canine Performance Sciences Program at the Auburn
University College of Veterinary Medicine.

tal research on fast gait termination has been conducted, and consequently,
the factors that contribute to successful, rapid execution of this maneuver
remain unknown. This is true of factors related to the motion itself (gait
termination strategies) and morphological factors.

Although the stated difficulties limit experimental research into rapid, high-
speed gait termination, they make it an ideal candidate for simulation-based
studies. In simulation, the initial state, environmental conditions and the
parameters of the subject’s morphology and actuation are entirely known
and controllable. There is also no risk of injury or damage as there would if
real-life humans, animals or robots were involved.

This does not mean that simulation of legged maneuvers is a trivial task,
however: legged systems tend to be high-dimensional, nonlinear, nonholo-
nomic and underactuated - a combination of characteristics that confounds
traditional control techniques. They are also hybrid dynamic systems, with
nonsmooth transitions occurring between foot contact states. The number
of possible contact states increases quadratically with the number of defined
contact points, becoming unwieldly for quadrupeds even if the feet are mod-
eled as single contact points.
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1.2 The Case for Trajectory Optimization

Trajectory optimization has exciting potential as a method of studying legged
maneuverability. Optimal control is widely-applied in legged robotics, as it
overcomes the problematic mathematical properties that make these systems
difficult to treat with traditional feedback control. Trajectory optimization
can be thought of as an extension of optimal control to long time horizons
encompassing complete motion tasks.

As a simulation method, it is well-suited to the poorly-defined nature of
legged maneuvers, as it allows physically-feasible motions to be generated
when neither the pose sequence nor actuation profile is known. This is useful
even if the aim is simply trajectory generation, but it is made vastly more
powerful by the ability to optimize the motion according to a given objective.
This makes it possible to study the relationship between the motion and high-
level goals such as energy efficiency, limb safety or rapid task completion. The
locomotion of systems as complex and highly redundant as legged systems
can only be meaningfully studied with an optimization objective in mind, so
the impossible variety of feasible movements can be limited to the favourable
few worth considering.

1.3 Scope and Objectives

Of the many possible methods to optimize locomotion, the ones we refer to
as ”trajectory optimization” are gradient-based approaches based on opti-
mal control theory. Gradient-free approaches such as genetic algorithms and
metaheuristics are often discussed alongside trajectory optimization [13], and
have demonstrated applicability to legged locomotion problems such as gait
optimization [14], but they will not be discussed in this dissertation. Like-
wise, learning approaches have been shown to be effective at discovering
and improving agile locomotion in legged robots (see: the recent work by
Hwangbo et al. [15] and Lee et al. [16] on the ANYmal robot, for instance)
but these methods are also outside the scope of this project.

Trajectory optimization is executed using various techniques across a range
of research fields [17], but our specific focus is the transcribed method, where
the trajectory optimization problem is posed as a constrained nonlinear pro-
gramming problem (CNLP). This has become an especially accessible option
for researchers without extensive knowledge of numerical optimization, due
to the development of general-purpose commercial and open-source solver
algorithms for CNLPs. (A recent review by Malyuta, et al. [18] provides a
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thorough list and comparison of these solvers in the context of space vehicle
control.) This has created an interest in methods of improving the quality
of solutions and tractability of problems that can be applied at the level of
the problem formulation, without modifying the solver itself.

This project has two aims:

1. to develop a framework for studying rapid legged maneuvers using tra-
jectory optimization, and

2. to design a formulation for trajectory optimization problems that is
suitable for this application, for use with an existing open-source solver.

In the design stage, we consider only single-level, deterministic trajectory
optimization problems. The focus is primarily on maximizing solver perfor-
mance and solution quality within a single solving stage. This tight scope
excludes some key areas of recent technical development, including

• the inclusion of stochastic elements into the optimization problem for
more robust solutions,

• bilevel optimization incorporating model-free methods, or subproblem
approaches, and

• multi-stage or iterative trajectory optimization involving stages of in-
creasing complexity.

The aim is to provide a comparison between formulations of the most funda-
mental problem components, which can provide a helpful base for implement-
ing more complicated trajectory optimization methods in future work.

1.4 Outline and Contributions

1.4.1 Publications

This dissertation covers work that has been presented in eight peer-reviewed
publications. A further paper is currently under review.

(A) Balancing stability and maneuverability during rapid gait ter-
mination in fast biped robots (2017) [19]
Shield, S. and Patel, A.
2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2017
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(B*) Contact-implicit trajectory optimization using orthogonal col-
location (2019) [20]
Patel, A., Shield, S., Kazi, S., Johnson, A.M. and Biegler, L.T.
IEEE Robotics and Automation Letters 4.2 (2019): 2242-2249.

(C) On the effectiveness of silly walks as initial guesses for optimal
legged locomotion problems (2020) [21]
Shield, S. and Patel, A.
2020 International SAUPEC/RobMech/PRASA Conference. IEEE,
2020.

(D*) The Ollie: A Case Study in Trajectory Optimization with
Varied Contacts (2020) [22]
Anderson, N., Shield, S. and Patel, A.
2020 International SAUPEC/RobMech/PRASA Conference. IEEE,
2020.

(E*) Minor change, major gains: The effect of orientation formu-
lation on solving time for multi-body trajectory optimization
(2020) [23]
Knemeyer, A., Shield, S. and Patel, A.
IEEE Robotics and Automation Letters 5.4 (2020): 5331-5338.

(F) Waste Not, Want Not: Lessons in Rapid Quadrupedal Gait
Termination from Thousands of Suboptimal Solutions (2020)
[24]
Shield, S. and Patel, A.
2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2020.

(G) Tails, flails and sails: How appendages improve terrestrial ma-
neuverability by improving stability (2021) [25]
Shield, S., Jericevich, R., Patel, A. and Jusufi, A.
Integrative and Comparative Biology, 61(2) (2021), 506-520.

(H) Contact-Implicit Direct Collocation with a Discontinuous Ve-
locity State (2022) [26]
Shield, S., Johnson, A.M. and Patel, A.
IEEE Robotics and Automation Letters 7.2 (2022): 5779-5786.

(I) Minor Change, Major Gains II: Are Maximal Coordinates the
Fastest Choice for Trajectory Optimization?
Shield, S. and Patel, A.
(SUBMITTED) 2022 IEEE/RSJ International Conference on Intelli-
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gent Robots and Systems (IROS). IEEE, 2022

The starred (*) entries are not first-authored, but contain substantial con-
tributions from work described and expanded upon within this disserta-
tion.

1.4.2 Outline

This dissertation is divided into two sections according to the two stated
aims of the project: the first focuses on the application of trajectory opti-
mization to the study of legged maneuverability, and the second examines
the formulation of transcribed trajectory optimization problems with legged
locomotion problems in mind. A more conventional structure might lead
with the method rather than its applications, but the order of these chapters
better reflects the order in which the work was conducted. Our attempts
to advance the problem formulation were primarily motivated by a need to
improve the suitability of large-scale trajectory optimization for the repeti-
tive, randomized solving approach we devised, so presenting the work in this
way better establishes the context for these investigations. It also removes
the need to explain method choices in our early studies that contradict our
subsequent findings.

A visual summary of the content of this dissertation is given in Figure 1.2,
relating each chapter to elements of the trajectory optimization problem.

Studying Legged Locomotion with Trajectory Optimization

Chapter 2 expands upon the case for trajectory optimization as a method
of studying legged maneuverability by reviewing how it has been applied to
legged locomotion problems before, and the key advantages that these past
uses demonstrate.

Chapter 3 consolidates the advantages established in the previous chapter
into a suggested framework for studying legged locomotion using large col-
lections of sample motions generated through trajectory optimization. This
approach is demonstrated through two case studies from our work:

1. the use of trajectory optimization to investigate the contribution of
arms to bipedal deceleration, originally published in (A) but updated
in (G), and

2. the use of iterative trajectory optimization to identify effective strate-
gies for quadrupedal deceleration, published in (F).
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Figure 1.2: Visual summary of the aspects of the trajectory optimization
problem covered by each chapter of this dissertation.

The common features of these studies are the use of whole-body models,
and the generation of a large dataset of solutions of varying quality, with
the aim of extracting information from many solutions in aggregate rather
than individual solutions. This approach is inspired by the Monte Carlo
framework proposed by Haberland [27], and represents a novel extension of
these ideas to questions of strategy rather than morphology.

Formulating Legged Locomotion Problems

Chapter 4 provides the groundwork for the design phase of the project by
describing the trajectory optimization problem in detail, and giving a broad
overview of possible variations on the method.

Chapters 5 and 6 present our primary contributions regarding the formulation
of transcribed trajectory optimization problems for legged locomotion stud-
ies. The formulation they describe is the first to expand a complementarity-
based implicit contact model to a numerical integration scheme of arbitrary
order. It is also the first high-order implicit integration scheme to han-
dle partially-elastic collisions, and impacts without collision (tangential im-
pacts).

Chapter 5 focuses on transcription using orthogonal collocation. It expands
on the work described in (B*), by comparing the performance and accuracy
of different orthogonal collocation methods at varying orders of polynomial

8



approximation for smooth and non-smooth dynamic systems.

Chapter 6 modifies the scheme presented in the preceding chapter to allow
discontinuities in the velocity state, thereby producing a truly impulsive col-
lision model that is able to handle a wider range of contact scenarios. This
work was published in (H).

Chapters 7 and 8 present preliminary results on the coordinate formulation
and initialization of legged locomotion problems, which suggest promising
directions for our future work.

Chapter 7 looks at the impact of the selected coordinate system on prob-
lem tractability. This consolidates work described in two papers: in (E*),
we showed that performance can be improved by referencing joint angles to
the world frame, rather than relative to the parent link. In (I), we took this
idea to its logical conclusion by considering a maximal coordinate system,
where the translational degrees of freedom are also defined absolutely. When
(E*) was published, it was the first study examining the effect of coordinate
selection on computational efficiency in the context of trajectory optimiza-
tion.

Chapter 8 addresses problem initialization, an aspect of trajectory opti-
mization that has yet to be widely researched. The motivation for this line
of inquiry is established by attempting to generate a skateboarding trick
called an Ollie using the impulsive contact-implicit formulation described
in Chapter 4. We find that the solver cannot spontaneously ”discover” the
complicated sequence of varied collisions needed to perform the maneuver,
unless one key collision is scheduled, or the problem is initialized from a
”good” seed i.e. one close to a feasible solution. This leads us to ask, ”how
can a ”good” seed be obtained for an unknown problem?”

We then present a novel initialization technique we devised in an attempt to
answer this question: the stochastic generation of loosely gait-like motions
we termed silly walks.

Our original attempt to model the Ollie using a combination of comple-
mentarity and hybrid-dynamic techniques was published in (D*), while the
updated version was published in (H). The silly walk method was published
in (C).
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Chapter 2

Studying Legged Locomotion
with Trajectory
Optimization

Optimality is a unifying principle in the study of locomotion. According to
pivotal works by Full and Koditschek [5] and Raibert [28], the fundamental
dynamics of running are akin to bouncing on a single leg, so any multi-
legged runner is essentially redundant. Consequently, motions recognizable
as ’running’ are just a small subset of the ways they are capable of traversing
distance. If you (a biped) can run, you can theoretically also walk, hop, skip,
leap or shuffle from one place to another, so why is running almost certainly
the motion that will emerge when you see your bus pulling away from the
stop without you? The assumption is that running is selected because it is,
in some way, optimal.

This was put eloquently by Laumond et al. [29], who described optimization
as a motion selection principle in the behavior of redundant systems: ”An
action is viewed as the result of an optimization process whose cost represents
the signature of the action.” Explaining, planning or controlling legged loco-
motion will therefore always come down to an optimization problem.

The work in this dissertation fits into a broader effort to understand how
the maneuverability of legged systems can be optimized. The fundamen-
tal mechanics of legged maneuvers are relatively well-understood: Raibert’s
[28] monopedal theory of legged locomotion control readily explains veloc-
ity changes under the assumption that the stance foot remains stationary,
while Hubicki et al. [30] and Fisher et al. [31] advocate for the more gen-
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eral template of a sliding mass to model acceleration and deceleration. The
devil is in the details of how these generalized dynamics can best be mani-
fested by redundant systems for rapid execution. Identifying motion patterns
and physiological features that can improve the time or distance required to
perform maneuvers will improve our understanding of agile locomotion in
animals, and our ability to design and control agile legged robots.

Explicitly framing the synthesis of physically-feasible motion as an optimiza-
tion problem defines trajectory optimization. In this chapter, we illustrate
the value and versatility of this method by reviewing key examples of its ap-
plication to legged locomotion problems. The aim is to identify the types of
questions it is useful for answering, and how it can be adapted to the gener-
alized motion studies we are interested in conducting. We will then define a
general framework for investigating rapid legged maneuvers with trajectory
optimization.

2.1 Applications of Trajectory Optimization

2.1.1 Devising Optimal Locomotion Strategies

The most straightforward question that trajectory optimization answers is
”what is the optimal way to perform this task?”. The solution it gives will
not necessarily be the true answer - that is, the globally optimal solution
that is executable by the real system. In this context, ”optimal” locomotion
really means ”locomotion produced by the optimization process” [32].

Besides the reality gap that is a factor in all simulations, the nonlinear pro-
gramming problems formulated to optimize legged locomotion are unlikely
to fall into a class where the global optimum can be definitively determined,
so solutions should only be regarded as locally optimal [32]. The assumption
at the heart of trajectory optimization studies is that, despite this caveat,
the optimized motion will still be a good enough approximation of optimal
motion to provide a useful answer.

The simplest version of the posed question is asked for a specific, well-defined
system and a similarly well-parameterized task. An example is the use of
trajectory optimization to produce a jumping trajectory for the MIT Cheetah
3 robot to leap onto a desk of known height [1], as shown in Figure 2.1. The
focus was more on the trajectory than the optimization in this case: the
cost function primarily served to reduce unnecessary variation in the joint
positions or actuation profiles, as the only aim was to synthesize motion that
would produce a successful jump when tracked by the robot.
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Figure 2.1: The MIT Cheetah 3 robot was able to leap onto a 30-inch desk
using a jumping motion designed with trajectory optimization. Image from
[1].
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Figure 2.2: A self-stable running gait produced by trajectory optimization
with an embedded stability criterion resembles the gait of an athlete. From
[2].

If the goal is execution by a robot, the question might be complicated by
uncertainty in the task parameters. Outside of impressive technical demon-
strations like the aforementioned desk jump, it is seldom useful to work with
such a tightly-specified task trajectory. To extend that example to a realistic
motion planning application, we would ultimately need to ask how to jump
onto any desk, or a desk with a height that is not precisely known.

Trajectory optimization does not seem suited to answering broader, vaguer
versions of the question, as we need defined parameters to formulate problem.
One approach to handling this uncertainty is to incorporate stability into the
optimization criteria. This was pioneered by Mombaur, who used trajectory
optimization to synthesize open-loop stable periodic walking gaits - that is,
gait cycles that reject disturbances through passive mechanical properties of
the system, rather than active feedback control [33].

Initially, this was accomplished using a bilevel method: gradient-based tra-
jectory optimization acted at the lower level to minimize actuator effort, while
a direct search algorithm acted above this to improve the stability properties
of the resulting limit cycle [33]. Subsequent work defined a smooth stability
criterion that could be incorporated into the trajectory optimization problem
directly [34]. This was then used to generate self-stable humanlike running
gaits [35, 2]. The resemblance between the resulting motion and human run-
ning is evident in the comparison with the gait of Olympic sprinter Florence
Griffith Joyner shown in Figure 2.2. Dai et al [36] used a similar approach
to generate robust trajectories for traversing uneven ground. The MATLAB
optimization framework for synthesizing energy-efficient gaits, proposed by
Remy et al. [37], also incorporates limit cycle stability analysis to ensure
robust locomotion.
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Figure 2.3: Optimal trajectories of a contact-driven cart with terrain un-
certainty (σ) incorporated using stochastic complementarity. The ground
clearance of the foot tended to increase in response to increasing uncertainty.
From [3].

The drawback of this approach is that it assumes that the nominal state
of locomotion conforms to a limit cycle, which is only the case for periodic
gait. A more versatile approach to uncertainty is to incorporate stochastic
elements into the optimization problem. An example of this is the work of
Drnach and Zhao [3], who applied stochastic complementarity constraints
to encode terrain and friction uncertainty into the optimization problem.
Robustness was optimized by incorporating the expected residual into the
objective function, resulting in trajectories that exhibited shorter sliding dis-
tances in response to greater friction uncertainty, and larger step clearances
when terrain uncertainty was increased [3]. The latter result is illustrated
in Figure 2.3, which shows the trajectories of a contact-driven cart system
produced in response to varying degrees of terrain uncertainty.

Inspired by similar work on the avoidance of randomly-placed obstacles [38]
and climbing on surfaces with uncertain friction [39], a later version of this
framework incorporated chance constraints to limit possible violations of the
contact model, making it less likely that infeasible trajectories would be
produced in highly uncertain conditions [40].

In addition to broadening the parameters of the task we are inquiring about,
we might also want to extend the optimization question to a wider range of
models. Rather than investigating optimal motion for some specific system,
we could be interested in a larger class of systems (for example, quadrupeds
or bipeds) or even results that can be generalized to all legged locomotion.
One way to apply trajectory optimization to a wide range of systems is to
literally perform it using more models within the set under consideration.
The ’Ensemble Contact-Implicit Optimization’ method proposed by Mor-
datch et al. [41] is an example of how this can be implemented. It involves
repeated trajectory optimization of models with contact and morphological
parameters perturbed around nominal values [41]. The motivation in this
case is robust control of a specific system’s locomotion rather than general-
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Figure 2.4: Haberland, et al. [4] generated optimal running gaits for these
randomized bipedal models to investigate whether forward- or rearward-
facing knees tend to confer a lower cost of transport.

izing the results to a range of systems, but the method could theoretically
be applied to this purpose. This is demonstrated by Haberland and Kim’s
Monte Carlo optimization framework [42, 4], which uses repeated trajectory
optimization of models with randomly-varying parameters to generalize the
findings to all bipedal locomotion. For example, Figure 2.4 shows all the ran-
domized model configurations for which optimal trajectories converged when
this framework was used to test the effect of knee direction on the efficiency
of bipedal running. This method was proposed with morphological design
in mind, but there is no reason it cannot also be used to investigate optimal
motion strategies for a broad class of systems.

Rather than optimizing many specific models, the alternative way to general-
ize trajectory optimization is to generalize the model itself so it can represent
all systems of interest. This is based on the concept that highly simplified
template models can represent the fundamental dynamics of legged locomo-
tion across many possible configurations [5]. Once the optimal motion of
the underlying template is discovered, a more detailed model can be used
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Figure 2.5: Modeling hierarchy describing the relationship between template
and anchor models. Image from [5]
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to anchor this behavior to a specific system [5]. Figure 2.5 summarizes the
relationship between these two categories of model into a hierarchy.

Minimum-order models, such as the Spring-Loaded Inverted Pendulum (SLIP)
and Linear Inverted Pendulum Model (LIPM) have become mainstays in the
control of legged robots, as epitomized by the ”Bible” of monopedal-model-
based motion control: Raibert’s Legged Robots that Balance [28]. Later stud-
ies demonstrated the ability of a passive SLIP model to reproduce all common
bipedal gaits [43], and quadrupedal bounding [44], further establishing the
bouncing monopod as a unifying model for legged locomotion.

Naturally, monopedal template models have also been used to investigate
optimal locomotion at the most fundamental dynamic level. An especially
broad example is a study by Hubicki et al. [30], which used the SLIP model
to assess whether limit cycles actually emerge in energy-optimal locomotion
over long-horizon tasks starting or ending from rest. Srinivasan and Ruina
[45] optimized the motion of a bipedal adaptation of the SLIP to find energy-
efficient gaits at different speeds. A novel intermediate gait that emerged be-
tween walking and running in this study (termed inverted pendular running)
was later observed in birds [46], showing that these reduced-order models can
capture real-world phenomena despite their simplicity.

The obvious sacrifice made in pursuit of generality is information about how
specific morphological characteristics can contribute to optimal locomotion.
Consider the role of non-contacting limbs in stabilizing the body [25]: this
could be incorporated into the generalized model by adding an inertial mass
as a stand-in for the combined action of the free appendages (see: Lee and
Goswami’s reaction mass pendulum [6] - Figure 2.6), or by sacrificing some
generality to devise broad, but configuration-specific models. The latter
approach can be implemented by normalizing the model parameters as far
as possible. This is demonstrated in the work of Xi et al. [47, 48], where
energy-optimal gaits are generated for generalized bipedal and quadrupedal
models with all parameters normalized in terms of the total body mass,
uncompressed leg length and gravity.

In the discussion thus far, we have tacitly assumed that the answer to the
question of optimal motion would be answered in the form of an optimized
trajectory, but the insights provided by trajectory optimization can also
be obtained less directly. Even if a given solution is not close to the true
optimum, comparison with a less optimal trajectory might still give some
information about the characteristics of optimal locomotion for the task-
of-interest. Studies of sprinting from rest by Celik and Piazza on bipeds
[7], and Steenkamp and Patel on quadrupeds [49], compared minimum-time
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Figure 2.6: The reaction mass pendulum model is a modification of the
monopedal format of template that captures the aggregated rotational mo-
mentum of the system using an ellipsoid. Figure from [6].
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Figure 2.7: Bipedal sprinting motions generated using proportional-
derivative control (top) and trajectory optimization maximizing acceleration
(bottom). The increased forward pitch of the torso and final diving motion
that emerged in the optimized sprint are observed in human runners. Figure
from [7].

trajectories to feasible trajectories synthesized without an overarching objec-
tive, with the aim of identifying features contributing to greater acceleration.
The feasible and optimal sprints produced in [7] are contrasted in Figure 2.7.

In both studies, the characteristics that emerged in the time-optimal solu-
tions matched observations of human sprinters and racing greyhounds, indi-
cating that the conclusions obtained from this method do reflect reality. Al-
though individual instances of trajectory optimization are unable give the in-
formation about possible directions of improvement that might be attainable
from say, evolutionary computation methods [14], these studies suggest that
the aggregated results of many instances could provide similar insights.

2.1.2 Optimization-Assisted Design

One of the reasons that trajectory optimization is such a versatile method is
the ability to convert values normally considered to be immutable parameters
into variables. In the preceding section, we discussed how this flexibility
can be used to incorporate uncertainty in the environment [3, 40, 38, 39] or
system model [41] to generate robust locomotion. We also considered the use
of generalized models to make results agnostic to specific system parameters
[30, 45, 47, 48]. In this section, the system parameters truly become decision
variables in the problem: we look at how trajectory optimization can be
used to actively select them, or otherwise contribute to the design of the
system.

A clear advantage of trajectory optimization in this regard is its simultaneous
nature. When a proposed controller is tested through forward simulation, its
performance will be limited by the specified system parameters, and likewise,
when attempting to design a mechanical system with a particular control
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Figure 2.8: Bipeds produced through simultaneous optimization of the con-
troller and mechanical system. The amount of variation allowed in the mass
distribution of the limbs increases from left to right. Figure from [8].

policy in mind, the result can only be as good as that control policy allows.
Trajectory optimization allows for the co-design of mechanical and control
elements [50, 51], theoretically leading to an optimal combination of the
two.

Although it uses a combination of evolutionary and neural network methods
rather than the gradient-based trajectory optimization that is the subject
of this dissertation, the work of Paul and Bongard [8] provides an example
of this simultaneous design approach that could theoretically be replicated
using the methods we consider. In this study, the mass distribution of the
limbs of a bipedal robot was co-designed with the control trajectories, result-
ing in optimal pairings of controller and morphology [8] (see: Figure 2.8).
The discrete nature of these pairings was also observed by Yesilevsky et al.
[52], who used trajectory optimization to compare the best possible perfor-
mance of series- and parallel-elastic actuation for energy-efficient hopping on
a monopod. They stated, ”Throughout our analysis, it became evident that
each configuration had a unique optimal motion profile and a set of param-
eters that differed greatly between the two actuation concepts. This clearly
illustrated the necessity of our optimization approach... We strongly believe
that such a combined and simultaneous optimization of robot and motion
will be at the core of future robotic design. [52]”

Gradient-free methods are often incorporated as an upper level to select the
morphology in bilevel schemes, with trajectory optimization applied to dis-
cover feasible control profiles at the lower level. Wampler and Popovic [53]
used this approach to devise a framework for generating optimal gait for a
given morphological configuration, or alternatively, optimizing the morphol-
ogy to perform a specified motion task. More recently, Fadini et al [54, 55]
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used it to optimize the structure and actuator properties of a hopping robotic
leg.

Trajectory optimization can also assist the mechanical design process by
providing a means of testing the maximal capabilities of a proposed design.
It plays this role in the first stage of the design process for fast bipedal robots
described by Luksch et al. [56], indicating the maximum hopping height that
can be achieved with the proposed design.

Besides testing or solving for the parameters of a fixed design, trajectory op-
timization can also be used to compare discrete mechanical configurations.
Haberland and Kim’s framework for adapting design principles from biol-
ogy [42, 4] was devised for this purpose. They propose the use of repeated,
randomized trajectory optimization to evaluate whether a given biologically-
inspired feature conveys an advantage to a broad class of systems. The case
studies they used to demonstrate this concept were the comparison of tele-
scoping vs. rotary knee joints with respect to cost of transport in a monopod
[42], and the comparison of forward- vs. rearward-facing knees with respect
to energy efficiency in running bipeds [4] (Figure 2.4). The knee direction
comparison was subsequently repeated for the robot RAMone [57] with the
same basic result, while their framework was used to compare different spine
designs [58, 59] and leg morphologies [60] for facilitating maximal acceleration
in quadrupedal robots.

2.1.3 Inverse Optimization

At the start of this chapter, optimality was posited as a foundational prin-
ciple in understanding the locomotion of redundant systems, as it is vital
to explain why any one motion trajectory emerges from the vast space of
possibilities. The problems discussed so far have used optimization to find
unknown motion trajectories or system parameters according to given objec-
tives, but it can also be used to better understand the observed locomotion of
a well-defined system, by identifying the objective guiding it. This is referred
to as inverse optimization. Inverse optimization problems are not covered in
this dissertation, so they will not be discussed in detail here, but they use
variations of the same techniques applied in forward trajectory optimization,
and are therefore worth mentioning to complete the picture of how these
methods can be applied to locomotion problems.

Situations where the motion trajectory and system parameters are defined,
but the objective behind them is not, are more likely to arise in biome-
chanical or neuromechanical applications than in robotics. These problems
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Figure 2.9: Predictive simulation of human walking generated using trajec-
tory optimization [9] of an OpenSim musculoskeletal model. Image from
[10].

have motivated developments in predictive simulation – a close relative of
trajectory optimization that uses highly detailed musculoskeletal models to
determine how the motion of humans and animals is controlled. In their
review of the field, De Groote et al. [10] refer to predictive simulation as
trajectory optimization when it is used to devise open-loop muscle control
profiles, distinguishing it from control policy optimization, where it is used to
identify feedback control relationships linking muscle activity to the state of
the musculoskeletal system. Open-source platforms such as OpenSim Moco
[9, 61] have contributed to the advancement and widespread accessibility of
predictive simulation in recent years. An example of a walking gait generated
using trajectory optimization [9] of a muscle-driven OpenSim human model
is shown in Figure 2.9.

A study by Nguyen et al. [62] demonstrates how predictive simulation can
be applied to the inverse optimization case. They used a bilevel approach to
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investigate the cost function driving human walking. The lower level used
trajectory optimization of a detailed human model to generate walking gaits
according to a cost function defined as a weighted sum of different candidate
objectives. These weights were controlled on the upper level by a genetic
algorithm, which aimed to match the parameters of observed human gait as
closely as possible.

Inverse optimization always involves these two steps:

1. the generation of trajectories based on the candidate objectives, and

2. the comparison of these trajectories with the observed motion to de-
termine the best match.

In the aforementioned study, the comparison step was automated through
the genetic algorithm, and the weighted sum format of the cost function al-
lowed combinations of objectives to emerge. The objectives might also be
considered individually, which facilitates manual comparison. This is the ap-
proach taken in two inverse optimization studies into obstacle navigation in
running birds: Blum et al. [63] considered the trajectory of the swing leg in
guinea fowl traversing a small terrain drop, aiming to determine whether the
birds prioritized rejecting disturbance to the gait cycle or preventing injury.
Birn-Jeffrey et al. [64] extended a similar question to birds of various sizes
running on uneven terrain, investigating whether they prioritized disturbance
rejection, injury prevention or energy economy. In both studies, trajectory
optimization of a SLIP model was performed for each of the objectives un-
der consideration, and the results were then compared to the locomotion
and force data to evaluate which objective best matched the observed activ-
ity.

A study by Koch et al. [65] similarly compared optimized walking under
different objectives on a spatial humanoid model, but the model used actually
represented the robot HRP-2, as the aim was to identify the optimal control
strategy that produced the best approximation of humanlike walking. This
followed on from work by Mombaur et al. [66, 67] concerning path generation
for the same robot. The inverse optimization approach used there was more
akin to the bilevel one illustrated by Nguyen et al. [62], as the comparison was
also performed using a derivative-free upper level. As these studies show, the
use of inverse optimization in the context of robotics tends to be in pursuit
of biomimicry.
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2.2 Optimization of Legged Maneuverability

2.2.1 Use Cases

The studies discussed in this chapter demonstrate that trajectory optimiza-
tion is a powerful and flexible method that can handle the control challenges
associated with legged locomotion effectively, and provide useful insights into
questions of both strategy and design. Based on the ways it has been ap-
plied before, we intend to use it to investigate the following aspects of legged
maneuverability:

• Optimal Strategies for Rapid Execution: The majority of the
studies discussed focused on constant-speed locomotion, and objectives
related to energy efficiency or stability. This leaves a clear gap for
studies into transient motions, or prioritizing performance objectives
such as rapid execution (execution in the shortest possible time or
distance) or maximal acceleration.

The ability to synthesize motion from nothing more than partly-specified
boundary constraints is a key advantage of trajectory optimization with
respect to these maneuvers, as motion patterns for transient locomotion
are not well-established. We are interested in identifying these motion
patterns for broad classes of systems such as bipeds and quadrupeds,
and discovering the features that contribute to rapid performance.

• Adaptation of Rapid maneuvers to Varying Conditions: The
limit on achievable acceleration during legged maneuvers is set by the
properties of contact between the foot and ground. Consequently, we
expect rapid transient motion to be especially sensitive to these con-
ditions. Many maneuvers are executed from constant-speed gait, so
variation in the initial state is also important to consider. In many
of the studies discussed in this chapter, parameter sensitivity was ad-
dressed by incorporating the uncertainty in the problem to identify
strategies that are robust to a range of conditions. The downside to
this approach is that it does not directly interrogate the effect of a par-
ticular change. Trajectory optimization is an ideal method of isolating
these effects that has been underused in this capacity so far. We aim to
use it to describe specific ways that strategies for rapid maneuverability
vary in response to the ground conditions and initial state.

• Optimal Morphology for maneuverability: As demonstrated in
the discussed examples of optimization-assisted design, trajectory op-
timization is also a useful method of isolating the effects of varying
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model parameters. Our specific interest is in the more ”macroscopic”
version of this application exemplified by Haberland and Kim’s work
[42, 4], where it allows differences in the configuration of the model to
be compared. Like these studies, we intend to use trajectory optimiza-
tion to evaluate the contribution of specific morphological features to
rapid maneuverability.

2.2.2 General Approach

We intend to apply trajectory optimization to the problems described using a
randomized repetition approach that is conceptually similar to that of Haber-
land and Kim [42, 4]. Their primary focus was comparing configurations, so
they randomized the physical parameters of the model within the space of
each candidate. We are more interested in identifying motion strategies, so
we need to introduce randomness to the movement of the model to ensure
that the solution space of possible motions is adequately explored.

Because we are dealing with optimized rather than optimal locomotion – and
locally optimized locomotion at that – no one solution is especially useful
with respect to the questions we are concerned with. Initiating the solver
from different seeds might yield solutions of widely-varying quality, so it is
impossible to tell how good that one solution is without the context of many
others seeded from diverse points. We will therefore repeat the optimization
many times for each case under consideration, from random initial seeds.
Rather than selecting the best result of the bunch as the One True Solution
and disregarding the others, we will use these discards as data: by analyzing
them in aggregate, we hope to identify the recurring motion features that
correlate with better performance and thereby extract lessons about how
legged maneuvers should be executed. Our proposed approach is visually
summarized in Figure 2.10.

The following chapter will demonstrate this approach through our work con-
cerning rapid gait termination.
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Figure 2.10: Visual summary of our proposed framework for studying legged
maneuverability with trajectory optimization. By solving the problem many
times from different random seeds, we will generate a large dataset of trajec-
tories with varying costs, which can be analyzed to determine the features of
motion that tend to produce more successful maneuvers.
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Chapter 3

Case Studies: Rapid
High-Speed Gait
Termination

In the preceding chapter, we outlined an approach to studying legged maneu-
vers with trajectory optimization largely inspired by the repeated randomized
optimizations of Haberland and Kim [42, 4]. We will now provide a proof-of-
concept for this approach using two previously-published case studies where
it was applied to the rapid termination of fast gaits. The first, which ex-
amines the contribution of arms to the termination of bipedal sprinting, was
published in a preliminary form [19] and subsequently repeated with an up-
dated trajectory optimization method as part of a broader review regarding
the role of free limbs in maneuverability [25]. The second, which considers
gait termination from a rotatory gallop, was published in [24].

The word ”rapid” could suggest either a minimum time or minimum distance
objective, but we will focus on stopping distance, as outside the context of
a barrel race, the stopping time is less likely to be important in practical
situations.

3.1 Rapid High-Speed Gait Termination

As discussed in the introduction of this document, the sudden termina-
tion of high-speed gait is difficult to study experimentally and largely un-
researched. Our overarching research interest is in understanding and imi-
tating the agility of the fastest animals [68, 69, 70, 71, 25], but the few studies
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that address deceleration at all primarily concern a case as far-removed from
the sprinting cheetah as it is possible to be: termination of bipedal walking
[72][73][74][75][76][77], often in the elderly or pathological cases [78][79]. Still,
we can extract some fundamental principles and extrapolate how they might
transfer from grandmothers to greyhounds.

In Raibert’s spring-mass conception of legged locomotion [28], deceleration is
achieved by placing the center of pressure (COP) further ahead of the center
of mass (COM) than the neutral point - the position that would result in zero
net acceleration over the stride [28][72]. This causes the portion of the stride
where the leg functions as a damper (compressing and absorbing energy) to
be longer than the portion where it functions as a motor (extending and
expelling energy) [28]. The necessary geometry of the COM and COP posi-
tions restricts the poses from which it is possible to decelerate. This creates
a critical region of the gait cycle within which the termination maneuver can
be initiated [76]. Once the COM has passed ahead of the COP, the current
cycle must be completed before deceleration can occur.

Assuming a favorable initial condition, two factors restrict the velocity that
can be reduced to rest in one stride: balance and actuator power [80][81]. If
these limits are exceeded, the subject must take another step or they will fall
[80]. In this case, ”balance” refers to the maintenance of dynamic stability – a
looser concept of stability than the static ideal of keeping the COM contained
within the base of support. The Centroidal Angular Momentum (CAM) - the
instantaneous angular momentum of the body about the COM - is a widely-
used metric for quantifying dynamic stability [82]. The associated stability
criterion states that the system is dynamically stable if it experiences zero
rate of change in angular momentum (ZRAM) [83].

Robotic gaits are frequently designed to place the foot at the zero moment
point - the position that aligns the ground reaction force vector and COM,
ensuring this criterion is satisfied throughout the stride [84]. Animal gaits
are less stringent: while the angular acceleration is unlikely to be zero at
any given instant, we expect that the moments created by ground reaction
forces should integrate to zero, assuring the ZRAM criterion is satisfied at the
stride level. Deceleration demands unbalanced forces, so it tends to produce
unbalanced moments that risk toppling the subject if left unchecked. This
is illustrated in Figure 3.1 for the case of a decelerating human: the ground
reaction force vector passes behind the center of mass, inducing forward pitch.
Research on greyhounds and polo ponies by Williams et al. [81] indicates that
pitch avoidance is the primary limit on straight-line acceleration before they
reach speeds that challenge their muscle power. Motion of other appendages
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Figure 3.1: Large horizontal braking forces tend to create a forward pitch,
as they cause the ground reaction force vector to pass behind the center of
mass.
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such as the arms [74] or a tail [69, 25] can potentially assist with balance by
absorbing undesired angular momentum.

This trade-off between acceleration and stability is heightened when rapid
stopping is prioritized. Larger braking forces have the potential to create
larger destabilizing moments, increasing the chance of a balance failure, but
taking additional steps could mean the difference between hitting or avoiding
an obstacle. Strategies for decreasing stopping distance might involve gener-
ating larger peak braking forces, but they could also maximize braking time
within the stride by reducing time in non-contact states, or by extending the
safe duration over which these forces can act through careful foot placement
and dynamic compensation.

3.1.1 Limitations of Previous Studies

Prior studies on gait termination have made the assumption that the stance
foot must remain stationary. When low-friction surfaces have been included
[74], avoiding slipping is the primary concern. Failure to consider sliding may
be the result of failure to consider velocity: all the animals in the footage
sampled for Figure 1.1 skidded to a halt, indicating that slipping might be
unavoidable at higher speeds. With balance in mind, slipping might even
be desirable earlier in the maneuver, as stopping the feet while the body is
still moving fast seems likely to end in the subject tumbling posterior over
paws.

Another limitation of past work is the widespread use of spring-mass monope-
dal templates [5]. Although these models can describe changes in velocity
[28], including transient deceleration within gait, or even gradual gait termi-
nation, they were devised with periodic strides in mind. It is possible that a
sudden stop from high-speed could depart from the basic form of constant-
speed gait drastically enough to be described more effectively using a different
template. These simple models also miss morphology-specific strategies that
could improve performance, such as the use of limbs to assist in balancing,
and contact with multiple feet.

3.2 The Contribution of Arms to Human Gait

Termination

Balance is a more pressing concern in bipeds over quadrupeds, as their inher-
ent stability is reduced by a smaller base of support, and a longer moment
arm between the COP and COM due to a higher COM position. For this
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reason, it might make more sense to consider bipedal gait termination as be-
ing closely-aligned to fall avoidance. If a surface has a high enough coefficient
of friction for the foot to sick while the body’s center of mass keeps traveling
forward, the maneuver strongly resembles tripping, but a sliding foot is also
hazardous.

Humans have been observed to employ vigorous arm movement to recover
after an unexpected slip or stumble during locomotion [85, 86, 87, 88], so we
will now investigate whether they are similarly important to the successful
execution of gait termination.

There are two possible ways that the arms could bring about a larger braking
impulse:

1. Increasing the duration of the braking force by regulating body pitch,
so the model does not have to break contact to avoid toppling.

2. Increasing the magnitude of the braking force by contributing to the
vertical impulse.

The potential of the arms to increase the vertical impulse is supported by
research into the effect of arm motion on jumping performance: the vertical
ground reaction force has been found to be larger in jumps executed with
arm swing, compared to those without [89, 90]. It has been theorized that
this could be because the arm motion exerts a downward force on the rest of
the body, but the more prevalent theory is that the increased vertical force is
primarily a consequence of the stabilized torso position, as this allows the hip
joint to remain better positioned for maximal activation [91, 92, 93].

3.2.1 Method

Model

This study uses a simple planar biped model with nine degrees of freedom.
It has three actuated joints on each side: shoulder, hip and knee. This model
is illustrated in Figure 3.2. The mass (m), length (l), moment of inertia (I)
and distance from the preceding joint to the COM (d) of each rigid segment
are given in Table 3.1, while the joint ranges of motion (ROM), and torque
and power limits, are given in Table 3.2. The model is based on a human,
with the segment parameters derived from [94] and joint torque and power
limits selected to be within the ranges described in [95], [96] and [97]. These
limits are simple upper and lower bounds, unrelated to the state of the joint.
Hard stops are enforced at the joint limits as frictionless contacts.
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Figure 3.2: 9 degree-of-freedom planar biped model

Trajectory Optimization

The transcribed trajectory optimization problem is formulated using the
contact-implicit direct collocation scheme [20] detailed in subsequent chapters
of this dissertation. The key parameters of the problem are as follows:

• Numerical integration: the trajectory is discretized into 100 timesteps
of maximum duration 0.025 seconds using a second-order implicit Runge
Kutta method with collocation points placed according to the roots of
Radau polynomials [20].

• Initial condition: the initial state is sampled from a simulation of
steady-state sprinting with an average velocity of 10 m/s.

• Final condition: the final state must have no forward velocity or torso
pitch, all other velocities less than five percent of their initial values,
and both feet grounded. These conditions are imposed over the last
five timesteps, to ensure a sustainable final position.

• Objective: to minimize the stopping distance, we create a variable
xmax to serve as the objective value, and constrain the horizontal posi-
tion at all timesteps to be less than this value.
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Table 3.1: Segment parameters of biped model

link m1 l [m] I1 d2

torso 0.5040 0.8484 0.0287 0.4183
arm 0.0494 0.7730 0.0020 0.4305
thigh 0.1416 0.4222 0.0027 0.4095
shank 0.0433 0.4340 0.0005 0.4459
ds = 0.5319 of the torso length
1 Inertial parameters are scaled such that the model has unit mass in total.
2 d is stated as a fraction of l.

Table 3.2: Joint limits of biped model

joint ROM [deg.] torque [Nm] power [W]
shoulder −∞ -0.8 -1.5

∞ 1.1 1.5
hip -20 -2.5 -41.1

90 3.7 23.3
knee -90 -3.7 -8.6

0 2.1 15.1

• Initialization: the optimization was repeated from smooth-random
seeds [21] until at least 50 trajectories had been obtained for each com-
bination of configuration and initial condition.

• Solver: the CNLP was written using Pyomo [98], an algebraic model-
ing and optimization library for Python, and solved using the IPOPT
algorithm [99] equipped with the Harwell linear solver, ma97 [100].

Tests

The effect of the arms on stopping distance will be evaluated by comparing
the performance the model with and without arms over three test condi-
tions:

1. midstance-initiated, baseline friction: This is the baseline test.
We selected midstance as the point of initiation, as the body leads both
feet at this point, meaning it is outside the critical region of the gait
cycle where gait termination can be initiated [76] successfully. Both
models will be required to take another step, allowing them to select
a favourable foot position for braking. A dynamic friction coefficient
of µk = 0.6 and static friction coefficient µs = 1.0 were selected as the
baseline friction conditions.
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2. touchdown-initiated, baseline friction: This time, gait termina-
tion is initiated from a point where the foot is ahead of the body (hence,
within the critical region) so gait termination is technically possible,
but as the foot was positioned for steady-state motion, it might not be
placed far enough forward for prolonged braking.

3. midstance-initiated, high friction: The dynamic friction coefficient
is increased to µk = 1.2 and the static friction coefficient to µs = 1.8.
These high coefficients of friction are still within the range measured
for athletic shoes on a variety of common playing surfaces [101]. Higher
friction increases the ratio of the horizontal ground reaction component
to the vertical one. This will tend to pull the ground reaction force
vector further behind he center of mass, increasing the pitching moment
created and destabilizing the body more quickly.

We hypothesize that the addition of arms will allow braking to take place over
a longer duration. If this is so, we would expect the arms to deliver a greater
improvement in cases where the model is less able to regulate its posture
through foot placement alone, namely Test 2, where foot repositioning is not
required prior to braking, and Test 3, where the extremely high coefficient
of friction will tend to induce more forward pitch.

If the arms are able to increase the magnitude of the braking force by exerting
a significant downward force on the body, we would expect them to improve
deceleration performance across all three tests. Effects on the vertical impulse
related to hip posture are excluded from this experiment, however, as they
cannot captured by the simple, pose-independent joint power limit applied
in the model.

3.2.2 Results and Discussion

The stopping distances for each model and condition are shown in Figure
3.3. To facilitate a clearer comparison across conditions with different initial
velocities and friction coefficients, we scale the results according to a metric
we call the box benchmark. This is the distance that an equivalent rigid mass
(the ”box”) would require to stop from the same velocity, subject to the same
coefficient of sliding friction. Because a statically stable model would be able
to perform at least as well as the box does by sliding in a fixed posture,
stopping in a longer distance than the box benchmark indicates that the
model was unable to maintain consistent contact, implying a stability failure.
Stopping in a shorter distance indicates that the model was able to increase
the magnitude of the normal force beyond its weight (through limb motion,
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Figure 3.3: Stopping distance in bipedal gait termination trajectories with
and without the action of arms. The distance is scaled using the box bench-
mark xb, the distance a rigid body of equivalent mass would take to slide to
a standstill from the same initial velocity on the same surface.

for instance) or take advantage of the larger static coefficient of friction by
avoiding slipping.

The performance across the different conditions is consistent with the hypoth-
esis that the arms primarily improve deceleration performance by prolonging
duration of stable braking. The arms improved stopping performance in all
conditions: the small improvement in Test 1 was not significant (P < 0.22),
but significant improvements were noted in Test 2 (P < 3.25e−28) and Test
3 (P < 5.08e−6). In Tests 1 and 3, the model must change its foot position
to brake, and therefore, it is able to choose a placement far ahead of the
body that minimizes the offset between the ground reaction force vector and
center of mass. With moderate friction, foot placement alone is sufficient to
avoid toppling, but the failure of most armless trajectories to surpass the box
benchmark in the high friction test suggests that it reaches a limit as friction
is increased, allowing the stabilizing action of the arms to make a positive
difference.

The most interesting case is when the maneuver is initiated with the foot
already placed ahead of the body. Figure 3.4 compares the motion in repre-
sentative trajectories from the touchdown-initiated dataset. The foot is not
placed far enough ahead to sustain braking without toppling, so the armless
model is eventually forced to take another step, which increases its stopping
distance. When the arms are available, it can pinwheel them forwards to
exert rearward torque on the body, opposing the forward moment produced
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Figure 3.4: Comparison between representative trajectories in the
touchdown-initiated test. The model with the arm retains the same foot
placement by pinwheeling the arms forward to counteract toppling, while
the model without arms must take a second step.

by the braking forces and allowing the foot to remain on the ground.

In almost all trajectories, the arms converged to this pinwheeling motion,
spinning forwards 180 degrees out of phase. In this idealized, perfectly sym-
metrical model, this exactly mimics a reaction wheel, which indicates that
they function predominantly by applying torque to the torso, rather than
by redirecting the centre of mass rearwards, or creating translational forces.
The behaviour of the arms and torso resembles a reaction wheel pendulum
[102]: the spinning arms act as a sink for angular momentum, keeping the
body from toppling.

Limitations

The feet play a vital role in stabilizing and redirecting the kinetic energy of
the body during gait termination [75], so the use of point feet in this study
is a notable limitation.

Due to the nature of direct trajectory optimization, the model is able to
place its feet through perfect calculation of ground reaction force angle and
center of mass position predicted over the full time interval. Foot placement
would be far less accurate in a real human, and therefore, this mechanism
of pitch control would be less effective. It is possible that the arm model
would show a greater improvement in the baseline and high friction cases if
some uncertainty (for instance, in the value of the friction coefficient) was
incorporated into the test.

Finally, these tests should also be repeated using a spatial model, as the
planar case drastically limits the possible ways that the body could be desta-
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bilized, and ways that the arms could redirect momentum to prevent falling.
Typical arm motions during gait termination have not been described, but
a study by [74] on the termination of walking on slippery surfaces indicated
that the arms primarily functioned to redirect the motion of the body lat-
erally, preventing it from falling forwards. In trip recovery, the arms were
also often moved laterally to increase the moment of inertia in the frontal
and transverse planes [87] with the largest effect of arm-swinging occurring
in the transverse plane [85]. Based on these studies, we would not expect
the forward pinwheeling motion occurring in these tests to be observed in
real-life examples of bipedal gait termination.

3.2.3 Conclusion

These results illustrate that pitch stabilization through arm swinging allows
the model to maintain braking contact in an otherwise-unsustainable posi-
tion, thereby improving gait termination performance.

3.3 Iterative Optimization of Quadrupedal

Gait Termination

The defining feature of the approach we demonstrate in this chapter is the
repetition of each trial from randomized initial seeds. Beyond combating
the problem of locally minimal solutions, we believe this could be a valuable
method of generating informative data. By contrasting the better solutions
against the worse ones, we aim to infer which characteristics of the motion
lead to better performance. With enough trajectories available, each one can
be reduced to a single datapoint and used to establish a relationship between
some feature-of-interest and solution quality. In this study, we attempt to
maximize the potential for meaningful comparison of results through an it-
erative optimization approach that produces families of increasingly effective
solutions.

The test case we select is rapid gait termination from high-speed galloping in
quadrupeds. Using both a whole-body quadrupedal model and a simplified
monoped, we generate a dataset of over 3000 stopping motions and use it to
investigate the general features of a successful braking strategy.
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Figure 3.5: Planar quadruped (A) and half-quadruped (B) models.
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3.3.1 Method

Models

The models used in this paper are shown in Figure 3.5. The primary model
(Figure 3.5A) is an 11-DOF planar quadruped. Each leg is actuated by two
revolute joints, with the directions of the second joints corresponding to an
’X’ configuration. The angles of all segments are referenced counter-clockwise
from the global vertical axis [23]. The leg segments are of equal length, and
the fully-extended leg is the same length as the body link, lb. The mass of
the body and leg links are 0.6m and 0.05m, respectively, where m is the total
mass of the model. All links have the COM in the middle, except the body
link, where it is situated 0.4lb from the shoulder joint.

The force and power limits for the models were selected to be the minimal
values necessary for each model to move at the desired average velocity of
30 body lengths per second - equivalent to the speed of a greyhound [103].
These values were identified through the generation of force-optimal and
power-optimal trajectories for two tasks: a symmetrical gait cycle at that
speed (constrained to match the characteristics of a rotatory gallop for the
quad) and acceleration from rest to that speed. The maximum normal force
acting on the feet was constrained to three body weights, the peak value
observed in galloping animals [103].

Trajectory Optimization

The trajectory optimization problem was transcribed using the same scheme
as in the previous study, with the following parameters:

• Numerical integration: each trajectory was discretized intoN = 100
finite elements, consisting of three collocation points placed according
to the roots of a Radau polynomial. The duration of the timestep was
allowed to vary within 20% of a master timestep, hm.

• Initial condition: the initial condition was sampled from a galloping
gait cycle generated using the same quadrupedal model. In a previous
study conducted using a simplified quadrupedal model [11], we deter-
mined that the critical region for initiating gait termination from a ro-
tatory gallop falls between hind stance and foreleg touchdown, whereas
initiating the maneuver from contracted positions requires more correc-
tive motion. The effects of initiation point on performance are illus-
trated in Figure 3.6. Based on this result, we selected the apex of
the extended flight phase as the initial state. Likewise, the apex of

39



Figure 3.6: Stopping distances on surfaces with different coefficients of fric-
tion (µk) for termination motions initiated from various points in the gallop-
ing gait cycle. The results are normalized using the box benchmark xb. A
wider bar indicates that distances near that value occurred more frequently
in the dataset. Adapted from [11]

.

the flight phase was sampled from a hopping trajectory as the starting
point for the monopod.

• Final condition: For the final condition, we considered the gait to be
terminated when the body was no longer moving forward, i.e. when
the velocity of the body link, ẋb, had been reduced to zero (or less) and
all feet were grounded. We did not want the final stabilizing motions
to affect the results, so in our analysis, we cropped the trajectories to
the point that ẋb first reaches zero. The stopping time and distance
metrics used throughout the paper therefore refer to the change in time
and COM x position from the initial state until this moment.

• Contact model: a complementarity-based implicit contact scheme
[20, 12] was used to model ground interactions and hard stops at the
ROM limits of the joints. A velocity-dependent friction model was
used to incorporate a larger static coefficient of friction [24]. Both
coefficients were very high: µk = 1.2 for kinetic friction and µs = 2.4
for static friction.

• Objective: rather than minimizing the stopping distance by setting
the upper bound on x as the objective, as in the previous case study, we
decreased it through the iterative process described subsequently. The
only objective in each individual run of the optimization problem was
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minimizing penalties associated with the complementarity constraints
in the contact model.

• Initialization: each iterative optimization was initialized from a smooth-
random initial trajectory [21].

• Solver: the same software and algorithm were used to formulate and
solve the problem as in the previous example (3.2.1).

Iterative Minimization of Stopping Distance

We decreased the stopping time and distance iteratively with the goal of
producing gradually evolving, incrementally improving motions supporting
comparative analysis. There are also technical reasons why this technique
could possibly lead to superior solutions, compared to the previous option of
minimizing the distance directly as the problem’s objective.

Stopping distance is a challenging objective to minimize as it is closely linked
to time. Although we do use a variable timestep, the aim is allowing the con-
tact state to change with greater flexibility, not facilitating wide variation in
the total simulation time. Letting the timestep vary by orders of magnitude
would lead to a poorly-conditioned problem. There is nothing to prevent the
model from stopping in much less than the available time, but setting an
intentionally over-generous value is not a desirable option, as it effectively
reduces the resolution of the solution by decreasing the number of nodes used
for the maneuver. The problem gets more difficult to solve as the time is
decreased, however, as this restricts the solution space to trajectories close
to the theoretical global time-optimum. These solutions may be difficult to
find from a random initial seed that is far from feasible. ”Warm starting”
the process from a feasible solution is likely to improve solver performance,
even if that feasible solution is not an especially good one.

We squeeze time and distance in an outer loop until a feasible solution can
no longer be found:

1. The solver is initialized with a two-step process: first, a procedurally-
generated smooth-random silly walk [21] is given as a guess to solve a
simplified version of the problem, where two of the collocation points
are deactivated and first-order integration is used. This solution then
initializes the first attempt to solve the full-scale problem.

2. For the first iteration, the simulation time is assigned a random value.
If it converges, the master timestep hm for the next attempt is decreased

41



by 10 percent, and an upper bound is placed on x, restricting it to 0.98
of the previous stopping distance.

3. The previous solution becomes the guess for the next iteration, and the
process is repeated until the problem fails to converge, or the comple-
mentarity penalties can no longer be minimized to acceptable values.

The flow diagram in Figure 3.7 illustrates this procedure. The only objective
applied in each solving iteration is minimizing the complementarity penal-
ties, so in terms of the stopping distance problem, each solution should be
regarded as feasible result, rather than even a local minumum, but the overall
effect of the itertively-decreasing upper bound on x is to minimize distance.
Anecdotally, we did find that the final distances were comparable to those
achieved when a distance-minimizing cost function was used in conjunction
with total simulation times similar to those of the ultimate solutions, but the
iterative process was much less failure-prone.

3.3.2 Results and Discussion

As an overview of the solutions we obtained, the stopping times and dis-
tances for both models are plotted in Figure 3.8. To facilitate a clearer
comparison between the two models, we again normalized their performance
by comparing it to the box benchmarks: the time Tb and distance xb.

Static stability is one aspect of the quadrupedal configuration that monope-
dal templates cannot capture. Due to this limitation, the monopod was
unable to beat the box’s distance, while the worst quadruped solutions at
least matched it. The limitations of the template are also clear in the rel-
atively small improvement from its worst results to its best, compared to
the much wider range of performance for the model with more degrees of
freedom.

Because the monopod must lift and re-position its leg to maintain balance,
it cannot apply a consistent braking force throughout the maneuver. This is
shown in the upper half of Figure 3.9, which plots the portion of the total
time that was spent actively braking. While the monopod was forced to
spend, at minimum, around 10 percent of its time in the air, it was possible
for the quadruped to maintain contact for the full duration. This does not,
however, mean that doing so is necessarily favorable, as prolonged braking
does not appear to lead better results for either model. As might be expected,
the solutions that do maintain complete contact tend to fall close to the
box benchmark. Of course, it is not desirable to spend the majority of the
time in flight, either, so the solutions at the extremes - spending either the
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Figure 3.7: Flow diagram illustrating the iterative trajectory optimization
procedure used to generate a family of incrementally-improving solutions
from a random seed.
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Figure 3.8: Stopping distance and time for quadrupedal and monopedal
models vs. an equivalent mass sliding on a surface with the same friction
coefficient.
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Figure 3.9: Percentage of the stopping time spent braking (top) and time-
averaged magnitude of the total braking force applied to each model (bot-
tom). Maintaining contact throughout the maneuver does not necessarily
decrease the stopping distance, but increasing the braking force does.
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most or the least time in the air - tend to fall on the less-successful half of
the stopping distance spread.In combination with the results shown in the
lower part of Figure 3.9, which plots the time-averaged magnitude of the
decelerating forces, it is clear that braking harder is a more effective strategy
than braking longer.

The concern with this strategy is that the application of larger braking forces
could come with the drawback of decreased stability. We used the centroidal
angular momentum (CAM)[82], plotted in Figure 3.10[82, 104], as a metric
for the dynamic stability of the model. A large value in either direction is un-
desirable, with forward rotation being the most critical, as this would indicate
the forward toppling that these rearward-directed forces tend to induce. We
see that the model was able to stop in a shorter distance without increasing
the peak CAM beyond that experienced during less-effective motions, and
even the most rapid trajectories still maintained a mean CAM around zero.
(They did, however, tend to lead to larger peak values for rearward rotation,
for a reason that will be discussed later in this section.)

These results lead to two follow-up questions:

1. How are larger braking forces generated in the superior solutions?

2. How is the model able to maintain stability under the effect of those
forces?

There was no single variable that correlated directly with the average brak-
ing force or with the forward CAM, but we can identify some contributing
factors:

Actuator force

Figure 3.12 shows the mean actuator force and power exerted by the mono-
pod’s prismatic leg for the time window in which the largest deceleration
occurred. As would be expected, pushing harder into the ground is an ef-
fective way to generate larger braking forces. The results for the quadruped
support this, but they do not make for a compelling plot, as both joints hit
their torque limits even for trajectories showing only modest improvements
over the box distance. So how are the solutions that do significantly better
able to exert more force once their actuators have saturated?

Hind leg swing

An advantage of the iterative way we generated the trajectories is that it
allows for the identification of specific features that emerge incrementally in
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Figure 3.10: Centroidal angular momentum of the quadruped. The forward
maximum is of particular interest as this represents the dangerous toppling
that large, rearward ground reaction forces could cause.
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Figure 3.11: Examples of the hind leg swing motion that emerged in many of
the solution families during maximal acceleration, and its effects on centroidal
angular momentum (CAM) and the angular velocity of the body.

Figure 3.12: Mean force and power in the monopod’s prismatic joint during
maximal acceleration. (The quadruped is excluded as both its joints reached
their torque and power limits for nearly all the trajectories.)
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Figure 3.13: Peak side-averaged hip velocity during maximal braking for
the quadruped. Better-performing trajectories tended to exhibit higher hip
velocities, suggesting the forward-swinging action of the hind legs illustrated
in Figure 3.11.

the gait waveforms as the performance improves. A feature that developed
in many of the solution families was a rapid forward swing of one or both
hind legs occurring at the same time as a sudden, steep deceleration. Often,
the instantaneous braking force at this moment was the largest achieved in
the trajectory. Representative examples of the leg swing are illustrated in
Figure 3.11 for three families.

Plotting the peak hip velocity in a window around the largest instantaneous
deceleration value (Figure 3.13) suggests that this feature is widespread in
the data, and correlated with improved stopping distance.

As with the role of the arms in bipedal deceleration, the leg swing potentially
performs two functions: firstly, it is responsible for the large braking force, as
the opposing reaction of the front half of the body acts to push the forelimbs
down, increasing the normal force and, consequently, the friction. If the feet
slam into the ground at the end of the swing, this further contributes to the
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Figure 3.14: Percentage of the total braking force exerted in static contact
mode.

decelerating force. Secondly, it counteracts the external pitching moment
caused by this force to the extent that the centroidal angular momentum
is directed rearward during the swinging motion - hence, the tendency for
the peak CAM to be larger for the better-performing solutions. Although
the plots of the body’s angular velocity show that it does experience some
forward pitching due to the opposing torque at the hip, it can immediately
be corrected following the swing by the now-grounded hind legs.

When the limb loading is considered (Figure 3.15), it seems that the hind
legs are more useful in this ballast role than as brakes: predictably, the
majority of the braking force was exerted by the forelegs, though the model
did tend to spend similar amounts of time in double stance (with both a
hind- and a foreleg on the ground) and front stance. The model is even able
to stop using foreleg braking exclusively, but the solutions which did this
were not especially successful. This potentially advocates for the addition of
a dedicated ballast limb, such as a tail [69].
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Figure 3.15: Percentage of the total braking force exerted by the fore-
limbs (left) and time spent in different stance configurations (right) for the
quadruped.
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3.3.3 Sliding

Another way that the braking force could be increased was through increased
use of static braking. This is shown in Figure 3.14, which plots the portion of
the total applied braking force that was exerted while the foot was stationary.
Despite this trend, and the high coefficients of friction we selected for these
experiments, all but a few solutions slid more than they stuck. This indicates
that sliding should be incorporated into an effective high-speed stopping
strategy, as it is either advantageous to some extent or nearly impossible to
avoid.

As in the bipedal case, foot placement appears to be the primary method
of preventing pitching during deceleration. With the exception of some of
the low-quality quadruped motions, the COM angle converges around the
angle of friction, indicating that these trajectories tended to adhere to the
ZRAM criterion [83] by keeping the COM in line with the ground reaction
force vector. They also avoided large differences between the velocities of the
COM and COP, with these discrepancies typically falling within 10 percent
of the COM velocity’s magnitude. These quantities are plotted in Figure
3.16.

3.3.4 Conclusions

We were able to extract the following lessons in rapid gait termination from
a dataset of suboptimal solutions:

• Maximizing the magnitude of braking forces is more effective than max-
imizing the stride-relative duration of contact.

• Once the forelegs are pushing into the ground at the maximum capacity
of their actuators, the normal force can be increased by rapidly swing-
ing the hindlegs forward. The forelegs perform most of the braking
function, so a control scheme could conceivably prioritize keeping the
hindlegs free to use as a ballast.

• More friction can be generated if the feet stick rather than slide, and
though this should be taken advantage of, sliding might be impossible
to avoid altogether. To maintain dynamic stability during slipping,
the body should be positioned so the COM angle matches the angle of
friction, and the relative velocity between the feet and COM should be
minimized.

The swinging motion of the hind legs and tendency of the model to adhere to
the ZRAM condition while decelerating match observations from the bipedal
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Figure 3.16: Median angle of the COM vector, relative to the ground, com-
pared to the angle of friction (top), and median velocity of the COM relative
to the COP (bottom). The relative velocities are scaled to the COM velocity:
for each point in the trajectory, the difference between the COM x velocity
and COP x velocity was divided by the COM x velocity, and the median of
these values was plotted.
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case, namely that free limbs make an important contribution to rapid perfor-
mance, and that dynamic stability should primarily be maintained through
foot placement.

A major limitation of this study is that these results have not been trans-
ferred to control strategies that can be tested experimentally, so we cannot
confirm that their practical usefulness. The primary goal of the study was to
determine whether a large set of incrementally-improving solutions produced
by trajectory optimization would yield identifiable trends, and we assess it
to be a successful proof-of-concept. We expect that this approach could also
integrate well with learning-based methods of motion planning, as it offers
a way to synthesize large datasets with easily-quantifiable quality variation.
The use of trajectory optimization to assist in training complex policies has
been demonstrated by Levine et al. [105] for motions including walking, while
the work of Hwangbo et al. [15] and Lee et al. [16] on the ANYmal robot
shows the potential for challenging locomotion tasks to be learned primarily
through simulation.

3.4 Conclusions

This chapter used two case studies to show that repeated, randomized tra-
jectory optimization is an effective process for synthesizing informative data
regarding a maneuver that would be difficult and dangerous to study ex-
perimentally. While the results in this chapter are promising, they are also
preliminary, and there is still much room to refine this approach further in
future work. We reflect on these limitations and possibilities in the conclud-
ing chapter. The next stage of the project will design a transcribed prob-
lem formulation to implement this approach effectively using an established,
open-source solver.
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Chapter 4

Trajectory Optimization
Methods: A Taxonomy

The first stage of this project defined how we intend to apply trajectory op-
timization to the study of legged maneuverability. The approach we selected
hinges on the generation of large datasets of solutions, so it is imperative
that the formulation of the trajectory optimization problem facilitates fast,
reliable solving. The design of the problem formulation is the topic covered
by the remainder of this dissertation.

In this chapter, we lay the groundwork for the technical chapters that fol-
low by giving a brief overview of the trajectory optimization problem, and
possible approaches to formulating each of its key components.

A 2018 review of trajectory optimization as applied to the field of space-
craft control by Shirazi et al. [17] proposes decomposing problems into four
components to aid in comparison:

1. Model

2. Approach

3. Objective

4. Solution

We will use these categories to structure this overview and highlight the
primary areas that our problem design work will focus on.
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4.1 Model

The first step in composing a trajectory optimization problem is modelling
the essential dynamics of the system under consideration. For a legged loco-
motion problem, this model will have three main components:

1. the dynamic model

2. the contact model

3. the actuator model

4.1.1 Dynamic Model

Generally, a continuous dynamic system can be modelled using an ordinary
differential equation (ODE) of the form

ẋ = f (x,u) (4.1)

where x is the vector of state variables, ẋ contains their time derivatives,
and u is the input vector. This set of ODEs is referred to as the equations
of motion (EOM) of the system.

The robots and animals we are concerned with are typically modelled as
tree-like systems of interlinked rigid bodies. In legged locomotion problems,
this will be a floating base model, where the base body is free to translate
in the world frame. The position of such a system can be thought of as a
combination of the position of the floating base in the world frame, and the
pose – the position of the other bodies with respect to the floating base.
The coordinates describing the position (q) and their velocities (q̇) make up
the state vector. The velocities are also included in the derivative vector,
together with the accelerations (q̈).

Many different coordinate systems can be used to describe the same model
[106], with the choice affecting the size and sparsity of the problem [23,
107]. Recent work [108] suggests that the structure of the EOM also affects
performance: when the equations were defined using the inverse dynamics
formulation rather than the forward one (that is, when the ODE were written
with the actuator torques as their output rather than the state derivatives)
the solver was observed to process the problem more effectively.

The input vector is often referred to as the control vector, as it contains the
variables that control the dynamics of the system. For a legged locomotion
problem, these will usually be forces actuating the joints between bodies.
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Assuming no external forces act on the system, the only other forces present
are the constraint forces (λ). These are necessary to restrict the motion
of the system in certain contact states, or when the number of coordinates
exceeds the number of independent degrees of freedom (DOFs). The use of
non-minimal coordinate systems, and closed kinematic chains (chains of rigid
bodies which intersect at more than one point, forming loops) are common
cases where the system would have more coordinates than DOFs. Mathemat-
ically, λ can be regarded as a vector of Lagrange multipliers related to these
motion constraints, rather than explicitly-defined forces, but conceptualizing
them as forces better supports the intuitive manipulator form of the EOM
[106]:

M(q)q̈ + C(q, q̇)q̇ + G(q) = Ja(q)u + Jc(q)λ (4.2)

Here, M, C and G respectively represent the inertial, Coriolis and gravita-
tional matrices, while and Ja and Jc are the Jacobians mapping the control
and constraint forces to the system coordinates.

As noted in Chapter 2, the complexity of the models used varies widely
depending on the application. Minimum-complexity template models [5]
represent the fundamental dynamics of the motion using the fewest DOFs
possible, providing generalized insights extending across gaits and morpholo-
gies. Whole-body models might be based on specific systems, or normalized
to represent a broad category of systems with the same basic configura-
tion.

Models may also be simplified to improve solver performance. Approximat-
ing the dynamics as quasistatic (velocity-independent) removes the coriolis
terms, which are computationally cumbersome for articulated systems with
many rigid bodies connected in series. C-FROST [109] is an example of a tra-
jectory optimization package designed with legged locomotion in mind that
uses quasistatic dynamic models. This is not a feasible option for studying
high-speed maneuverability, however, as the velocity-dependent components
are significant for fast, dynamic locomotion.

Another option is to consider only the dynamics of the centroid. Some no-
table examples of this extensively-used approach include the following:

• Dai et al. [104] perform whole-body trajectory optimization using cen-
troidal dynamics combined with a full kinematic model, so concerns
such as obstacle avoidance and reachability can be addressed.

• Herzog et al. [110] use centroidal trajectory optimization to determine
linear and angular momentum trajectories, which can then be tracked
by a robot using a hierarchical whole-body optimal control approach.
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• Kudruss et al. [111] used the humanoid robot HRP-2 to demonstrate
that an optimized centroidal trajectory could be tracked to successfully
climb stairs while grasping a handrail.

• Ponton et al. [112] proposed a convex relaxation of the centroidal
dynamics that can be solved fast enough to be applicable in real time.

• Li et al. [113] model the ground reaction force and leg swing trajec-
tories using bezier polynomials, which allows the centroidal dynamics
to be calculated analytically rather than through numerical integration
constraints.

• Mordatch et al. [114] employ a similar form of dynamic simplification
to the centroidal model, where the model is assumed to have all its
mass concentrated in the base body.

Centroidal models are not sufficient for all applications, but they can also
contribute to the solution of less-tractable whole-body problems. Budhiraja
et al. [115] used the Alternating Direction Method of Multipliers (ADMM) to
establish consensus between the centroidal and whole-body dynamics, provid-
ing a mathematical framework for separating these into a bilevel optimization
problem for more effective solving. Their proposed method was used to gen-
erate walking trajectories for the humanoid robot HRP-2, and later expanded
upon by Zhou and Zhao [116]. Zhou et al. [117] subsequently adapted this
approach into an alternating framework aimed specifically at agile legged lo-
comotion, which switches between the centroidal and whole-body problems
until dynamic consensus is achieved. This alternating approach can also be
observed in earlier work by Herzog et al. [118] and Ponton et al. [119], but
these frameworks do not have a true whole-body dynamics stage as they only
consider the full kinematic model.

4.1.2 Contact Model

Contact between the feet and ground is an essential feature of legged loco-
motion that must be incorporated into the trajectory optimization problem.
The difficulty is that it introduces discontinuities in the the allowable direc-
tions of motion corresponding to unilateral inequality constraints. In forward
time-stepping simulation, such constraints could be implemented using con-
ditional statements, but this is not possible when the forward and reverse
kinematics must be solved simultaneously.

If it is possible to plan the contact sequence upfront, a viable approach is
to treat these constraints as bilateral on the timesteps where they are desig-
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nated to be active, creating a hybrid dynamic model. The hybrid dynamics
approach has been shown to be highly effective for generating periodic lo-
comotion: examples of its successful use include the synthesis of humanlike
running and walking gaits by Schultz and Mombaur [2] and Felis and Mom-
baur [120] respectively, the framework for optimizing bipedal robotic gaits
developed by Hereid et al. [121, 122, 123] and the efficient MATLAB gait
creation framework developed by Remy et al. [37]. Predetermined contact
sequences can also be taken advantage of to simplify the dynamics for more
efficient computation, as in work by Pardo et al. [124, 125], where more
compact EOM are obtained by projecting the rigid body dynamics onto the
null space of the contact constraint Jacobian for each state.

Hybrid dynamics is not a practical option for our intended application. Tran-
sient maneuvers do not necessarily follow the well-defined footfall sequences
of constant-speed gait, so we need a method that can discover an appropri-
ate contact pattern. The phase-based parameterization of contact variables
proposed by Winkler et al. [126] modifies the hybrid dynamics approach
to make varied contact sequences possible, by letting the solver choose the
duration of each foot’s stance and flight phases. It still requires the number
of steps to be specified upfront, however. Fully unspecified contact methods
come in two classes:

1. Explicit contact methods define the ground reaction forces as a func-
tion of the state variables.

2. Implicit contact methods impose constraints preventing interpenetra-
tion between bodies and defining a friction cone, and evaluate the
ground reaction forces as necessary to uphold them.

Xi et al. [48] made a case for unscheduled contact planning even in studies
of constant-speed locomotion. In their study into efficient quadrupedal gait,
they found that the results they obtained through an implicit contact method
contradicted past results achieved with set footfall sequences, remarking
”This inconsistency of gait choice found in the various quadrupedal mod-
els emphasizes the importance of using an optimization approach in which
the contact sequence is not pre-determined [48].”

Explicit contact methods require two components: an activation function to
determine the mode of each contact in a given instant, and a reaction force
function to calculate the forces based on the state and mode. An example of
this is the optimization of aperiodic sprinting conducted by Celik and Piazza
[7], which used a smooth approximation of the Heaviside step based on the
hyperbolic tangent function to activate contacts, combined with a compliant
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ground model proposed by Marhefka and Orin [127] to calculate the reaction
forces based on interpenetration between the foot and ground. There are two
drawbacks to the smooth approximation, or soft contact method:

1. Intractability: adding a smooth contact model requires the introduc-
tion of many challenging, nonlinear constraints to the problem. The
derivatives of the smooth approximation functions become infinitely
large as they approaches the true, discontinuous model of rigid-body
collisions, so the models become more poorly-conditioned as they be-
come more accurate. Computational intractability is therefore a major
concern in sensitive applications.

2. Sensitivity: the level of relaxation is user-selected, and may require
time-consuming tuning to adjust it to a specific problem.

A possible method of dealing with these issues was proposed by Onol et
al. [128] for grasping problems. They use an iterative process to adjust the
relaxation of the contacts, and additionally use information gleaned from the
relaxation variables to improve the solution.

Contact-implicit optimization (CIO) methods define the reaction forces as
decision variables in the problem, and solve for them such that a set of
complementarity constraints defining a hard collision model is satisfied. A
complementarity constraint essentially creates an ’exclusive OR’ relationship
between two positive variables, A and B, by forcing their product to be
zero:

AB = 0 A ≥ 0 B ≥ 0 (4.3)

To prevent interpenetration, for instance, a complementarity relationship
would be defined between the contact distance and normal reaction.

Stewart and Trinkle [129] devised a time-stepping simulation scheme for rigid-
body dynamics that implicitly calculated reaction forces to satisfy comple-
mentarity constraints describing contact with Coulomb friction. Mordatch et
al. [130, 114, 131] subsequently adapted this scheme for CIO of articulated
models with simplified dynamics, allowing the discovery of contact patterns
for complex, contact-rich behaviours such as legged locomotion, sit-to-stand
transitions, object manipulation and obstacle navigation. Posa et al. [12]
adapted it specifically for motion planning in legged robots, preserving the
full system dynamics.

In theory, complementarity-based models are true to the discontinuous nature
of rigid-body collisions, but in practise, they can be challenging to solve
without some relaxation. The zero product constraint is especially difficult
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for interior point algorithms such as IPOPT [99], as it has no interior. An
interior can be created by setting the product to be less than some small
positive penalty value, ε:

AB ≤ ε (4.4)

The penalty can be compressed over multiple solve attempts, or included
as an additional term in the cost function and minimized [132]. A similar
penalty method is demonstrated in a trajectory optimization scheme pro-
posed by Neunert et al. [133], where the relaxed complementarity constraints
are used to implement a scheduled contact sequence.

A related problem with CIO is that the solver might not explore the solution
space effectively due to the presence of these difficult constraints. This was
observed in the aforementioned study by Xi et al. [48]: when seeded with
a four-beat gait, the solver was unable to detect two-beat solutions, and
likewise, two-beat seeds always produced two-beat gaits. Initializing the
problem from diverse points is therefore essential to realizing the apparent
motion discovery benefit of these methods.

Computational efficiency is the primary challenge in both explicit and im-
plicit approaches to optimization with unscheduled contacts. To improve the
tractability of these methods, there have been several attempts to formulate
contact as a convex problem within the broader nonlinear optimization prob-
lem. Todorov [134] took the approach of minimizing the magnitude of the
contact velocity, subject to smoothed complementarity constraints describing
the friction cone and preventing interpenetration. Erez and Todorov subse-
quently used this method to optimize running in a spatial humanoid model
[135]. This technique is conceptually similar to recent work by Chatziniko-
laidis et al. [136] where a smoothed nonpenetration constraint is combined
with an analytically-solvable friction model devised as smooth approximation
of the Maximum Dissipation Principle [137].

In recent years, this ’problem within a problem’ approach has been made
more explicit in bilevel formulations that separate the contact problem from
the optimal control problem entirely. This allows each component to be
solved independently using routines specialized for the purpose, improving
computation time. Some examples of this include

• Carius et al. [138] use an adaptation of Moreau’s time-stepping scheme
for nonsmooth dynamic systems [139] on the lower level to calculate
the dynamics over each timestep, with the contact dynamics posed as
a minimization problem. The gradients of this problem are obtained
via backpropagation and passed to the upper level – a single-shooting

61



algorithm that determines the input variables.

• Landry et al. [140] solve for the friction forces using quadratic opti-
mization based on the Maximum Dissipation Principle, and obtain the
gradients of this lower level problem analytically. The upper level is a
direct collocation problem that calculates the system dynamics, inputs
and normal contact forces.

• Zhu et al. [141] also use direct collocation on the upper level, but
quadratic optimization problem on the lower level incorporates the full
system dynamics, and a learned model of granular surface contact.

• Howell et al. [142] use the same single-shooting method as Carius et
al. [138] do on the upper level, and a path-following algorithm on the
lower level to efficiently calculate the dynamics.

4.1.3 Actuator Model

Realistic actuators – be they muscles or motors – have peak force and power
limits that are dependent on the state of the joint they actuate. The com-
plexity of actuator models in the legged locomotion literature varies widely,
as illustrated by two examples simulating human gait: Schultz and Mom-
baur’s work on optimal control of humanlike running [2] simply uses ideal
torque actuators with fixed upper and lower bounds, while predictive simu-
lation [10] frameworks, such as OpenSim Moco [61], employ highly detailed
musculoskeletal models. Power-limited actuators are also common, with the
dimensionless power ratio used by Haberland et al. [42] being an example of
how such a constraint can be applied in a scale-independent manner.

Joints are frequently modelled with passive actuation components. This is
particularly important in studies concerning energy-efficient locomotion, such
as the work of Xi et al. [47, 48]. A collision model can also be incorporated
to add hard stops at the range of motion (ROM) limits, so these bounds
do not have to be enforced by the actuator forces. This can only be feasibly
implemented through an unscheduled contact scheme – the method suggested
by Posa et al. [12], for instance – as it would not be viable to plan these
collisions preemptively.

62



4.1.4 Approach

The general trajectory optimization problem is a constrained boundary value
problem of the form:

minX J (X) (4.5a)

s.t. x(0) = x0 (4.5b)

x(T ) = xT (4.5c)

geq (X) = 0 (4.5d)

g (X) ≥ 0 (4.5e)

where x0 and xT are the initial and final conditions, and geq and g are
the equality and inequality constraints describing the model, environment,
task and variable bounds. The approach refers to the way this problem is
formulated into a solvable format.

The systems we consider are not simple enough to yield an analytical solu-
tion, so numerical simulation is an inextricable component of the approach.
Approaches to the discretization of the trajectory optimizaion problem are
classified as either direct or indirect :

• Direct methods discretize the state and control trajectories into time-
series of variables, and then seek the feasible combination of variables
resulting in the lowest value of the cost function.

• Indirect methods construct the necessary conditions for a solution
to be considered optimal, and then discretize these conditions. This
results in a problem involving both variables describing the trajectory,
and additional costate variables – essentially Lagrange multipliers of
the problem’s constraints.

In his introductory tutorial on trajectory optimization, Kelly [143] summa-
rizes the difference between direct and indirect methods as follows: ”a direct
method discretizes and then optimizes, while an indirect method optimizes
and then discretizes.” A more detailed description of the two categories is
given by Betts [144].

Indirect methods can be difficult to apply, as analytical expressions for the
optimality conditions are often hard to derive and compute [144]. They
are also difficult to initialize and solve, as suitable initial conditions for the
costate variables are seldom known [144], so they tend to converge less reli-
ably than direct problems [143]. For this reason, we will focus our attention
on direct trajectory optimization.
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Direct trajectory optimization methods come in two common varieties:

• Shooting methods simulate the problem forwards from the initial con-
ditions for a given input. This is repeated until an input is found that
produces a feasible trajectory satisfying some metric for optimality. In
single shooting, the whole trajectory is simulated over a single time
interval. This is a viable approach for simple systems, and it has been
applied to the optimization of space flight [17], but the relationship
between the input and result quickly becomes intractable as the com-
plexity of the problem increases [143]. A more feasible option for legged
locomotion problems is multiple shooting, where the trajectory is sim-
ulated in shorter time intervals linked by defect constraints ensuring
continuity of the state variables.

• Collocation methods extend the concept of multiple shooting to its
logical extreme by shrinking the simulation interval to the timestep of
the discretized trajectory. The defect constraints relating the current
state to the previous one now also perform the numerical simulation of
the trajectory, leading to a single simultaneous process rather than a
process of alternating simulation and evaluation stages. The complete
optimization problem is thus transcribed to a constrained nonlinear
programming problem (CNLP), with the model, task and numerical
integration specified by the constraints.

Both multiple shooting and collocation methods have been extensively ap-
plied to legged locomotion problems. A strong argument can be made for
either method, but our interest is in trajectory optimization via collocation,
as the wide availability of generalized CNLP solvers and introductory tutori-
als [145, 143] make this likely the most intuitive method for new users.

Collocation methods can be categorized further, depending on the specifics
of the numerical integration method selected. The direct collocation tutorial
by Kelly [143] provides a helpful introduction to many of the widely-applied
methods. Collocation methods will be discussed more extensively in the
following chapter, so we will restrict this section to a brief outline of the
properties we consider.

Methods used in trajectory optimization are typically implicit, meaning that
the next state is calculated as a function of both the current and future state
[143]. The alternative is explicit integration, where the next state is only a
function of the current state. Implicit methods have favourable numerical
properties that typically support more efficient solving [146]. In most cases,
the discretization is applied at the level of the state variables in the form of
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a Runge-Kutta rule, but it is also possible to incorporate the discretization
into the formulation of the dynamics, resulting in a model-specific variational
integrator. A contact-implicit version of this discrete mechanics approach has
been proposed for robotics applications by Manchester et al. [147].

The order of the method refers to the order (or, degree) of the polynomial
that is used to approximate the state trajectory over each time interval. The
accuracy of these methods can be improved by either increasing the number
of intervals used to discretize the trajectory (referred to as an h-type ap-
proach) or by increasing the order of the polynomials (a p-type approach).
Low-order, h-type methods are most common in the legged locomotion lit-
erature, particularly in CIO: descendants of the Stewart and Trinkle [129]
time-stepping scheme, such as the framework by Posa et al. [12], tend to re-
tain the first-order integration method. Although the order of the variational
CIO method proposed by Manchester et al. [147] can theoretically be ex-
tended arbitrarily, its performance has yet to be demonstrated and quantified
for higher-order problems.

4.1.5 Objective

The objective of a trajectory optimization problem functions as a motion
selection principle [29] that lets a single solution emerge out of the space of
feasible possibilities. The value of the objective (or cost) might be determined
by the state variables at the boundaries (the endpoint or Meyer cost, JE)
or accumulated over the complete time interval t ∈ [0, T ] (the running or
Lagrange cost, JR). When combined, these give a general form known as the
Bolza cost function [143, 17]:

J (t,x,u) = JE(0, T,x(0),x(T )) +

∫ T

0

JR(t,x(t),u(t))dt (4.6)

Penalty Terms

It is necessary to differentiate between the objective and the cost function:
the objective sets the high-level priority guiding the choice of motion, but
it may only be one component of the cost. Other components might be
included to regulate the trajectories in some way, as in the optimization
of running by Schultz and Mombaur [2], where torque variation was pe-
nalized to produce smoother motions. Kelly [145] claims that the addition
of regularization terms can also improve solver performance by separating
otherwise-equivalent solutions, even if they are scaled to values many orders
of magnitude lower than the objective to avoid conflict. A cost function is
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therefore still likely to be specified even when the primary goal is synthesiz-
ing feasible motion, as when trajectory optimization was used to generate
jumping motions for the MIT Cheetah 3 robot [1]. Here, the cost penalized
deviation from a reference pose and the squared sum of the joint torques,
guiding the solver away from solutions with noncontributing limb motion
and noisy actuation [1].

Difficult dynamic constraints might also be relaxed using penalties minimized
in the cost function: this is one suggested method for making the comple-
mentarity constraints associated with CIO easier to handle [132]. The CIO
approach by Mordatch et al. [114] takes this even further by relaxing the
model dynamics in this way, too.

Common Objectives

Objectives in legged locomotion problems typically fall under the wide um-
brella of efficiency. Some variations of this theme include:

• Mechanical Cost of Transport: The mechanical cost of transport
(COT) measures the average mechanical work required to travel a unit
of distance, normalized by the weight of the system. This is a widely-
used objective in locomotion optimization studies across both robotics
and biomechanics. Consequently, it is often chosen in studies seeking
generalized insights into legged locomotion, such as the investigation
into the task-optimality of limit cycles by Hubicki et al. [30], or the
study by Fisher et al. [31] on optimal gait transitions.

• Torque Squared: The sum of squared actuator torques is a similarly
widely-used metric of economical locomotion. Although this is often
a component of the mechanical COT function – the aforementioned
studies [30, 31] use it to represent the mechanical work – it should not
necessarily be thought of as a simplification of this objective. Koch et
al. [65] compared walking gaits produced by minimizing torque squared
and mechanical COT (among other objectives), and found that torque
squared tended to produce smoother motion, while mechanical COT
lead to higher speeds.

• Metabolic Cost: For biological systems, additional factors beyond
mechanical work might be taken into account to give a more complete
approximation of the total metabolic cost of locomotion. A comprehen-
sive overview of these objectives is provided by Srinivasan [148], who
compares several variations of the metabolic cost for gait optimization
on a simple bipedal model.
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• Motor Cost: The analogue to the metabolic cost for legged robots is
to explicitly consider the electrical motors driving the motion. This is
particularly prevalent in studies where the purpose of the optimization
is to guide the design of the robot: actuator selection is one goal of
the bilevel optimization scheme used by Fadini et al. [54], and they
account for non-ideal behaviour in the modelled motors by including
losses due to friction and Joule effects in the cost function. Smit-
Anseeuw et al. [57] minimized the electrical cost of transport – that
is, the electrical work done by the motors per unit distance according
to a known torque-speed gradient – in their study comparing energy-
efficient gaits with forward- and backward-facing knees on the bipedal
robot RAMone.

There have also been varied attempts to optimize the robustness of locomo-
tion. This can be done directly by optimizing the stability of properties of
the limit cycle (using the smooth criterion proposed by Diehl et al. [34],
for example) or by minimizing the expected error due to an uncertain pa-
rameter, as in the work by Drnach et al. [3] on locomotion over uncertain
terrain. Alternatively, researchers might attempt to guide the solver towards
stable motion through the use of proxy objectives such as minimal angular
displacement [120], or minimal displacement of the centre of pressure from
some reference [65].

Outside of the case studies from our work discussed in the previous chap-
ter, there are few examples of rapid performance objectives applied in the
literature. Celik and Piazza [7] and Felis et al. [120] find time-optimal mo-
tions using a multiple-shooting approach, but this objective should be im-
plemented carefully in collocation problems. In contact-implicit cases such
as Steenkamp et al. [49], Fisher et al. [59] and Raw et al. [60], where the
sum of variable timesteps is minimized, the variability of the timestep, (and
therefore, the flexibility with which contact modes can change) effectively
decreases with the cost, so the lower bound must be set far enough below
the achievable minimum to retain the benefit of the variable step.

While efficiency and stability objectives have a regulating effect, performance
objectives require the system to be thoroughly constrained to obtain realistic
results. This was observed by Koch et al. [65], who included maximum aver-
age velocity among the options tested in their comparative study of optimal
walking under different objectives. They found that additional bounds on
the foot impact forces would be required to produce implementable results,
as the trajectories generated exceeded the safety limits of the associated
robot.
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4.2 Solution

The advantage of collocation methods is that the CNLP format makes it
possible to exploit prior work on nonlinear programming, which has a vast
range of applications outside the trajectory optimization niche. Many open-
source and commercial algorithms and programming environments have been
developed for this purpose [18], allowing users without extensive knowledge
of nonlinear optimization to implement these techniques.

Besides the choice of solver, there is also the question of the solution pro-
cess. The solver must be initialized with a seed vector, which ideally should
be something close to a favorable solution. Consequently, techniques for
improving the tractability of problems frequently involve warm-starting the
solver from previous attempts, usually increasing the complexity of the model
or tightening the relaxation of problematic constraints with each iteration
[132]. This is especially important in the context of unscheduled contact, as
the additional variables and nonlinear constraints make these problems more
susceptible to getting trapped in local minima [48].

There has been little research into effective methods initializing contact-
implicit problems, but we can identify some possible avenues for explo-
ration:

• Warm-starting from a simplified solution: Marcucci et al. [149]
demonstrate that a simplified initial stage is a promising option, finding
that problems solved more efficiently when warm-started from a sim-
plified version using a quasistatic model, relaxed contact constraints
and a coarser discretization.

• Integration of a fast, high-level contact planner: TrajectoTree
– a motion-planning framework for grasping proposed by Chen et al.
[150] – guides CIO using a tree-search algorithm acting as a high-level
contact sequence planner. It is possible that a fast global footstep
planner, such as the recent scheme proposed by Norby and Johnson
[151], could be adapted to play a similar role in the CIO of legged
locomotion.

• Synthesis of favorable seed trajectories: Mansard et al. [152]
use a neural network trained on previous results of offline trajectory
optimization (a ’Memory of Motion’) to synthesize initial seeds for on-
line predictive control. While this application is very different from
ours, the general idea of initializing the solver using generated motions
resembling successful results could potentially translate to trajectory
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optimization.

4.3 Forward

The collocation approach to trajectory optimization gives the user complete
control over the modeling and simulation of the system, environment and
task. This creates an intimidating amount of room for design decisions, even
if you never go ”under the hood” of the solver. The remainder of this project
aims to illuminate some of these decisions by looking into key aspects of the
problem formulation with our legged maneuverability application in mind.
Based on this overview of trajectory optimization methods, we have identified
the following areas to investigate:

• Collocation: The numerical integration method is the foundation of
the transcribed problem. Selecting one involves two main challenges:
adapting the method for nonsmooth dynamics with unscheduled mode
sequences, and navigating the trade-off between solver performance and
accuracy.

• Coordinate System: The choice of coordinate system used to de-
scribe the dynamic model has seldom been discussed in the trajectory
optimization literature, with minimal, joint-space representations being
nearly ubiquitous in robotics applications [106]. The problem is that
these produce dense, lengthy equations of motion for serial chains of
rigid bodies, as the location of each body must be referenced through all
its predecessors. Referencing coordinates absolutely leads to simpler,
sparser equations, but increases the number of variables and constraints
needed to model the system.

• Implicit Contacts: Contact-implicit schemes have seldom been im-
plemented with high-order numerical integration. There is also room to
expand them model a wider range of contact behaviors, namely partly-
elastic collisions and more sophisticated representations of friction.

• Seed Generation: With repetitive randomized solving being the cor-
nerstone of our approach to studying maneuverability, we require a
method of generating random seeds that allow a diverse range of be-
haviors to be explored, but remain tractable to the solver.
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Chapter 5

Contact-Implicit Orthogonal
Collocation

The selection of the numerical method used to transcribe the trajectory opti-
mization problem is a critical design decision. It forms the foundation around
which all variables and constraints are structured, and determines the spar-
sity of the problem, and the accuracy of the solution with respect to the
equations of motion.

Orthogonal collocation is an especially versatile transcription method, as the
placement of the collocation points, number of finite elements (timesteps) and
order of the approximation can all be varied. In this chapter, we extend the
first-order contact-implicit trajectory optimization scheme devised by Posa
et al. [12] to work with orthogonal collocation of arbitrary order, creating
the novel high-order contact-implicit formulation published in our paper,
Contact-Implicit Trajectory Optimization Using Orthogonal Collocation [20].
We then expand on our work in this paper by investigating the trade-off
between accuracy and performance for three orthogonal collocation methods,
and approximating polynomials of increasing order.

5.1 Orthogonal Collocation

Collocation methods approximate the solution of an ordinary differential
equation (ODE) as a weighted sum of trial or basis functions (typically poly-
nomials). Let xi(t) denote the trajectory of the ith state variable, while x(t)
and u(t) denote the state and input vectors at time t. For an ODE of the
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form
ẋi(t) = fi(t,x(t),u(t)) (5.1)

the approximate derivative ẋi
P consists of P trial functions ψp(t)

ẋi(t) ≈ ẋi
P (t) =

P∑
p=1

apψp(t) (5.2)

The weights ap assigned to each trial function are adjustable parameters
that depend on the specific method being implemented. The approximate
solution xPi (t) is then obtained by integrating ẋi

P (t). This result solves the
ODE exactly (ẋi

P (t) = fi(t,x
P (t),u(t)) at a selected set of collocation points

(t = t1, t2...tP ) in the domain.

The Lagrange interpolating polynomials provide an intuitive set of trial func-
tions. They are generated from the collocation points as follows:

lp(t) =
P∏
j=1
j 6=p

t− tj
tp − tj

(5.3)

The key advantage of these polynomials is that they are orthonormal with
respect to multiplication at the collocation points, so the weights are simply
the calculated values of the derivative at these points:

ẋi
P (t) =

P∑
p=1

fi(t,x
P (tp),u(tp))lp(t) =

P∑
p=1

ẋi
P (tp)lp(t) (5.4)

The approximate derivative will be a (P − 1)th-order polynomial, leading to
a P th-order approximation of xi(t). The approximation of some ẋ(t) using
fourth-order Lagrange polynomials and Legendre-Gauss collocation points is
illustrated in Figure 5.1.

The trajectory of each input variable ui(t) is also effectively modelled as a
(P − 1)th-order spline:

uPi (t) =
P∑
p=1

ui(tp)lp(t) (5.5)

For longer trajectories, greater accuracy can be achieved by linking N polyno-
mial splines into a continuous or piecewise-continuous approximation. These
subdivisions of the trajectory are called finite elements.

Orthogonal collocation refers to methods that place the collocation points
at the roots of orthogonal polynomials, such as the Legendre or Chebychev
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Figure 5.1: Approximation of derivative ẋ(t) using fourth-order Lagrange
polynomials and Legendre-Gauss collocation points.

polynomials. The benefit of using these points is that they support a highly
accurate numerical integration method called Gaussian Quadrature.

Let τp represent the pth root of an orthogonal polynomial defined in terms of
a time variable τ ∈ [−1, 1]. (The roots are also called nodes or abscissas in
this context.) For each root, there is a corresponding scalar weight wp that
allows the definite integral of some function g(t) to be approximated as a
weighted sum of the function values at the nodes:∫ 1

−1
g(τ)dτ ≈

P∑
p=1

wpg(τp) (5.6)

This quadrature rule will be exact for polynomial functions up to some order,
with the most accurate being Gauss-Legendre quadrature. This gives exact
results for polynomials of order 2P−1 or less. Using the transformation

t =
h

2
τ +

h

2
+ t0, (5.7)

the rule can be adapted to act over an arbitrary interval t = [t0, t0 +h]:∫ t0+h

t0

g(t)dt ≈ h

2

P∑
p=1

wpg(tp) (5.8)
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where tp = h
2
τp + h

2
+ t0.

Placing the collocation points at the nodes of a Gaussian quadrature scheme
allows the corresponding quadrature rule to be used to integrate ẋi

P (t). In-
corporating this rule into the fundamental theorem of calculus gives the
following equation for the final value of xPi (t) given an initial condition
xi(t0):

xPi (t0 + h) = xi(t0) +
h

2

P∑
p=1

wpẋi
P (tp) (5.9)

Because ẋi
P (t) is a (P − 1)th-order polynomial, the quadrature rule will

integrate it exactly, so the accuracy of the method depends only on how
similar ẋi

P (t) is to the true derivative. The accuracy can be improved by
dividing the trajectory into a larger number of finite elements (h-method) or
by increasing the order of the approximating polynomials (p-method).

Implementing this equation also requires integrating for xPi (tp) at each of
the collocation points. Substituting (5.4) into the fundamental theorem of
calculus gives

xPi (tp) = xi(t0) +

∫ tp

t0

ẋi
P (t)dt ≈ xi(t0) +

∫ tp

t0

P∑
j=1

ẋi
P (tj)lj(t)dt (5.10)

which can be rearranged as follows due to the linearity of integration:

xPi (tp) ≈ xi(t0) +
P∑
j=1

ẋi
P (tj)

∫ tp

t0

lj(t)dt (5.11)

Let Lj(τ) be the jth Lagrange polynomial in a set generated by applying
(5.3) to the orthogonal polynomial roots τ1, τ2...τP . The trial function lj(t)
is just a mapping of this polynomial to an arbitrary time interval via the
transformation 5.7, so the integral of lj(t) over the interval t ∈ [t0, tp] can be
calculated in terms of the integral of Lj(τ) over the interval τ ∈ [−1, τp] as
follows: ∫ tp

t0

lj(t)dt =
h

2

∫ τp

−1
Lj(τ)dτ (5.12)

The integral of Lj(τ) is determined only by the locations of the collocation
points, so the value

Ωj(τp) =
1

2

∫ τp

−1
Lj(τ)dτ (5.13)
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can be considered a constant parameter. This gives a set of collocation
equations

xPi (tp) ≈ xi(t0) + h
P∑
j=1

ẋi
P (tj)Ωj(τp) (5.14)

which constitute an implicit Runge Kutta scheme when combined with the
interpolation equation (5.9).

5.1.1 The Transcribed Problem

When using orthogonal collocation, it is convenient to assign each variable
two indices: n for the finite element, and p for the collocation point. The
roots of an orthogonal polynomial will not necessarily correspond to the
endpoints of the interval (τ = −1 and τ = 1), so a P th-order transcription
will require up to P + 2 points to be defined on each finite element: the P
collocation points, and two mesh points. For generality of notation across
different collocation methods, we will index the mesh points separately, using
p = 0 for the initial point and p = P +1 for the final one, even if they happen
to coincide with collocation points.

Allowing a variable timestep h[n] and assuming the all state variables are
continuous across finite elements, the discrete trajectory is defined by the
following constraints:

x[n, p] = x[n, 0] + h[n]
P∑
j=1

Ωj(τp)ẋ[n, j] ∀n = 1, 2...N,∀p = 1, 2, ...P

(5.15a)

x[n, P + 1] = x[n, 0] + h[n]
P∑
j=1

wpẋ[n, j] ∀n = 1, 2, ...N (5.15b)

x[n, 0] = x[n− 1, P + 1] ∀n = 2, 3, ...N (5.15c)

Note that the derivative only needs to be calculated at the collocation points,
so the equations of motion (EOM) are only evaluated at these points.

5.1.2 Orthogonal Collocation Methods

We will be comparing three orthogonal collocation methods based on the
Legendre polynomials, or manipulations thereof:
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1. the Legendre-Gauss (LG) method

2. the Legendre-Gauss-Radau (LGR) method

3. the Legendre-Gauss-Lobatto (LGL) method

The P th-order Legendre polynomial, LP (τ), is defined by the formula

LP (τ) =
1

2PP !

d

dτP
[
(τ 2 − 1)P

]
(5.16)

The Legendre-Gauss method is based on the Legendre polynomials them-
selves, with the collocation points being the roots of LP (τ). The quadrature
weights are given by the formula:

wp =
2

(1− τ 2p )[L̇P (τp)]2
(5.17)

LG quadrature is exact for polynomials up to 2P − 1. Neither endpoint
coincides with a collocation point, so transcription with this method requires
two explicitly-defined mesh points.

The Legendre-Gauss-Radau points are an asymmetrical set that includes
the initial endpoint, but not the final one. For our purpose, it is more useful
to include the final endpoint, so we will consider the flipped set of LGR
points. These can be calculated by finding the roots of the polynomial

LRP (τ) = LP − LP−1 (5.18)

The quadrature weights are not required, because the collocation point at the
boundary matches the final mesh point. The integration constraint (5.15b)
is therefore not required, while the continuity constraint (5.15c) effectively
becomes

x[n, 0] = x[n− 1, P ], ∀n = 2, 3..., N (5.19)

Subjecting a collocation point to a continuity constraint reduces the degrees
of freedom of the approximation, so the LGR quadrature method is only
exact for polynomials up to order 2P − 2.

The Legendre-Gauss-Lobatto method places collocation points on both
boundaries, allowing it to be implemented with only P defined points per
element, but constraining the approximation further. LGL quadrature is
therefore accurate for polynomials up to an order of just 2P − 3. The LGL
points are the roots of the polynomial

LLP (τ) = (1− τ 2)L̇P−1(τ) (5.20)
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Due to the correspondence of the initial mesh point and collocation point,
the continuity constraint is effectively

x[n, 1] = x[n− 1, P ], ∀n = 2, 3, ..., N (5.21)

while the interpolation constraint (5.15a only needs to be implemented for
points p = 2, ..., P . Because the continuity constraint applies between two
collocation points, the evaluation of the EOM at p = 1 can also be replaced
by a continuity constraint on the derivative:

ẋ[n, 1] = ẋ[n− 1, P ], ∀n = 2, 3, ..., N (5.22)

This forces the derivative to be continuous between finite elements, unlike
the other collocation methods. It also makes LGL the most computationally-
efficient method of a given order, as one fewer ODE evaluation is required
per element. For this reason, Hermite-Simpson collocation method, which is
identical to the third-order LGL scheme, has become a popular option for
trajectory optimization [143].

We will subsequently use the abbreviation of the name followed by a num-
ber to denote a particular method and order, for example, ”LGR2” for the
second-order Legendre-Gauss-Radau method. Table 5.1 gives the colloca-
tion points for all second- to fifth-order methods, adjusted to the interval
t = [0, 1]. Figure 5.2 compares the locations of the collocation points for all
three fifth-order methods. Note the asymmetry of the LGR points, and lack
of points on the boundary in the LG method.

5.2 Contact Model

The primary aim of the work documented in this chapter is extending the
contact-implicit scheme proposed by Posa et al. [12] to work with an or-
thogonal collocation method of any order. In this section, we will explain
how contact is modelled for a single point of interaction between two rigid
bodies.

We assume that a well-defined tangent plane exits between the contacting
bodies, and we will use the coordinate y to represent the normal distance
between them, while x and z describe the tangent plane. The reaction force
r can be decomposed into normal (rn) and tangential (rt) components. Like-
wise, vn and vt denote the normal and tangential components of the relative
velocity, v.

As discussed in the preceding chapter, the premise of contact-implicit opti-
mization (CIO) is that the reaction forces are calculated implicitly to enforce
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Figure 5.2: Collocation points for fifth-order Legendre-Gauss (LG5),
Legendre-Gauss-Radau (LGR5) and Legendre-Gauss-Lobatto (LGL5) collo-
cation methods, adjusted to the time interval t = [0, 1].

Table 5.1: Collocation Points
Method 2 3 4 5

LG
0.2113
0.7887

0.1127
0.5000
0.8873

0.0694
0.3300
0.6700
0.9306

0.0469
0.2308
0.5000
0.7692
0.9531

LGR
0.3333
1.0000

0.1551
0.6449
1.0000

0.0886
0.4095
0.7877
1.0000

0.0571
0.2768
0.5836
0.8602
1.0000

LGL
0.0000
1.0000

0.0000
0.5000
1.0000

0.0000
0.2764
0.7236
1.0000

0.0000
0.1727
0.5000
0.8273
1.0000
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mode-dependent path constraints. These can be described in the form of
complementarity constraints between the contact state and reaction force
variables, allowing them to be imposed without a predefined mode sequence.
We will use the notation A ⊥ B to represent a complementarity relationship
between variables A and B. The zero product constraint is relaxed using a
penalty variable ε, which is minimized in the cost function [132]. We consider
a solution to be feasible if ε ≤ 1e− 4 for all contact interactions.

Anecdotally, we have found that including the complementarity penalties as
an additional, scaled term in the cost function to be a less reliable method
of solving the problem than solving it in two stages: a feasibility stage where
minimizing these penalties is the only objective, followed by an optimizing
stage where they are assigned an upper bound of 1e − 5 and only the true
objective is minimized. Unless otherwise stated, this method is used for all
non-smooth problems.

5.2.1 Frictionless Impact

It is intuitively obvious that rn and yn cannot both be nonzero at the same
time, but it is not sufficient to complement rn[n, p] ⊥ y[n, p], as this would
allow the contact mode to change anywhere within the finite element. The
polynomial approximation of the system assumes that the dynamics are
smooth over each element, so it is advisable to restrict these non-smooth
changes to the boundaries – that is, only allow contacts to close or open
between elements. We do this by complementing the normal force with the
contact distance at all points:

rn[n, p] ⊥
P+1∑
j=0

y[n, j] (5.23)

Figure 5.3 shows the position, velocity, and reaction force trajectories for a
one-dimensional, frictionless collision. The details of this falling mass sim-
ulation are provided in section 6.2.3 of the next chapter. In this smooth
approximation of impact, the reaction force begins acting prior to the bodies
coming into contact, and decelerates the mass to rest over the course of the
touchdown finite element (n = 9 here).
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5.2.2 Contact with Friction

Friction Model

A bewildering variety of friction simulation models spanning a wide spec-
trum of complexity levels are used across different engineering and scientific
disciplines [153]. To select a suitable friction model to complete the contact
formulation, we must narrow down this broad taxonomy to those with favor-
able characteristics for trajectory optimization. Models from the dynamics
and control field are the most likely candidates, as they are devised with
rigid-body simulation in mind, and prioritize simplicity and computational
efficiency. Reviews focusing on just this category include those by Marques
et al. [154], Pennestri et al. [155] and Brown and McPhee [156]. Despite this
restricted scope, there are still many approaches to consider.

One way to categorize the available options is based on their relationship to
the state variables of the dynamic system:

• Static friction models calculate the friction force based on existing
state variables, with Coulomb’s Law being a simple example.

• Dynamic friction models add new state variables to capture additional
properties, most of which relate to the transition between sticking and
sliding modes. These include the Dahl model [157], and bristle models
[158].

Static friction models are preferable for transcribed trajectory optimization
problems, as they typically allow the friction force at a given collocation
point to be calculated using only variables at the same point. This maximizes
the sparsity of the friction constraint Jacobian, making these models more
computationally tractable. Consequently, we will exclude dynamic friction
models from our analysis, and any static models that include memory.

This leaves velocity-dependent friction models of the form

rt = −sign(vt)|rn|µ(|vt|)v̂t (5.24)

where v̂t is a unit vector in the same direction as vt, and sign(vt) is the
set-valued function

sign(vt) ∈

{
1, |vt| > 0

[−1, 1], |vt| = 0
(5.25)

We will refer to models of this type as Coulomb friction models, as the
simplest example with constant µ corresponds to Coulomb’s Law.
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Friction Cone Model

In the described friction models, the set of possible friction forces in a two-
dimensional contact plane forms a disc with a radius of µ around the contact
point. We refer to the combination of this disc with the set of possible normal
forces as the friction cone. The reaction force acting at a stationary contact
can fall anywhere in the interior of the cone, while the force at a sliding
contact must lie on the boundary of the cone in the opposite direction to the
relative tangential velocity, vt.

It is possible to simulate reaction forces falling anywhere on the friction cone
[159, 160], but these techniques involve a nonlinear transformation of vt and
rt into a polar representation of the contact plane. A more computationally-
efficient option is to work with a polyhedral approximation of the friction
cone, where the disc of possible tangential forces is replaced by a polygon
[129]. This polygon is the convex hull of k evenly-spaced direction vectors
of length µ. For planar problems, k = 2. The minimum number of vectors
for a spatial problem is usually k = 4, giving a set of direction vectors
that coincides with the positive and negative directions of the x and z axes
describing the contact plane. We can write the friction force as

rt = µrnd
kαk (5.26)

using a set of k unit vectors, dk. The vector αk consists of k activation
variables, each having a value between zero and one.

Unless the direction of vt falls precisely between two of the direction vectors,
only one element of αk should be nonzero at any point where sliding occurs. If
vt = 0, αk must take on the values required to oppose the net tangential force
acting on the bodies. To manage these activation variables, we introduce an
auxiliary variable γ ≥ 0 and relate it to each activation variable αki with the
complementarity constraint:

αki [n, p] ⊥ γ[n, p]− dk
i vt

T [n, p], ∀i = 1, 2...k (5.27)

The requirement that γ −dk
i vt

T ≥ 0 means that γ will equal the magnitude
of the largest projection of vt onto one of the unit vectors in dk – that
is, the magnitude of the projection of vt onto the unit vector that best
matches its direction. The right-hand side of (5.27) can only be zero for
the constraint corresponding to this nearest direction vector, so only the
associated activation variable can have a nonzero value.

To ensure that its value will be one if |vt| ≥ 0 (and hence, if γ ≥ 0), we
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complement
P+1∑
p=0

γ[n, p] ⊥ 1−
k∑
i=1

αki (5.28)

We sum γ over all points to prevent changes between sticking and sliding
modes from happening mid-element.

5.2.3 Variable Timestep

Because the contact constraints prevent mode changes from occurring mid-
element, a variable timestep is required to allow them to happen with more
flexibility. This increases the computational complexity of the problem, as
it causes the interpolation (5.15b) and integration (5.15b) constraints to be-
come nonlinear, and reduces the sparsity of the problem. To minimize the
effect of this change on solver performance, it is advisable to limit the range
of variation to within one order of magnitude. We code h[n] as a scalar on a
maximum timestep, hm, and unless otherwise stated, it is assigned the range
h[n] ∈ [0.1, 1]. The constraint

hm

N∑
n=1

h[n] = T (5.29)

is used to give the complete trajectory a set duration T where required.

5.3 Method Comparison

When designing a collocation scheme for trajectory optimization, there is
a trade-off between accuracy and performance. Major improvements in ac-
curacy can ultimately only be achieved by adding points to the simulation,
either through increasing the number of collocation points in each finite ele-
ment, or by partitioning the trajectory into more elements.

For complicated systems with many degrees of freedom, the largest contribu-
tor to the computational cost is likely to be the number of EOM evaluations
per element. Even if this is constant, the trade-off is evident in the details
of the different collocation methods: LG is ostensibly the most accurate
P th-order method, but it requires additional, explicitly-defined meshpoints,
and associated integration constraints that become nonlinear once the vari-
able timestep is introduced. The LGL method is the least accurate, but
because it requires one fewer EOM calculation, it appears to offer a (P+1)th-
order approximation at comparable performance cost to the P th-order LG
method.
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If the number of ODE evaluations over the whole trajectory is considered,
there are also different, approximately computationally-equivalent mesh con-
figurations for the same method, as the same total number of points can either
be divided into more low-order finite elements, or fewer high-order ones. It
is not obvious which of these approaches is likely to be preferable: whether
the solution on some interval can be better approximated by a single high-
order polynomial or several low-order ones depends on the specific behaviour
within that interval. For contact-implicit problems, high-order polynomials
reduce the number of possible contact mode changes, but this could either
be an advantageous simplification or disadvantageous restriction depending
on the problem.

In this section, we conduct an empirical comparison of the different methods
for test problems resembling our intended application.

5.3.1 Error Metrics

To evaluate which methods and mesh configurations are likely to give the best
balance of accuracy and performance, we must first define suitable metrics
to compare them. While the solve time serves as a straightforward metric of
performance, measuring accuracy is more complex, as error can be quantified
in various ways:

Global Error

The global error is the difference between the true solution and the approx-
imation. It can only be obtained precisely for systems with a closed-form
solution, but if the problem cannot be solved analytically, the true solution
can be substituted with a better numerical approximation. This can be ob-
tained by simulating the system using a more accurate method, or much finer
mesh, using input values sampled from the piecewise-continuous input spline
uP (t).

For systems with contact, mode transition events in the true solution are
unlikely to coincide with those in the approximate trajectory, making the
approximation of the reaction forces inconsistent. This creates two possible
versions of the ”true” solution:

1. the true smooth solution i.e. the accurate smooth dynamic simulation
of the system under the action of the approximate input and reaction
force splines, which may violate the contact constraints, or

2. the true non-smooth solution i.e. the accurate non-smooth dynamic
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simulation of the system under the action of the approximate input
splines.

The error with respect to the true non-smooth solution is the more physi-
cally meaningful metric, and gives the most direct indication of the distance
between simulation and reality for the approximation. This is an intuitive
interpretation of ”accuracy”, but arguably not a good metric of whether the
collocation method performs as intended, as it disregards the assumption of
smooth dynamics that these methods are devised under. Even in the smooth
case, the global error on latter finite elements tends to measure the com-
pounding ”butterfly effect” of preceding error more than the ability of the
collocation polynomial to fit the local behaviour. The mean global error is
therefore sensitive to the timing of errors within the trajectory, with early
errors being exaggerated.

Discretization Error

The discretization error compares the approximate solution to the true smooth
solution over individual finite elements. As with the global error, the ”true”
solution (x̂i) is typically obtained by simulating the system’s progress under
the action of the approximate input, but rather than taking error accumu-
lated over previous intervals into account, the initial condition of each finite
element is assumed to be correct:

x̂i(t) = xi(t0) +

∫ t

t0

fi(t, x̂(λ),uP (λ))dλ (5.30)

ηi(t) = x̂i(t)− xPi (t) (5.31)

To calculate the discretization error, we simulate each finite element forward
from its initial point using LG5 collocation with a finer mesh (N = 20P ,
where P is the number of collocation points in the original approximation).
For each state variable, we take the mean of the error at the collocation
and endpoints, and normalize this by dividing by the largest magnitude of
the variable on that element. These are then aggregated to give the mean
discretization error across all finite elements and state variables.

Local Error

While the discretization error measures whether the approximate solution
matches the true solution on a given finite element, the local error measures
the extent to which the approximate solution solves the ODE between col-
location points. The constraints of the problem ensure that the ODE must
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be solved at the collocation points, but generally, the approximate derivative
ẋPi (t) will not be equal to the derivative calculated using the approximate
solution and input fi(t,x

P (t),uP (t)). The accumulation of this difference
produces the local error:

εi(t) = ẋPi (t)− fi(t,xP (t),uP (t)) (5.32)

ηi(t) =

∣∣∣∣∫ t

t0

|εi(λ)|dλ
∣∣∣∣ (5.33)

This is related to the discretization error in that the true solution solves the
ODE at all points, so perfect discretization accuracy implies perfect local
accuracy and vice versa, but the local error does not directly indicate how
closely the P th-order spline approximation matches the true solution – it
indicates whether this approximation is internally consistent. This distinc-
tion becomes especially apparent when the form of the true solution is very
different from that of the polynomial.

The advantage of this metric it does not require the calculation of a ”true”
solution that might not adhere to the contact constraints. For this reason,
Kelly [143] recommends refining the collocation mesh based on the local
accuracy in his collocation tutorial, and likewise, this is the primary metric
we will use to compare methods.

The local error at all points on a given finite element is calculated as fol-
lows:

1. Expressions for the derivative polynomials are obtained using (5.4).

2. Expressions for the state polynomials are obtained by integrating the
derivative polynomials (analytically) from the initial state of the ele-
ment.

3. For each collocation point τp, the approximate state and derivative are
calculated at five quadrature points spaced between the start of the
element and τp. The ODE error ε is then evaluated at each of the
quadrature points.

4. The ODE error values are combined in a weighted sum according to
a fifth-order Gaussian quadrature rule to give the local error. This
rule is exact for polynomials of orders exceeding the approximating
polynomials of all collocation methods trialed.

As with the discretization error, the local error for each variable on each
finite element is normalized by the largest local value of the variable, and
then aggregated into a mean for all variables and elements.
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5.3.2 Experiments

Candidate Methods

We will compare the accuracy and performance of nine direct collocation
schemes for different smooth and non-smooth problems. This includes the
second- and fourth-order implementations of all three methods. We also
compare the second-order methods to LGL3 because, in terms of ODE eval-
uations per element, LGL3 is equivalent to LG2 or LGR2. Likewise, we will
compare the fourth-order methods to LGR5. For brevity, will refer to the
grouping of the second-order methods and LGL3 as ”low-order methods”,
and the fourth-order and LGL5 as ”high order methods”. For benchmarking
purposes, we will also include the established first-order (FO) contact-implicit
method devised by Posa, et al [12], as this is the most direct predecessor to
our proposed CIO scheme in the literature.

Trials

We will conduct the following tests to compare the collocation schemes:

1. Spring-Mass-Damper Simulation: The spring-mass-damper (SMD)
is a useful test system to use as a benchmark, because it is analytically
solvable, and its parameters can be adjusted to vary the approximate
order of the solution on each time interval without changing the basic
form of the response. The purpose of this preliminary test is to pro-
vide a baseline comparison of each accuracy metric for the collocation
methods with respect to the order of the approximate solution.

2. Underactuated Pendulum Optimization: Swinging an underactu-
ated pendulum into an inverted position is a well-known test problem
in optimal control. This can be converted to a non-smooth dynamic
problem by limiting the range of motion of the joints using hard stops.
This test will compare the performance of the collocation methods for
an otherwise-identical problem with and without contact.

3. Legged Locomotion Optimization: This test compares the accu-
racy and performance of the collocation methods during their intended
application: the trajectory optimization of legged locomotion tasks.
Three tasks are included, encompassing systems with a similar number
of degrees of freedom, but a varying number of contact constraints.
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5.3.3 Spring-Mass-Damper Simulation

Method

The SMD model is a one-dimensional system consisting of a spring and
damper in series and a mass sliding on a frictionless surface. The only input
is an exciting force acting on the mass. The spring and damping coefficients
are selected to give a damping ratio of ζ = 0.1 and damped frequencies within
the range ωd ∈ [0.1π, 16π] with unit mass. The exciting force is constant,
and scaled so the response will always have unit final value.

We generated 50 SMD simulations each of duration T = 3 seconds. The
mesh for the low-order methods consists of N = 30 finite elements (h = 0.1
seconds), the high-order methods have N = 15 elements (h = 0.2 seconds),
and the FO method was assigned N = 60 timesteps (h = 0.05 seconds) to
give either 60 total points or 60 ODE evaluations for all methods.

The damped frequency varies randomly over the stated range. These val-
ues were selected so the approximate order of the true solution for a single
timestep varies between 1 and 3 for the low-order mesh, and between 1 and
4 for the high-order mesh. We calculated the approximate order Ô based on
the number of stationary points typically occurring within a timestep, for a
sinusoid at the damped frequency. Each period has two stationary points,
so the number per element is taken to be twice the number of 2π

ωd
second

periods fitting within h, rounded to the nearest integer. This gives an order
of roughly

Ô = 1 + nint

(
hωd
π

)
(5.34)

A convenient feature of the sinusoidal response is that all derivatives will
have the same frequency, so both the velocity and acceleration components
of the derivative polynomial ẋP will be approximating trajectories of the
same order. This creates a clear distinction between responses within the
favourable order range for each method (Ô ≤ P − 1) and those exceeding
it.

Results

Figure 5.4 compares the global, discretization and local error for all methods.
The global and discretization error values were obtained through comparison
to the analytical solution at each collocation point. The global error for each
variable is normalized by the largest magnitude of the variable over the whole
trajectory, and these are then aggregated into the mean.
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Figure 5.4: Mean global, discretization and local error for different collo-
cation methods when simulating spring-mass-damper systems with different
damped frequencies (ωd). The vertical lines indicate the approximate order of
the true derivative for the datasets plotted in the same color, with solid lines
showing where it begins to exceed the order of the approximating polynomial
for second- (orange) and fourth-order (gray) methods.
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All three metrics show consistent trends and similar magnitudes of error for
each method. As would be expected, higher-order methods achieve greater
accuracy, but their advantage decreases as the approximate order of the solu-
tion approaches the theoretical limit for the method. The same is true of the
accuracy advantage of less-constrained methods (LG) over more-constrained
ones (LGL) of the same order.

The LGL(P + 1) and LGP methods are the most accurate options in each
grouping of P ODE evaluations per element, achieving near-identical global
and discretization error results. Interestingly, the LGL(P + 1) method tends
to be more accurate with respect to local error within the approximate order
limit of each method, while the LGP method gains a slight advantage once
this limit is exceeded.

5.3.4 Underactuated Pendulum Optimization

Model

We use a three-link planar pendulum with all links modelled as uniform thin
rods having unit mass and length. The coordinates of the system are the
angles of the links anticlockwise from the vertical axis of the inertial frame
[23]. The base link is actuated by an ideal, unbounded torque, while all other
links are unactuated.

For the smooth version of the problem, the relative angles of the links are
not bounded. For the non-smooth version, all joints except at the base are
restricted so the subsequent link may not exceed an angle of π

2
radians in

either direction with respect to the axis of the parent link. These limits are
enforced by a pair of hard stops, modelled as frictionless contacts. These
contacts are defined by modifying the impact constraint (5.23) such that the
normal distance is replaced by the difference between the current relative
position of the joint and the limit, and the normal reaction becomes a reaction
torque opposing further motion [12].

Trajectory Optimization Task

To complete the swing-up motion successfully, the pendulum must move from
hanging at rest, to inverted rest. This is described by the initial and final
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conditions:

θi[1, pi] = 0 ∀i = 1...3 (5.35a)

θ̇i[1, pi] = 0 ∀i = 1...3 (5.35b)

θi[N, pf ] = π ∀i = 1...3 (5.35c)

θ̇i[N, pf ] = 0 ∀i = 1...3 (5.35d)

The simulation time is fixed to T = 2 seconds. For the smooth problem,
the timesteps are fixed to h = T

N
, while the maximum timesteps for the

non-smooth problem are set to hm = 1.2T
N

. Meshes for the low-order, high-
order and FO methods were assigned N = 100, 50 and 200 finite elements,
respectively.

The objective of the task is to minimize the actuator effort. This is defined
as the sum of squared actuator torques at all points:

min
X

N∑
n=1

pf∑
p=pi

α[n, p]2 (5.36)

Procedure

The smooth problem was solved in a single optimization stage, while the
non-smooth problem was solved in two stages. Each problem was solved 50
times per method, starting from a seed generated by uniformly randomizing
the state variables at all points within the range [-0.1,0.1].

Results

The mean local error and solve times for the pendulum problems are plotted
in Figure 5.5. Unsurprisingly, the solve times are much longer for the problem
with contacts. The higher-order versions of each method consistently solve
this problem faster, indicating that allowing fewer opportunities for contact
state changes does simplify the problem rather than over-constraining it.
As expected, methods requiring more defined points per element do tend to
solve slower, but this difference becomes relatively minor once contacts are
introduced.

There are two key features of the non-smooth problem that potentially affect
the accuracy of the collocation method:

1. the approximation of discontinuous velocity changes during collision
events, and
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Figure 5.5: Mean local error and solve times for the smooth and non-smooth
pendulum swing-up task. The marker gives the median value, while the bar
indicates the interquartile range.
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2. the variable timestep.

For this problem, the fixed simulation time means that the average duration
of the finite elements is the same for the smooth and non-smooth problems,
so differences in accuracy between the two problems are more likely to be
a reflection of how effectively each method approximates the collision be-
haviour.

These events do not appear to be especially problematic for any particular
method, with accuracy for most remaining within the same order of magni-
tude for both problems, or often even improving for the non-smooth problem.
The comparative accuracy of the methods tends to follow the trends estab-
lished in the SMD test, with the overlap between the less accurate high-order
and more accurate low-order methods resembling the region of solutions with
approximate orders exceeding the theoretical limit of the second-order meth-
ods. The exception is LGL(P + 1), which falls behind compared to other
methods for non-smooth problems.

Comparing the local and discretization accuracy of the methods (see: Figure
5.6) gives further insight into how the collision events affect the collocation.
Because the discretization error is a direct measure of the accuracy with re-
spect to the true solution, large values compared to the local error would
indicate that the collocation polynomials are a poor fit for the contact tran-
sitions. The discretization error is far more varied when contact is involved,
but the median values are still consistent with (i.e. within the same order
of magnitude as) the local error and smooth problem results for almost all
methods. Notably, the discretization error is smaller than the local error
for the most accurate second-order methods, suggesting that collisions are
better approximated using shorter, lower-order finite elements. This has a
limit, however, as the first-order method is the only one revealed to be far
less accurate in terms of the discretization error.

5.3.5 Legged Locomotion Optimization

Models

Two models are used in this test: a planar biped with arms, and a spatial
monopod. These are illustrated in Figure 5.7. Both models effectively have
nine degrees of freedom (DOF): although the monopod is modelled using 10
generalized coordinates to produce more tractable equations of motion [23],
the leg is constrained so it cannot yaw relative to the body. Each model
includes contacts between the feet and ground, subject to friction modelled
using Coulomb’s Law with friction coefficient µ = 0.6.
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Figure 5.6: Mean discretization and local error for the smooth and non-
smooth pendulum swing-up task. The marker gives the median value, while
the bar indicates the interquartile range. The line of one-to-one correlation
is indicated in black.
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Figure 5.7: Planar biped and spatial monopod model used in trajectory
optimization experiments.
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Trajectory Optimization Problems

Bipedal Stopping: To simulate a stopping maneuver, the initial condition
for the biped was sampled from the midstance phase of a sprinting trajec-
tory. The final condition required grounded feet, no forward translational
or rotational velocity (that is, ẋ ≤ 0 and θ̇b ≥ 0), and all velocities to have
magnitudes within five percent of their initial values.

The stopping distance was minimized by creating a variable upper bound

x[n, p] ≤ xm ∀n = 1...N,∀p = pi...pf (5.37)

and then minimizing xm.

Monopedal Turning: The monopod was required to start at rest in an
upright position, and travel 2.5 m in the x direction without exceeding z ≤ 0,
followed by 2.5 m in the z direction. The final state was not specified beyond
the requirements that x = z = 2.5 m, and that the yaw of the body (ψb) be
displaced 90 degrees from its starting point.

We minimized the sum of the squared actuator forces and torques over all
joints and collocation points:

min
X

N∑
n=1

pf∑
p=pi

αh[n, p]
2 + αk[n, p]

2 (5.38)

Mesh parameters: All described tasks were assigned the same mesh pa-
rameters. The duration of the trajectory was not fixed, but a maximum time
of 2.5 seconds was selected by setting the maximum timesteps according to
hm = 2.5

N
. The low-order, high-order and FO methods were assigned N = 50,

25 and 100 finite elements, respectively.

Procedure

Each of the two problems was solved 50 times for each collocation method,
starting from a seed generated by uniformly randomizing the state variables
at all points within the range [-0.1,0.1].

5.3.6 Results and Discussion

The solve time and mean local error results for the legged locomotion tests
are displayed in Figure 5.8. The first-order method is excluded for clarity,
as its error values were several orders of magnitude larger in both tests.
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The results mostly follow the trends observed in the non-smooth pendulum
test, with higher-order methods mostly solving faster and LG4 proving most
accurate.

The performance discrepancy between the higher- and lower-order methods is
especially exaggerated in the monopod problem, with LG2 taking more than
twice as long to solve as LG4, though it should be noted that all orders of
LGL are the fastest methods for this problem. By contrast, both high-order
LGL methods solve more slowly than their low-order counterparts in the
biped test, confirming that the results of these trials are somewhat problem-
dependent.

5.4 Conclusions

This chapter extended contact-implicit collocation [12] to high-order ap-
proximations, and compared different collocation methods over a range of
smooth and non-smooth trajectory optimization problems. The effectiveness
of some methods was problem-dependent, but there were some consistent
trends:

• As would be expected, less-constrained methods are more accurate
than more-constrained methods of the same order, with LG consis-
tently achieving the lowest mean error for each order group.

• Higher-order methods are faster for non-smooth problems than lower-
order methods.

• Less-constrained methods are generally slower than more-constrained
methods of the same order due to the additional simulation points, but
this difference is minor compared to the difference between high- and
low-order methods.

Based on these observations, LG4 appears to offer the most consistently
favorable combination of accuracy and computational efficiency.
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Chapter 6

Impulsive Collisions

The orthogonal collocation formulation described in the previous chapter as-
sumes that the trajectory of all state variables is continuous. In this chapter,
we modify it to use piecewise-continuous velocities, so finite discontinuities
can occur between finite elements. This allows collisions to be modeled as
impulsive events, which expands the behaviors the formulation can handle
to include partially-elastic impacts and impacts without collision - the estab-
lished resolution of the Painlevé paradox.

The first section establishes context by expanding on the motivation for al-
lowing velocity discontinuities, and giving the mathematical background. We
then explain how the contact model is altered for impulsive impact. The fi-
nal section compares the performance of the discontinuous and continuous
fourth-order Legendre-Gauss formulations for the same legged locomotion
test problems used in the previous chapter. The work in this chapter has
been published in [26].

6.1 Background

6.1.1 Motivation

The dynamics of contact, as modelled in the previous chapter, can be consid-
ered ”non-smooth” in that the system transitions between distinct dynamic
modes where it is subject to different path constraints. This model is, how-
ever, still ”smooth” in the sense that the trajectories of all state variables
remain continuous over these mode transitions. This is not true to the way
collisions are conceptualized for rigid-body systems. For the assumption of
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Figure 6.1: Conceptual comparison between implicit direct collocation with
discontinuous, and continuous velocity states. In the continuous formulation,
the velocity must transition to zero over a full timestep under the action of
finite forces. This causes the instantaneous impact velocity to be smaller
than its true value, making it impossible to model partially elastic collisions
accurately.
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rigidity to hold, collisions must be impulsive: relative motion must cease at
the instant of contact, under the action of infinitely-large forces. A compari-
son between the impulsive model of impact and its continuous approximation
is shown in Figure 6.1.

One reason to favour the impulsive version is that it allows partially-elastic
behaviour to be modelled using an implicit numerical integration scheme.
If the continuous impact formulation is combined with implicit integration,
deceleration has already occurred at the first simulation point where the
distance between bodies reaches zero, so the true velocity at the instant of
collision is not captured. This makes it impossible to model partially-elastic
collisions reliably, as the restitution law is applied at the velocity level. These
problems can be avoided by using partly-implicit integration instead [161],
but that sacrifices the accuracy and stability for which implicit integration
is typically favoured.

Another reason is that there are some problems where the combination of a
continuous impact model and Coulomb friction makes it impossible to find a
solution. Consider the problem of a two-link pendulum resting on a conveyor
belt, as illustrated in Figure 6.2. When the belt moves backwards relative to
the pendulum, friction (rt) is related to the normal force (rn) by rt = µrn. If
its coefficient of friction (µ) is sufficiently large, the torque on the lower link
produced by friction will be larger than the torque produced by the normal
force, creating an angular acceleration that directs the end of the link down
into the conveyor belt. Of course, it is not possible for the link to move in
this direction, so the problem appears to have no solution.

This apparent conflict between the interpenetration constraint and Coulomb
friction is called the Painlevé paradox, and has been an important topic
of discussion and driver of theoretical development in rigid-body dynamics
since its description near the turn of the 20th Century [162]. Its history,
consequences and the ongoing questions it raises are well-documented in a
review by Champneys and Várkonyi [163]. Besides the inconsistent case
described, the paradox might also result in an indeterminate case, where
multiple solutions are possible [163].

Stewart [164] points to the assumption of finite reaction forces (and, by im-
plication, the assumption of a time-continuous velocity state) as a key flaw
leading to inconsistency: “In particular, it rules out the possibility that the
horizontal component of the velocity (vt) could be brought to zero instanta-
neously by impulsive contact force”. If vt is immediately brought to zero, it is
no longer required that rt = ±µrn, so a solution becomes possible. This de-
mands that contact models allow not only impulsive forces during collisions,

100



𝜃1

𝜃2

𝑙

𝑚

𝑣𝑏𝑅𝑡

𝑅𝑛

𝑅𝑡
𝑣𝑡

Painlevé paradox:

Figure 6.2: Two-link pendulum resting on a conveyor belt. The Painlevé
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but impacts without collision (IWCs) – instantaneous jumps in the tangen-
tial velocity occurring without a change in the contact state. Experiments
by Zhao et al. [165] using an apparatus similar to the pendulum and con-
veyor belt problem in Figure 6.2 indicate that IWCs are not just a convenient
patch for a bug in the mathematics, but a representation of a real physical
phenomenon, as tangential shocks were observed when the apparatus was
arranged in paradoxical configurations.

It may be tempting to dismiss the paradoxes as niche cases happening only
at unrealistically high coefficients of friction, but with unfortunate contact
geometry or mass distribution of the bodies involved, they can come about
under more typical conditions [166]. Analysis of two widely-used passive
dynamic walking models suggests that they are far from unlikely in legged
locomotion [167], for example. A further contribution of the model we de-
scribe in this paper is that it is the first higher-order collocation scheme to
allow IWC resolution of frictional paradoxes.

6.1.2 Mathematical Background

The discontinuous nature of rigid-body systems with contact constraints can
be conceptualized by changing the equations of motion from ODEs of the
form,

ẋi(t) = fi(t,x(t),u(t)), (6.1)

to measure differential inclusions (MDIs). The MDI is a generalization that
allows the right-hand side of the differential equation to be a combination of
continuous and impulsive parts:

ẋi(t) = fi(t,x(t),u(t)) +
∑
j∈N

ηjδ(t− tj) (6.2)

Here, δ(t − tj) is a unit impulse occurring at the instant tj and ηj is the
magnitude. Although δ(t) is often referred to as the Dirac δ-function, it is
not really a function of time at all, but a measure – a function that acts on
a set, which may be thought of as something closer to a distribution. The
important assumptions we are making about this solution are that there are
countably many discontinuities, and that ẋi(t) has bounded variation over
the trajectory (the difference between the left and right values of ẋi(t) at
each discontinuity can be assigned a finite value, ηj).

MDIs are the cornerstone of the mathematical framework developed by Moreau
to handle a class of unilaterally-constrained mechanical problems he termed
sweeping processes [168, 139, 169]. The immediate ancestors of our model
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are time-stepping methods based on Moreau’s theory [161, 129, 170]. For
further reference on these ideas, Stewart [161] gives a concise and accessible
introduction, Brogliato et al. [166] gives a broader review of numerical sim-
ulation methods, and textbooks by Acary and Brogliato [171] or Leine and
Nijmeijer [172] provide a more comprehensive text.

6.2 Impulsive Contact Model

6.2.1 Piecewise-Continuous Direct Collocation

In the previously-described continuous formulation, the value of each state
variable at the initial boundary of one finite element was equated to the value
the previous final boundary by a continuity constraint (5.15c). This is still
applied to the position variables in the piecewise-continuous version, but it
is modified for the velocity variables to allow finite jumps. This produces the
updated continuity constraints ∀n = 2, ...N :

xi[n, pi] = xi[n− 1, pf ] ∀xi ∈ q (6.3a)

xi[n, pi] = xi[n− 1, pf ] + ηi[n] ∀xi ∈ q̇ (6.3b)

where ηi represents the jump in the ith coordinate. The resulting integra-
tion scheme is similar to a previous adaptation of arbitrary-order orthogonal
collocation to hybrid dynamic problems [125].

The instantaneous velocity change is brought about by an impulsive contact
reaction, dr. In our transcription, the velocity jump η and contact impulse
are represented by the acceleration (q̈) and reaction (r) variables at [n, 0].
They are related by the impulsive equations of motion:

M(q[n, 0])q̈[n,0] = Jc
T (q[n, 0])r[n, 0] (6.4)

As before, M is the inertial matrix, and Jc is the contact Jacobian.

6.2.2 Contact Constraints

As in the previous chapter, we will describe the constraints defining contact
at a single point using the variables y for the relative normal distance between
the involved bodies, x and z for the relative position in the tangential contact
plane, r for the reaction force, and v for the relative velocity. The subscript
n indicates the normal component of these vectors, while t indicates the
tangential component.
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The role of the impulsive reaction component is to produce a jump in the nor-
mal velocity (represented here in scalar form as ẏ) that satisfies ẏ+ = −eẏ−,
where e is the coefficient of restitution. We cannot complement rn[n, 0] ⊥
ẏ[n, 0] − eẏ[n − 1, P + 1] directly, however, as the right-hand side of this
expression will not always be positive when the contact is inactive. We
therefore implement the contact complementarity at the initial mesh point
using positive auxiliary variables a+ and a− as follows:

a+[n]− a−[n] = ẏ[n, 0] + eẏ[n− 1, P + 1] (6.5a)

rn[n, 0] ⊥ y[n, 0] + a+[n] + a−[n] (6.5b)

a+[n] ≥ 0 a−[n] ≥ 0 (6.5c)

The role of the finite reaction component is to prevent interpenetration when
bodies are in contact for longer than an infinitesimal instant. They are
governed by the same impact constraint defined in the previous chapter.

The friction constraints are also the same as those described for the con-
tinuous contact model, however, they are now additionally applied to the
tangential reaction component defined at the initial mesh point.

6.2.3 Example: Falling Point Mass

To demonstrate impact, we simulated a one-dimensional point mass experi-
encing (A) an inelastic collision (e = 0) and (B) a partially elastic collision
(e = 0.5) with the ground. N = 20 and hm = 0.02, and the initial height
y[1, 0] = 0.1m. The only objective was minimizing the complementarity
penalties. The inelastic collision was also simulated using the equivalent
continuous-velocity formulation, to illustrate the differences between the two
approaches. The partially elastic case is inadmissible for the continuous for-
mulation, which is a key advantage of the proposed approach.

Figure 6.3 shows the resulting position, velocity and ground reaction force
trajectories. The simulation of the inelastic collision using the continuous-
velocity approximation was shown in isolation in Figure 5.3 in the previous
chapter. The models behave as expected: the velocity in the impulsive prob-
lem jumps upon contact with the ground in accordance with the coefficient
of restitution. A normal impulse occurs at the moment of impact, following
which the normal force prevents the mass from falling through the ground in
the inelastic case. The continuous approximation of touchdown takes place
over a single finite element, with the mass not quite grounded when the
normal force begins to decelerate it.
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between a point mass and the ground. The normal impulse dry is depicted
at p = 0. A continuous velocity model is included for comparison on the
inelastic case, showing the change in velocity spread out over an entire finite
element.
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Figure 6.4: Solution to the pendulum and conveyor belt problem shown in
Figure 6.2, demonstrating resolution of the Painlevé paradox via tangential
impact at the start of the sixth finite element.

6.2.4 Example: Tangential Impact

Because the proposed formulation enables impulsive reaction forces to act
at the boundaries of any finite elements where contact is active, it permits
the resolution of the Painlevé paradox through a tangential impact without
collision (IWC). To demonstrate this, we simulated a paradoxical situation
in a planar system based on the two-link manipulator and conveyor belt
apparatus that Zhao et al. used to investigate IWCs experimentally.

The model is shown in Figure 6.2. We assigned the links unit mass and a
length of 0.5 metres, and assumed uniform mass distribution. Collisions were
assumed to be perfectly inelastic. The height of the top link was selected
such that the end of the double pendulum rests on the conveyor belt at initial
angles of θ1[1, 0] = 0 and θ2[1, 0] = 0.25π rad. The initial velocity was fixed to
zero. The belt was initially stationary, but its velocity was abruptly stepped
up to vb = 0.5 m/s (that is, -0.5 m/s relative to the pendulum) at point [6,0].
We selected a very high coefficient of friction, µ = 2, so Painlevé’s paradox
would be induced at this instant. The timing parameters were N = 10,
hm = 0.02s and T ≥ 0.1s.

The results of the optimization are displayed in Figure 6.4. While the contact
state never changes, an impulse occurs that instantly increases the tangential
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Figure 6.5: Solution to the pendulum and conveyor belt problem produced
using Legendre-Gauss-Radau collocation. The ringing effect observed in Fig-
ure 6.4 is less apparent when this more constrained collocation scheme is
used.

velocity of the pendulum’s end to match the velocity of the belt. The end of
the link therefore remains stationary relative to the belt throughout, so the
magnitude of the friction force is allowed to be < µrn, and a downward ac-
celeration is not created at the contact point. This is precisely the resolution
of the Painlevé paradox via IWC described before [165].

The tangential force oscillates over the finite elements in the stationary por-
tion of the simulation. This ringing effect is able to occur due to the lack of an
implied continuity constraint at the acceleration level in the Legendre-Gauss
collocation scheme. (As the tangential reaction force is the only contributor
to acceleration here, its form directly reflects the horizontal acceleration of
the pendulum end.) In a scheme where collocation points are shared be-
tween adjacent finite elements such as Legendre-Gauss-Radau or -Lobatto,
the acceleration spline – and therefore, the constraint force spline – would
be more restricted, likely reducing this phenomenon. This can be observed
in Figure 6.5, which shows the result of repeating the same experiment using
Legendre-Gauss-Radau collocation. Unfortunately, there is not a clear way
to eliminate constraint force ringing in high-order or unconstrained schemes
without effectively reducing the order or degrees-of-freedom of the colloca-
tion.
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6.3 Performance Comparison

The impulsive formulation has a clear benefit in trajectory optimization prob-
lems involving partially elastic contact and IWC, as shown above, but we are
also interested whether it has any advantage over the continuous formulation
when perfectly-inelastic contact is assumed, as is typical in legged locomotion
tasks. It is possible that the ability to resolve frictional paradoxes could allow
it to explore the solution space more effectively, and discover solutions that
would be infeasible for other formulations, but this could be outweighed by
an increased computational load similar to adding another collocation point
to each element.

To evaluate its effect on solver performance and solution quality, we compare
continuous and impulsive versions of the fourth-order Legendre-Gauss scheme
(LG4C and LG4I, respectively) over two trajectory optimization tasks. We
again include the first-order formulation by Posa. et [12] as a benchmark.
Because this is a first-order method, it is also effectively discontinuous, and
can therefore model tangential impacts, though it would require a semi-
implicit formulation (as in the parent method by Stewart and Trinkle [129])
to evaluate partially-elastic collisions.

6.3.1 Method

The same two legged locomotion test problems used in the previous chapter
(5.3.5) are used here to compare the continuous and impulsive collocation for-
mulations. The trajectory was assigned a maximum duration of 2.5 seconds
and discretized into N = 25 finite elements for the fourth-order methods,
and N = 100 elements for the FO method. We ran each experiment with
two coefficients of friction: µ = 0.6, and µ = 1.6 – a high value that is more
likely to produce Painlevé paradoxes. As before, we gave the same random
seed to all models in each test, and repeated this 100 times for each friction
coefficient.

6.3.2 Results

The LG4I formulation produced solutions slightly slower than the LG4C for-
mulation did in both biped tests, and substantially slower in both monopod
tests, as shown in Figure 6.6. This suggests that the complementarity con-
straints are the primary contributor to the computation time, as the increase
in their number between the LG4C and LG4I formulations is much larger for
the 3D problem.
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Figure 6.7 compares the costs obtained, normalized to the lowest value
achieved by either model in each case. (We exclude the FO solutions from
the cost comparison, as they cannot be meaningfully compared to the fourth-
order results due to the differences in accuracy.) The median costs were
near-identical in all tests, but the spread of the LG4I results tended to be
wider. While its median results were usually slightly better, it also gener-
ated the worst solution in most tests. This suggests that it might be able to
identify superior strategies that are infeasible for the continuous version, but
also that the slightly more cumbersome formulation could be more prone to
getting trapped in bad local minima.

Overall, there does not appear to be a clear advantage to using the impul-
sive configuration for problems with exclusively inelastic collisions. While
the accuracy was slightly improved over the continuous formulations, the
computation time and consistency were worse.

6.3.3 Conclusions

The piecewise-continuous collocation formulation introduced in this chapter
combines the advantages of hybrid-dynamic and contact-implicit approaches.
By accommodating finite discontinuities in the velocity state, it can capture
behaviour that continuous-velocity formulations cannot, such as partially
elastic collisions and tangential “impacts without collision” – the established
resolution of the frictional paradoxes identified by Painlevé. The more com-
putationally cumbersome formulation leads to longer solve times for 3D or
especially contact-heavy problems, however, so the approach is currently best
suited to problems that require elasticity or impacts without collisions. Con-
sequently, it has limited applicability to the study of legged locomotion.
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Chapter 7

Coordinate System

Computational efficiency is the primary obstacle that must be overcome to
make the contact-implicit trajectory optimization of whole-body models a
practical technique. An aspect of the problem formulation that has received
little attention regarding performance improvement is the coordinate system
selected to describe the system model.

The different coordinate representations for articulated rigid-body systems
can be organized along a spectrum from ”more relative” to ”more absolute”.
On the relative extreme, there is the minimal coordinate approach typically
used in robotics [106] where each body is referenced to the frame of its pre-
decessor. On paper, this produces the smallest problem, as it has the fewest
coordinate variables and implicitly defines the constrained motion of the bod-
ies, but the recursively-described link positions result in long, cumbersome
equations of motion. On the absolute extreme, the position and orientation
of all bodies can be referenced to the inertial (or world) frame, necessitating
a much larger number of comparatively simple equations.

In this chapter, we compare these two approaches, and an option between
them that combines relative translational and absolute orientation coordi-
nates. We begin by motivating the importance of the coordinate system to
the design of the trajectory optimization problem, and describing the coordi-
nate schemes we will be comparing in the context of trajectory optimization.
We then compare them through a series of experiments focused on two key
factors: long serial chains of links, and contact.

The preliminary experiments, comparing relative and absolute orientation
representations, were published in a co-authored paper [23]. Only my con-
tributions to that paper are reproduced in this chapter. We subsequently
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extended that study by updating some experiments using a superior colloca-
tion scheme, and taking the direction of its findings to their logical conclusion
by including maximal coordinates in the comparison. A follow-up paper on
this work is under review.

7.1 Motivation

In robotics, a tree-like system of interconnected rigid bodies is typically de-
scribed in the joint space: one body, designated the floating base, is referenced
to the world frame, while all others are referenced to the preceding (parent)
body [106]. This has the advantage of producing a minimal set of coordi-
nate variables and ensuring that the bodies in the system remain connected
without the need for explicit positional constraints, but because the position
of a given link is defined as a recursive combination of all preceding joint
positions and the position of the base, the length and complexity of the ex-
pressions describing the position, velocity and acceleration of the outermost
bodies rapidly increase as more bodies are connected in series.

Because contact points are typically found at the extremities of the system
(for example, at the feet in a legged robot or at the gripper in a manip-
ulator arm), this directly affects the tractability of the contact constraints
in contact-implicit problems. It also affects the equations of motion (EOM),
with the Coriolis terms being especially prone to becoming unwieldly for long
chains described in this way. While it has been observed that removing these
problematic terms can allow the model to solve faster [109], neglecting them
becomes detrimental to the accuracy of the simulation as the movement be-
comes more rapid and dynamic [23]. Besides being longer, these expressions
are also more computationally cumbersome as they are less sparse: a con-
straint applied to a specific body involves not just the coordinates directly
related to that body, but the coordinates of all preceding bodies in the same
chain.

By contrast, coordinate representations that reference positions to the iner-
tial frame, rather than relative to preceding links, result in simple, sparse
expressions describing the system dynamics and contact model, at the cost
of many more coordinate variables and explicit connection constraints.
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erations in the symbolic equations of motion (EOM) as the number of links
increases.
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Figure 7.2: Sparsity of the Hessians of the Coriolis terms for each link of a
planar 4-link pendulum arising from relative and absolute orientation formu-
lations.

7.1.1 Example: Absolute vs. Relative Angles for a
Planar Pendulum

To demonstrate the significance of these differences, consider the two rep-
resentations of a planar pendulum model shown in Figure 7.1. The plot
compares the number of operations in the EOM as the length of the pendu-
lum increases. Referencing the angles of the links to the world frame rather
than in the joint space is a seemingly minor change that does not alter the
number of coordinate variables, but results in far fewer operations being
added to the EOM with each subsequent link.

This is a qualitative change as well as a quantitative one: Figure 7.2 shows
the sparsity pattern for the Hessian of the Coriolis term (C (q, q̇) q̇ in (4.2))
of each link of a 4-link pendulum, illustrating that these equations also be-
come far less dense when formulated using absolute angles. If this model
represented the leg of a robot rather than an isolated pendulum, these im-
provements would also translate to more compact, sparse equations defining
the contact state.
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7.2 Coordinate Systems

We will be comparing three coordinate systems:

1. Minimal: the coordinates correspond to the DOFs of the system. The
system is typically described in the joint space, with only the floating
base referenced to the world frame, and all other bodies’ positions de-
scribed in terms of preceding bodies and joint positions [106].

2. Relative Translation, Absolute Orientation (RTAO): the orien-
tation of all bodies is referenced to the world frame, while the transla-
tional positions are described in terms of preceding bodies. The number
of coordinates matches the number of DOFs in a planar system, but
may exceed it for spatial systems, so some additional motion constraints
might be required.

3. Maximal: the position of all bodies is referenced to the world frame,
leading to the maximum possible number of coordinates. Connection
constraints, supported by constraint forces and torques, must be added
to ensure bodies move together as required [173].

These systems are illustrated in Figure 7.3, which shows how each of them
describes a 2-link pendulum. Besides these different ways of referencing the
coordinates, there are also various methods of representing orientation [106],
but we will only consider Euler angles.

7.2.1 Formulating Joints

The differences between the coordinate systems with respect to the formu-
lation of the trajectory optimization problem amount to different methods
of describing joints. In this section, we will briefly outline how joints are
formulated in each coordinate system, using some common joint types as
illustrative examples.

A joint is a relationship between two rigid bodies that determines the relative
motion that can occur between them. We refer to the body that is closer
to the base (with respect to the number of preceding joints in the shortest
chain connecting it to the base) as the parent body, while the other is the
child. The connection between two bodies can be summarized by the joint
equation:

pi+1 = pi + i+1Ji
i+1Φi (7.1)

Here, pi is a position vector giving the location of the parent’s centre of
mass (COM) and orientation with respect to the world frame. Likewise,
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pi+1 gives the world-frame position of the child. The relative position vector
i+1Φi describes the position of the child with respect to a frame attached
to the parent. It contains the m degrees of freedom (DOFs) of the joint,
which are mapped to the world frame via the Jacobian, i+1Ji. An m-DOF
joint removes (6−m) DOFs of relative motion, referred to as the constrained
DOFs of the joint.

A joint is modelled as follows in each coordinate system:

• Minimal Coordinates: The joint is described in terms of i+1Φi. The
constrained DOFs do not need to be included in the coordinates, as
they are implicitly removed when the EOM are derived.

• RTAO Coordinates: The joint is described in terms of the tangential
components of the relative position. i+1ΦT

i , and the orientation com-
ponents of the absolute position vectors, pO

i and pO
i+1. Constrained

tangential DOFs are implicitly removed, as in the minimal formulation,
but constrained orientation DOFs must be removed explicitly through
restrictions defined in terms of pO

i and pO
i+1.

• Maximal Coordinates: The joint is described in terms of pi and
pi+1. Constrained DOFs are removed through explicit restrictions de-
fined for these vectors.

A complete model of a joint typically requires bounds on the range of motion,
and on the maximum force and power output of the actuators. These are
defined in the joint space, so the RTAO and maximal formulations still require
all relative DOFs, and their velocities, to be included in the problem as
auxiliary variables.

Connection Constraints

The explicit removal of DOFs in the non-minimal coordinate systems is ac-
complished using connection constraints. These are defined as follows at the
position level [174]:

• Translational restrictions remove translational DOFs, and have the
form,

(ρi+1 − ρi) · d̂ = 0 (7.2)

where ρi and ρi+1 are reference points on each of the bodies that the
joint is considered to act between, and d̂ is a unit vector giving the
forbidden direction of motion.
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• Orientation restrictions remove angular DOFs, and have the form,

d̂i · d̂i+1 = 0 (7.3)

where d̂i and d̂i+1 are unit vectors in the frames of the corresponding
bodies that must remain perpendicular.

The derivatives of these equations give the connection constraints at the
velocity and acceleration levels.

Ideally, all levels of constraint should be satisfied at all points in the finite
element, but this is not possible in practice, as the error inherent to numerical
integration means that the change in the value of a constraint expression
c(pi,pi+1) as calculated at the start and end of some time interval t = [t0, t0+
h] – that is,

c (pi(t0 + h),pi+1(t0 + h))− c(pi(t0),pi+1(t0))

h
, (7.4)

will not necessarily correspond to the analytically-calculated derivative,

ċ (pi(t0 + h),pi+1(t0 + h), ṗi(t0 + h), ṗi+1(t0 + h)) . (7.5)

For this reason, we apply only the acceleration constraints at the collocation
points, as this is necessary for an accurate model of the full system’s dy-
namics. The position and velocity constraints are applied at the initial mesh
point, limiting constraint drift to what can occur over a single timestep.

Example 1: Rotational Joints

Rotational joints prevent translation between rigid bodies, but allow one or
more DOFs of relative rotation.

In the maximal coordinate formulation, constraints must be applied to all
translational DOFs so that the points ρi and ρi+1 coincide. This can be
thought of as applying the restriction (7.2) using x̂0, ŷ0, and ẑ0 – the unit
vectors representing the principal axes of the world frame. These constraints
can only be satisfied if the translational DOFs of the child are allowed to be
piecewise-continuous – that is, if the continuity constraints (5.15c) are not
applied to them. This forces the bodies be reconnected at the start of each
finite element.

Unless the joint is spherical (allowing rotation in 3 DOFs), non-minimal for-
mulations will also require orientation restrictions to confine relative rotation
to the desired DOFs. For example, a 1-DOF rotary joint that restricts the
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Figure 7.4: Diagram of rotary joint.

parent and child such that ẑi ‖ ẑi+1, (see: Figure 7.4) can be modeled using
the orientation restrictions,

ẑi · x̂i+1 = 0, ẑi · ŷi+1 = 0. (7.6)

The constraint defining the relative angle α of the joint as a function of the
absolute coordinates has a similar form to the orientation restrictions:

cos(α) = x̂i · x̂i+1. (7.7)

Example 2: Prismatic Joints

A prismatic joint prevents relative rotation between bodies, but allows trans-
lation along one axis of the parent frame. Using minimal and RTAO coordi-
nates, a prismatic joint is modelled with a single axial coordinate, r.

The maximal formulation requires the rotational DOFs to be constrained
explicitly. Because no relative rotation is possible, the orientation restric-
tions defined in (7.3) can typically be simplified to constraints equating the
orientation DOFs. As with the redundant translational DOFs in the case
of the rotational joint, the continuity constraints should then be deactivated
for the orientation coordinates of the child.

To obtain the prismatic joint shown in Figure 7.5, which allows translation
along the shared z axis of the bodies, translational restrictions are applied
to the x and y axes as follows:

(ρi+1 − ρi) · ŷi = 0 (7.8a)

(ρi+1 − ρi) · ẑi = 0 (7.8b)

120



𝑟

Ƹ𝑧𝑖

Ƹ𝑧𝑖+1

𝜌𝑖+1

𝜌𝑖

Figure 7.5: Diagram of prismatic joint.

A modified version of this restriction, applied to the active axis, can be used
to calculate r in terms of the absolute coordinates:

(ρi+1 − ρi) · x̂i = r (7.9)

7.3 Experiments

The performance of the three coordinate formulations is compared over three
sets of trials, selected to highlight especially challenging aspects of modelling
articulated systems:

1. Pendulum Tests: As illustrated in the Motivation section, the ability
to model long serial chains efficiently is ultimately what separates the
performance of the various coordinate systems. The pendulum is a
useful model that tests this ability without the added complication of
nonsmooth dynamics.

2. Monopod Test – Minimal vs. RTAO: This preliminary test was
conducted as part of our first study into the performance of different
coordinate systems [23]. The aim is to compare the minimal and RTAO
formulations for a relatively simple planar problem involving contacts,
to justify the elimination of the minimal coordinate system from sub-
sequent tests on more complicated problems.

3. Legged Locomotion Tests – RTAO vs. Maximal: These updated
tests compare the RTAO and maximal formulations for planar and
spatial contact-implicit problems.
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Figure 7.6: Solve times for swing-up problem on planar pendulums of dif-
ferent lengths modelled using minimal (Min.), maximal (Max.) and RTAO
coordinates. The marker indicates the median value, the wider line is the
interquartile range, and the narrow line is the range.

7.3.1 Pendulum Tests

Planar Pendulum Swing-Up

The pendulum was modelled as a chain of uniform rigid rods of unit mass,
and a length of 0.5 meters. These links were connected by ideal rotary joints,
with the topmost joint unactuated. The task required the pendulum to swing
from rest in a hanging position, to rest in an inverted position. We assigned
a total time of 2 seconds to the trajectory, discretized into N = 50 finite
elements of fixed duration using a fourth-order Legendre-Gauss collocation
scheme (LG4). The objective was to minimize the actuator effort (the sum
of the squared actuator torques at all collocation points). The test was
repeated for pendulums consisting of 2, 4 and 8 links. Each problem was
initialized from 50 random seeds, which assigned small values to the position
variables. This test is the only one to include all three coordinate schemes.
The solve times achieved by the different coordinate formulations are plotted
in Figure 7.6. In a planar system, the RTAO formulation does not require the
burdensome restrictions on angular motion that might be called for in spatial
problems, so it is not as encumbered by motion constraints as the maximal
version, or by lengthy EOM as the minimal one. Unsurprisingly, it solves
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in a shorter time than the minimal coordinate version in all trials, but the
balance shifts in favor of the maximal formulation as more links are added
to the pendulum. Once the chain reaches eight links, the median solving
time for the maximal formulation is marginally shorter (294 seconds vs. 296
seconds).

A similar test was performed in the preliminary study [23] comparing minimal
and RTAO coordinates. This applied a two-stage solving approach, using a
first-order method followed by third-order Legendre-Gauss-Radau (LGR3)
collocation. The results of the updated version of this test are consistent
with these initial results, confirming that the advantage of the RTAO system
holds for different collocation schemes.

Spatial Pendulum Swing-Up

The model, task, timing parameters and timing parameters for this test are
the same as for the planar pendulum version, but the links of the pendulum
are now modelled as uniform cylinders with a radius of 2.5 centimeters, con-
nected by ideal spherical joints. In 3D, the coordinate representations of the
hanging and inverted positions are not unique, so it should be noted that the
initial hanging condition was specified by setting the orientations of all links
to zero with respect to the world frame, while the final inverted condition
was specified by rotating all links π

2
radians about the world-frame x axis.

Only a two-link pendulum model was trialed for this test. The minimal co-
ordinate formulation was also excluded, as the factors that disadvantaged it
in the planar test are exacerbated in the spatial case.

We found the convergence rate for this trial to be extremely low when initial-
ized using the small random scatter approach applied in the planar test, so
we instead seeded it using 50 guided scatter seeds [21] generated by applying
a small random perturbation to a successful position trajectory. This trajec-
tory was obtained by solving the problem with the default null guess.

The solve times for the 3D pendulum are given in Figure 7.7. In the spatial
case, the additional rotations added by each subsequent link make the EOM
for the RTAO model much more onerous, so the maximal formulation is able
to solve faster even when there are only two links in the chain.
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Figure 7.7: Solve times for swing-up problem on spatial pendulums of dif-
ferent lengths modeled using maximal (Max.) and RTAO coordinates. The
marker indicates the median value, the wider line is the interquartile range,
and the narrow line is the range.
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Figure 7.8: RTAO version of planar monopod model used in preliminary
experiment comparing minimal and RTAO coordinate systems.

7.3.2 Monopod Test – Minimal vs. RTAO Coordi-
nates

This test uses a planar monopod model with a backward-facing rotary knee
(Figure 7.8). It was required to perform a 5 meter missing the boat [30]
sprint from rest, minimizing the sum of the squared actuator torques over
all collocation points. The initial and final poses were not specified beyond
the requirement that it start at x = 0m and finish with x = 5m. A total
time of T = 2 seconds, discretized into N = 100 elements, was allocated to
perform the maneuver. The problem was solved using the same two-stage
approach as in the preliminary version of the planar pendulum test [23]. The
first-order stage was initialized using 50 random seeds, assigning small values
to the position variables.

The solving times for each angle configuration are shown in Figure 7.9. As
in both versions of the planar pendulum test, the RTAO coordinate system
performs better than the minimal one, with the more interesting point being
how much better it does: compared to the relatively minor difference in the
case of pendulum models having similar serial length, the improvement is
greater. This confirms that the contact constraints specifically are made
more tractable by the change.
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Figure 7.9: Solve times for planar monopod sprinting problem modelled using
minimal (Min.) and RTAO coordinates. The marker indicates the median
value, the wider line is the interquartile range, and the narrow line is the
range.
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Figure 7.10: Solve times for planar biped stopping (A) and spatial monopod
turning (B) problems using maximal (Max.) and RTAO coordinates. The
marker indicates the median value, the wider line is the interquartile range,
and the narrow line is the range.

Combined with the results of the remaining tests from this study, which con-
firm the advantage of the RTAO coordinate system over the minimal one for
spatial legged locomotion problems of increasing complexity [23], this out-
come provides sufficient justification for eliminating the minimal coordinate
system from subsequent comparisons.

7.3.3 Legged Locomotion Tests – RTAO vs. Maximal
Coordinates

Planar Biped Stop

The model, task parameters and solving procedure for this test are the same
as for the minimum-distance bipedal stopping trials in Chapters 5 and 6.
The results are plotted in Figure 7.10.A. As in the other planar examples,
the comparatively simple connections between rigid bodies in the 2D RTAO
formulation allow it to outperform the maximal one, despite the latter pro-
ducing shorter, sparser expressions for the contact variables.
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Spatial Monopod Turn:

The two configurations of the monopod model used in this test are show in
Figure 7.10.B. Both are configured to have unit total mass, with 10 percent
of the mass made up by the leg. The body is modelled as a cube, while
each leg segment is a uniform cylinder. A spherical hip joint connects the
body and leg. We included both the prismatic and rotary knee joints, as
each is likely to advantage a different coordinate formulation: the RTAO
system represents the prismatic joint using a single axial coordinate, which
avoids the need for difficult motion restrictions and coordinate conversions.
The rotary joint involves cumbersome orientation restrictions in both cases,
but the maximal system avoids the added burden of longer EOM caused
by referencing the position of the lower leg segment to two preceding rigid
bodies.

As in the spatial monopod examples in previous chapters, the motion task
can be described as a missing the boat sprint [30] with a right-angle turn in
the middle. The initial condition is set as grounded rest with zero rotation
of the body, and the leg fully extended, while the final condition was not
specified beyond requiring it the body to have travelled 2.5 meters in both
the x and z directions, and rotated π

2
radians about the y axis. An additional

task constraint required the body to have position x = 2.5, z = 0 meters
at the point [N

2
, 0], forcing the model to travel in a straight line in the x

direction before turning to fulfil the final condition. The trajectory was
discretized into N = 50 finite elements, and given a maximum total duration
of 2.5 seconds. No objective was assigned beyond minimizing the contact
penalties, so the purpose was just to find a feasible trajectory executing the
turning maneuver.

The results for each monopod configuration are plotted in Figure ??.D. The
better-performing coordinate system depends on the knee joint type: the
RTAO formulation solved the problem with the prismatic knee more quickly,
due to its simple, single-coordinate model of this joint, while the maximal
formulation was faster for the rotary knee, as this challenging joint model was
not compounded by lengthy, relatively-referenced expressions for positions on
the lower leg segment.

7.3.4 Discussion

Unlike the preliminary comparison between the minimal and RTAO coordi-
nate systems [23], the comparison between RTAO and maximal coordinates
did not reveal a decisive victor. Which coordinate system produces the most
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efficient problem formulation depends on the lengths of the serial chains
involved, and the joint composition of the system, but we can make the
following suggestions based on these empirical results:

• RTAO coordinates are likely to be the best option for planar problems,
as the burden of the additional motion constraints and associated vari-
ables outweighs the relatively small improvement in the simplicity of
the EOM and contact model unless the system includes very long serial
chains.

• Maximal coordinates have the advantage in spatial problems, particu-
larly if all joints are rotational.

In the planar biped test, and the prismatic 3D monopod test, the maximal
coordinate system produced more complicated models of the connections be-
tween segments, but simpler expressions for the contact variables. It solved
more slowly in both cases, indicating that the tractability of the joint mod-
els has a greater effect on performance than the tractability of the contact
model.

The results of this study suggest that neither RTAO nor the maximal coor-
dinates are an ideal option for modeling spatial motion. The examples where
each one underperformed were fairly predictable based on the complexity of
the joint models, so a better approach might be combining aspects of the two
coordinate systems such that each of their weaknesses are avoided.

This ”bespoke” coordinate scheme could use the translational restrictions
from the maximal formulation to connect subsystems of bodies involving
connections that can be modeled more efficiently using minimal or RTAO
coordinates – for example, the leg of the 3D monopod could be a subsystem
where the knee is modeled using a single coordinate, which is joined to the
body as it is in the maximal formulation. This approach would break up long
serial chains, while reducing the need for difficult relative motion restrictions.
We plan to test this idea in future work.

Another avenue for further development is the use of unit quaternions to
represent spatial orientation, rather than Euler angles. Quaternions have
the well-known advantage of avoiding the problem of singular configurations
referred to as gimbal lock [106], but implementation challenges include main-
taining the unit norm, and imposing limits such as range of motion bounds
that are more intuitively posed using angles. Maximal coordinates simplify
the application of quaternions, as the process of deriving the dynamic equa-
tions does not have to be adapted to the same extent as would be required
for other coordinate systems [175]. Maximal coordinate formulations using
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quaternions have been demonstrated with variational integration [?, 176],
and our future work will focus on incorporating them into the maximal coor-
dinate adaptation of orthogonal collocation described in this chapter.

7.4 Conclusions

The studies described in this chapter investigated whether absolute coor-
dinates tend to convey a performance advantage in trajectory optimization
problems by reducing the complexity and density of the equations of motion
and contact model. Although the combination of relative translational and
absolute orientation (RTAO) coordinates still tended to solve fastest for pla-
nar motion problems, the maximal formulation did perform better in most
spatial motion tests. The exceptions to these general observations suggest
that the optimal coordinate scheme for trajectory optimization might be
a hybrid of these two approaches, which divides the model into relatively-
referenced subsystems so long serial chains and complicated motion restric-
tions can both be avoided.
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Chapter 8

Problem Initialization

While simple template models can provide some useful insights regarding
the fundamental dynamics of legged maneuverability, investigating more de-
tailed, specific questions on how these actions should be performed also re-
quires the use of whole-body models. The downside of these models is that
they lead to computationally cumbersome constrained nonlinear problems
(CNLPs), especially when the additional demand of unscheduled contact
sequences is taken into account. These are more likely to produce poor,
locally-minimal solutions, as they inhibit the solver’s ability to explore the
solution space effectively.

In Chapter 3, we attempted to reframe this drawback as an advantage, argu-
ing that poor-quality solutions can also provide valuable information about
successful locomotion strategies when contrasted with better solutions. This
is only an effective approach under the assumption that there is sufficient
diversity in the pool of solutions to reveal the features separating successful
strategies from unsuccessful ones. There is also the underlying assumption
that it is possible to find a feasible solution at all, regardless of quality.

Both these assumptions relate to the seed vector used to initialize the solving
process. This aspect of formulating the trajectory optimization problem has
yet to be rigorously interrogated, however. In this chapter, we motivate the
importance of the seed by demonstrating its effect on the solvability of a chal-
lenging skateboarding problem. We then present a preliminary investigation
into different seeding approaches, focusing on how this affects solver perfor-
mance and the diversity of the resulting dataset. This study also introduces
a novel smooth-random seed generation technique, which we previously pub-
lished in the paper ’On the Effectiveness of Silly Walks as Initial Guesses for
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Optimal Legged Locomotion Problems’ [21].

8.1 Motivation: Solving the Ollie

An implicit assumption throughout this dissertation has been that, if an
NLP describes a physically feasible problem, it will be possible for the solver
to find a feasible solution to that problem. In this section, we will use the
example of a skateboarding trick called the Ollie to show that this is not
always the case without the correct seeding strategy.

Although the achievement of sick air is not currently regarded as an im-
portant priority in robotics research, the Ollie is interesting as an exam-
ple of a challenging object manipulation problem requiring an intricate se-
quence of diverse contact interactions to complete successfully. We have
used the Ollie to explore trajectory optimization with varied contacts before
[22], but required a combination of scheduled and complementarity-based
contact schemes to generate the motion. The velocity-discontinuous impact
model presented in Chapter 6 allows a fully contact-implicit formulation of
the problem [26].

The objective of the Ollie is to get all four wheels of the skateboard off the
ground. The rider stamps on the tail of the board while jumping up, so it
bounces off the ground and propels the board into the air. Once airborne,
the feet manipulate the board to execute further aerial tricks, or just position
it for a safe landing.

Our model of a skateboard and humanoid rider is shown in Figure 8.1. We
also attempted the test using the simplified model on the right of this figure,
which isolates the contact problem by replacing the rider with a pair of point
masses actuated by external forces. Three different types of contact are
present in the system:

1. Partially elastic (e = 0.6), frictionless contact between the tail of the
skateboard and the ground.

2. Inelastic, high-friction (µ = 1.6) contact between the feet and skate-
board. The position of the contact point with respect to the board is
variable, so the feet can connect anywhere along the deck.

3. Inelastic, frictionless contact between the wheels of the skateboard and
the ground. (The wheels are modeled as simple contact points offset
below the deck, as they are only required to support the board in this
example.)
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Figure 8.1: (Left) Planar model of skateboard and bipedal rider. (Right)
Simplified system using two point masses instead of a full-body rider model.

We formulated the problem using Legendre-Gauss collocation with P = 2
collocation points and N = 40 finite elements, with maximum duration hm =
0.02. Although we have previously used P = 4 in most examples, we selected
shorter, lower-order elements for this problem to allow more opportunities
for contact state changes than an equivalently-sized fourth-order formulation
would. The initial and final conditions have the humanoid standing upright
on the board with both wheels grounded, and the system initially at rest. An
additional air condition requires both wheels to be more than 0.2 m above
the ground at point [n, p] = [20, 0].

We tried four seeding approaches to initialize the problem:

1. null seed: the default initial vector.

2. perturbed null seed: the position and contact variables are assigned
small, random values.

3. perturbed null seed with hint: same as previous, but the height of
the board tail is fixed to zero at the point [10, 0].

4. perturbed solution: a previous successful result, perturbed by small
random values.
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Both models reliably generated the trick when given a hint specifying the
initial tail contact, or a perturbed solution as a seed (strategies 3 and 4).
The average solving time for the successful attempts on the full-body model
was around 43 minutes. Unfortunately, neither model produced a feasible
solution from the null seed, or from 20 randomized null seeds. This high-
lights a key challenge of contact-implicit trajectory optimization: in many
cases, the desired result lies within a small basin of attraction that is exceed-
ingly difficult to discover without some pre-existing knowledge of the contact
sequence.

Although seeding with perturbed solutions is not a practical method, as it
requires the problem to be solved at least once before, the success of this
approach shows that the discovery of complex contact sequences is possible,
given a seed of sufficient quality. This demonstrates that initialization is
a critical aspect of formulating a successful contact-implicit trajectory op-
timization problem, but further research is needed to determine precisely
what “sufficient quality” means in this context, and how these seeds can be
obtained for truly unknown contact sequences.

The two-stage trajectory optimization strategy proposed by Marcucci et al.
[149] demonstrates that the solution to a simplified version of the problem
provides an effective seed, indicating that reduced dynamic models, such as
centroidal [104] or quasistatic [109] approximations, could be useful for this
purpose. These scaled-down problems must still be initialized themselves,
however, so they provide an intermediate step between random initialization
and the complete problem rather than a replacement for random initializa-
tion. Additionally, the failure of the skateboard-only model in this example
shows that decreasing the dynamic complexity without improving the initial
seed is still unlikely to yield a result in particularly challenging contact-rich
cases.

Even for problems that can be solved from the null seed, it is not a foregone
conclusion that the result will be a good solution. It is necessary for our
broader goal of generating a set of diverse solutions to start the solving pro-
cess from a variety of points, so the solution space can be more fully explored.
The remainder of this chapter will compare different random initialization
techniques.

134



(A) silly walk

(B) undirected scatter

(C) directed scatter

Figure 8.2: Different types of random initial seed compared in this paper.

8.2 Random Initialization Methods

The most straightforward method of generating a random seed for a problem
is simply assigning random values to all variables (as we have done in most
examples throughout this dissertation) but this contradicts the traditional
wisdom regarding problem initialization. Ideally, the seed should resemble
the intended solution as closely as possible, but this is not practical if the
target motion is not well-specified. It is a reasonable assumption that any
predetermined legged locomotion trajectory would be closer to a feasible
solution than the null guess, but this approach risks biasing the results: if a
gallop is given as the input to a problem, and the solution is also a gallop, it
is less likely to be because the gallop is genuinely the optimal gait for that
scenario so much as a special case of ”GIGO” (gallop in – gallop out).

The bridge between these opposing goals would seem to be a method of
generating random locomotion trajectories. The method we propose to ac-
complish this is smooth-random interpolation linking an irregular sequence
of foot impacts – SILII for short, leading to the descriptive name we have
given to the resulting trajectories: silly walks. Our aim is to compare the
effectiveness of silly walks to two forms of randomly-sampled seed, illustrated
in Figure 8.2:
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1. Undirected scatter: generated by randomly sampling the variables
from the range [−v, v], or [0, v] if the variable is positive-valued, where
v is a constant termed the variation parameter. (Figure 8.2B)

2. Directed scatter: these are generated in the same way as the undi-
rected scatter, but some variables are randomly varied about simple
guide trajectories so the model’s motion loosely follows the expected
path. For example, if a variable x represents the horizontal centre of
mass (COM) coordinate of a robot travelling five metres, an example of
a guide trajectory might be a straight line from zero to five. A random
value with magnitude ≤ v is then added to the guide at each point to
give the value assigned to x. (Figure 8.2C)

The efficacy of these methods is also likely to be affected by the selection of
variables that are assigned non-null values, and the range of possible vari-
ation. To test this, we trialed the scatter techniques with five variation
parameters evenly distributed between π

10
and π

2
, and defined three levels of

variable incorporation for all methods:

1. Level 1: only the position variables are included.

2. Level 2: position and ground reaction force variables are included.

3. Level 3: all variables are included.

For the first two levels, the uninitialized variables were reset to the default
values (None for the modelling language used).

The experiments in this chapter use a two-stage solving method [149]: the
simplified first stage reduces the collocation to a first-order (FO) method,
while the final stage uses third-order Legendre-Gauss-Radau (LGR3) collo-
cation. The same number of finite elements is used for both stages, with the
FO problem formed by deactivating collocation points.

8.2.1 Generating Silly Walks

The SILII method can be divided into four steps:

1. Trunk position: a smooth trajectory for the base link (usually the
body) is generated.

2. Stance leg positions: a Markov chain is used to generate a foot
contact sequence, and leg positions are calculated accordingly.

3. Swing leg positions: smooth trajectories are generated linking the
leg positions between liftoff and touchdown events.
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4. Other variables: with the positions completely defined, all other vari-
ables are calculated to satisfy at least some of the constraints.

Trunk Position

Two types of smooth functions are used in the generation of the trunk mo-
tions. Random waves are created from k sinusoidal components, where the
magnitude A, frequency ω and phase φ of each are sampled from a random
distribution over a specified range:

w(n) =
k∑
i=1

Aicos(win− φi) (8.1)

A decaying variation, including an exponential with randomly-selected time
constant τ , is also used:

d(n) =
k∑
i=1

Aie
−τncos(win− φi) (8.2)

For the documented experiments, the number of components per function,
and the ranges from which the random parameters were selected were coarsely
tuned to values that tended to produce plausible values of the variables in
question. Likewise, the choice of whether a wave or decaying wave was used
was made by inspection, based on previously-generated trajectories.

Locomotion tasks are typically posed as boundary-value problems, with spe-
cific values imposed on the positions and/or velocities at the initial and final
simulation points. We generate smooth trajectories that satisfy these con-
straints by combining manipulated versions of the random basis functions
into a velocity profile that has the required endpoint values, and results in
the required final position when integrated from the initial point:

1. a function a1(n) is generated, and then scaled and shifted such that its
value at n = 1 is the desired initial velocity, and its value at n = N
is zero. Another function aN(n) with aN(1) = 0 and aN(N) matching
the final velocity is generated and added to a1(n) to give a(n).

2. Assuming all timesteps to have duration hm, a(n) is integrated using
the implicit euler method. A function b(n) with initial and final values
of zero is generated and scaled such that its integral, when added to
the integral of a(n), gives the difference between the initial and final
positions.
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Figure 8.3: Process for randomly specifying the foot contact mode at each
finite element.

3. The sum of a(n) and b(n) gives ẋ0(n), the guess trajectory for the
velocity. This is then integrated to give the position guess x0(n).

If the position and velocity states at the initial and final points are not
fully defined, the missing values are randomly selected.

If the resulting x0(n) includes values that exceed the expected range of the
variable, it is discarded and a new guess trajectory is generated.

Stance Leg Positions

The flow chart in Figure 8.2.1 summarizes how the contact state is specified
at each finite element. A random contact sequence for each foot is generated
based on a Markov chain with transition probabilities Ptd for touchdown
and Plo for liftoff. Starting from the contact states at the initial position, a
random number between zero and one is generated and the state at the next
element is assigned accordingly. For the described experiments, we selected
Ptd = Plo = 0.1.
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The current position of the model can force or prevent a transition event:
the foot contact is assumed to be static, and liftoff will occur if the leg can
no longer reach the foot contact position. Similarly, touchdown cannot occur
if the leg cannot reach the ground, so the model will remain in flight. If a
touchdown is feasible, a contact position will be randomly chosen within the
forward-reaching range of the leg.

Swing Leg Positions

Quadratic splines are used to link the foot positions from each liftoff event
to the next touchdown. The basic spline is defined as a function of the
horizontal position of the foot xf :

s(xf ) = −(xf − xlo)(xf − xtd) (8.3)

where xlo and xtd are the positions at liftoff and touchdown. The spline is
then scaled so its maximum height is a random value between zero and the
half of the minimum value of the body height over that swing phase.

The leg positions are then calculated so the foot moves along the spline. If
a position is not reachable, the leg is assigned its last feasible position.

Other Variables

With the position trajectory completely defined, the velocities and accelera-
tions can be calculated to satisfy the FO integration constraints.

If a foot is on the ground at a point, the vertical ground reaction force acting
on that foot is assumed to be equal to the body weight, and the instantaneous
coefficient of friction is assumed equal to mus, with the direction of friction
depending on whether the model is performing an acceleration or deceleration
task.

The actuator torques were assigned random magnitudes between zero and
their maximum output, with directions corresponding to the velocity of the
joint at that point. If the model includes hard joint stops, the associated
rebound torques are assumed to be zero.

Finally, all auxiliary variables are calculated based on the values that have
already been defined.

139



𝜃1

𝑥, 𝑦

𝜃2

𝜃𝑏(A) 8-link 

pendulum

𝜃1

𝜃2

𝜃8

𝑙

⋯

𝜃𝑓1

𝑥, 𝑦

𝜃𝑓2

𝜃𝑏

𝜃ℎ1

𝜃ℎ2

(B) hopper

(C) quadruped

Figure 8.4: Models used to compare the initialization methods.

8.3 Comparison between Random Initializa-

tion Methods

Through tests on three different models, we evaluate their effects on solv-
ing time, robustness and the diversity of the solutions produced, and also
examine how the performance of each method is affected if different vari-
ables are initialized, or if the range of the values assigned to the variables is
changed.

8.3.1 Models

For this initial proof-of-concept experiment, we elected to test the meth-
ods using only planar models. We therefore replaced the spatial monopod
used in previous chapters with a planar monopod. The prismatic knee was
changed to a rotary joint so the same SILII algorithm could be used for both
models with limited modification. We also replaced the biped model used
before with a quadruped, to allow a wider variety of possible foot contact se-
quences. Besides these two, an eight-link pendulum was included to provide
a comparison without the discrete dynamic elements, so the impact of the
contact model on the performance of the initialization methods can be iso-
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lated. These models are shown in Figure 8.3.1. All contact-implicit problems
used the continuous contact model described in Chapter 4.

The tasks each model was required to perform are as follows:

1. Pendulum: an underactuated swing-up minimizing actuator effort
(sum of torques squared).

2. Monopod: a 10-metre sprint from rest minimizing actuator effort.

3. Quadruped: a 10-metre sprint from rest minimizing actuator effort,
and gait termination from a fast gallop minimizing stopping distance.

8.3.2 Performance Metrics

The performance of the methods was compared across three categories:

1. reliability: the percentage of guesses that successfully converged to a
solution out of the total attempted.

2. solve time: the solving time for the pre-solve stage, which is directly
initialized by the random guess, and the total solving time were both
compared.

3. diversity: to quantify the diversity, 20 solutions were selected at ran-
dom for each method and the position trajectories for all coordinates
were concatenated to give a single vector for each solution. The dis-
tance between every combination of vectors was then calculated as the
2-norm of the distance between them, and then the median of the dis-
tances was returned. In tests where an objective function was applied
over and above minimizing the complementarity penalties, the resulting
costs were compared as an additional diversity metric.

8.3.3 Pendulum Test

As before, the swing-up motion was defined by two fully-specified boundary
conditions: initial rest hanging with all angles at zero, and final rest standing
upright with all angles at π. We allocated T = 2 seconds for the movement,
and the trajectory consisted of N = 100 finite elements. Actuator effort was
minimized using the cost function

J =
N∑
n=1

8∑
i=1

τ 2i [n] (8.4)
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where τi[n] is the torque acting at the top of the ith link at the nth ele-
ment.

As an analogue for the silly walk, a smooth-random swing was created using
the random wave function described in Section 8.2.1 to create a smooth
trajectory from zero to π for each link. The same wave function created the
guides for the directed scatter approach.

The results of the swing-up test are shown in Figure 8.5. Contrary to what
was expected, the undirected scatter method produced faster, more reliable
convergence than either of the more directed methods, however, the silly
walk equivalent produced the most diverse solutions. A comparison of the
cost values, shown in Figure 8.6, supports this: the range of costs achieved
was wider for the smooth-random guess than it typically was for the scatter
methods.

It must be noted that a low median cost should not be interpreted as a
benefit of a method without further tests. The specific cost function used
is likely to reward trajectories with little movement, so guesses where the
position does not vary widely – especially between adjacent points –, would
put the solver in a good region. This is sufficient explanation for why the
undirected scatter - especially with a low variation parameter - tends to
produce the lowest costs, and why the median cost of the smooth-random
swing results is lower than that of the similarly-diverse directed scatter set.
A different objective, such as minimum time, might produce very different
relative magnitudes.

8.3.4 Monopod Test

To complete the sprint task, the monopod was required to start at rest in
any pose with x = 0, and finish in any position or velocity state with x = 10.
It was allowed T = 3 seconds to perform the motion and the trajectory
was divided into N = 100 finite elements. Two cost functions were used:
a feasibility objective where the only goal was minimizing the complemen-
tarity penalties, and a minimum-effort objective equivalent to 8.4 from the
pendulum test, but with the addition of the penalty terms.

The directed scatter used a linear function from zero to ten as a guide for x
and a constant as a guide for y.

The results for the feasibility objective are shown in Figure 8.7. As with
the smooth-random guesses in the pendulum test, initializing all variables
with a silly walk yields the most diverse solutions. When a higher variation
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swing-up for the silly walk equivalent (SW), undirected (US) and directed
scatter (DS).
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Figure 8.6: Cost values for the pendulum swing-up. The markers indicated
in the legend indicate the median values, while the interquartile ranges are
represented by bars for the undirected (US) and directed scatter (DS) and
by the orange area for the silly walk equivalent (SW).

parameter is applied, the directed scatter achieves similar performance in
both diversity and solving time, but its success rate is much lower.

The minimum-effort trial only compared the silly walk to the directed scatter
with a variation parameter v = 0.3π. In both cases, all variables were ini-
tialized. The reliability of each remained consistent with the feasibility trial:
68 percent of silly walks converged, while only 20.4 percent of the scattered
guesses were successful. The results for solve time and diversity are shown
in Figure 8.8. While the total times are much longer than those achieved for
the feasibility objective, the relative performance between the two methods
is consistent with this test, as are both the distance norm and cost diversity
metrics.

8.3.5 Quadruped Test

The sprint task for the quadruped was defined in the same way as for the
monopod. For the rapid stopping task, its initial condition was sampled
from a high-speed gallop, while the final condition required the horizontal
velocity ẋ ≤ 0, and all feet to be grounded. Both consisted of N = 100
finite elements, and the sprint was completed in T = 5 seconds, while the

144



25

50

su
cc

es
s [

%
]

position position & GRF all

200

300

to
ta

l t
im

e 
[s

]

0

10

pr
e-

so
lv

e 
tim

e 
[s

]

0.3 0.6 0.9 1.3 1.6

20

30

di
ve

rs
ity

0.3 0.6 0.9 1.3 1.6 0.3 0.6 0.9 1.3 1.6

variation parameter
SW US DS

Figure 8.7: Success rate, solving time and diversity for the feasible sprint
on the hopper for the silly walk (SW), undirected (US) and directed scatter
(DS).

145



SW DS

10

20

pr
e-

so
lv

e 
tim

e 
[s

]

SW DS

500

600

to
ta

l t
im

e 
[s

]

SW DS
30

35

di
ve

rs
ity

SW DS
20.0

22.5

25.0

co
st

Figure 8.8: Solving time, diversity and cost comparison for minimum-effort
sprint on the hopper model initialized with a silly walk (SW) vs. a directed
scatter (DS). Bars indicate the interquartile range, while the point indicates
the median value.

stop was allocated 8 seconds. Only a feasibility objective was tested for each
task.

The guess trajectories were generated in the same way as for the monopod.
The final x position for the directed scatter in the stop case was set to the
box benchmark for distance – that is, the distance a rigid body with the same
mass would take to stop from the specified initial velocity sliding on a surface
with the same coefficient of friction. Only the fully-initialized versions of the
silly walk and directed scatter with v = 0.3π were compared.

For both trials, the silly walk solved much more reliably: its success rates
were 80.6 and 25 percent for the sprint and stop respectively, compared to 59
and 9.4 percent for the guided scatter. The other metrics for both trials are
shown in 8.9. While the diversity results were roughly consistent between
the two tasks, the total solving times for the silly walks tended to be shorter
than the scatter’s for the sprint test and longer for the stop test. Despite
this, the silly walk is still likely to produce a larger number of solutions over
time due to its superior robustness.
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indicates the median value.

8.4 Discussion

Throughout all tests, the silly walks consistently produced highly diverse
solutions. A scatter can match this performance if the values are varied
sufficiently widely, but the reliability and speed of convergence tend to decline
as the variance is increased. Although the time performance of the silly walk
tended to be highly task- and model-dependent, it was consistently far more
robust for problems involving contacts, which would likely allow it to produce
more solutions in a given time span over successive attempts.

Including more variables in the guess trajectory did not appear to have a
strong effect on the convergence metrics, but fully-initializing the problem
did appear to improve the diversity of the solutions.

This is only a proof-of-concept, and the SILII method used in these experi-
ments is still rudimentary, but overall, the results presented demonstrate that
even this unrefined way of generating semi-feasible smooth-random motions is
superior to simply feeding random vectors into the solver, as it allows the so-
lution space to be traversed widely without compromising convergence.

The effectiveness of the SILII method could potentially be improved with
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some simple modifications:

• Excluding infeasible leg positions that say, put the mid-leg joint below
the ground or over-extend the upper joint’s range of motion.

• Distributing the body weight over all grounded feet, rather than as-
signing the full body weight at each.

• Calculating the actuator profiles based on the equations of motion in-
stead of randomizing them according to the direction of motion.

• Taking the possibility of sliding into account when generating the con-
tact pattern.

8.5 Conclusions

This chapter compared three different random initialization methods for
the trajectory optimization of legged locomotion problems. Silly walks -
randomly-generated gaits that satisfy some of the constraints - were found
to generate diverse solutions without compromising convergence to the extent
that widely-varied scatter trajectories did.

The superior performance of the silly walk in the monopod and quadruped
trials over the pendulum swing-up suggests that its success is tied to the
near-feasible resolution of the contact constraints - a particularly challenging
aspect of modeling legged motion. This type of guess could therefore also
be a favorable option for optimal motion planning of manipulation tasks, as
these share the problem of unscheduled, discrete impact events.

The SILII method for generating random gaits presented here is still prim-
itive, but these tests indicate that it is worth applying and developing fur-
ther.
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Chapter 9

Conclusions and Future
Work

9.1 Conclusions

Legged systems – biological or mechanical – are intractably complex and
redundant, with every action representing a choice made from an infinite
variety of alternatives. Optimization is vital to understanding legged loco-
motion, as it gives us a means of explaining the order that emerges from this
chaos of possibilities. Consequently, trajectory optimization is an especially
powerful tool for investigating legged locomotion problems.

The first aim of this project was to develop a framework for using trajec-
tory optimization to study the largely unexplored field of rapid, high-speed
maneuverability. In Chapter 2, we collected examples of how it has been ap-
plied to legged locomotion research thus far, finding it to have demonstrated
usefulness in the following roles:

1. Motion Synthesis: Trajectory optimization can generate feasible so-
lutions to largely undefined tasks. This is essential to studying ma-
neuverability, as motion patterns for transient maneuvers are not as
well-established as constant-speed gaits.

2. Morphological Design: System parameters can be included in the
optimization problem, allowing morphology and motion to be designed
simultaneously. Further, trajectory optimization provides an objective
method to compare the performance of different system configurations.
This lets us study the contributions of particular morphological features
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to maneuverability.

3. Inverse Optimization: Trajectory optimization can also be used ”in
reverse” to discover the objectives that a (typically biological) system
is prioritizes during maneuvers.

We selected the direct collocation approach, where the trajectory optimiza-
tion problem is converted to a constrained nonlinear program (CNLP) that
can be solved using existing large-scale algorithms. While trajectory opti-
mization of minimum-order template models confers the most general find-
ings, it is necessary to anchor these templates in more detailed, specific
models to discover the mechanisms that specific systems use to achieve rapid
maneuverability [5]. Furthermore, it is necessary to use contact-implicit
methods [20] so the most favorable foot contact sequences can be discov-
ered. The use of higher-order, contact-implicit models exacerbates noted
drawbacks of trajectory optimization, however: it makes the problems more
computationally cumbersome, and therefore more likely to produce inferior,
locally-minimal solutions.

For this reason, we chose to adapt the ”Monte Carlo” approach proposed
by Haberland and Kim [42, 4]. Rather than solving each problem for many
randomized models, we solve it many times from randomized initial seeds
for a single model. This produces a large dataset of solutions of varying
quality, which can be analyzed to identify the features contributing to more
successful maneuvers.

In Chapter 3, we demonstrated this approach for two test cases concerning
the rapid termination of high-speed gaits:

1. Termination of human sprinting with and without arms – a morpholog-
ical design problem demonstrating how free limbs are able to improve
maneuverability by improving stability.

2. Termination of rotatory galloping in quadrupeds – a motion synthesis
problem, where the described framework was enhanced by an itera-
tive optimization technique that produced families of incrementally-
improving stopping motions from each random seed.

Having established how to apply trajectory optimization to questions of
rapid maneuverability, the remainder of the project focused on improving
the tractability of the associated CNLPs to better facilitate the generation
of these large collections of trajectories. We limited the scope to the prob-
lem formulation, rather than addressing it at the solver level. The primary
technical contributions described in these chapters are as follows:
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• Chapter 5 adapted a complementarity-based time-stepping scheme for
nonsmooth dynamic systems [129, 12] to work with orthogonal colloca-
tion of arbitrary order. Higher-order collocation gives a more favorable
trade-off between problem size, and the accuracy of the simulation.

• Chapter 6 modified the contact-implicit orthogonal collocation scheme
described in the preceding chapter to include discontinuous transitions
between contact phases. This extended the contact behaviors it is able
to model to include partially-elastic collisions, and impacts without
collision.

• Chapter 7 proposed two coordinate formulations for rigid-body sys-
tems that improve the tractability of trajectory optimization problems
when compared to the widely-used minimal coordinate formulation
[106]: Relative Translation, Absolute Orientation (RTAO) coordinates
reference the orientation of all bodies to the inertial frame, leading
to more computationally-efficient planar problems, while maximal co-
ordinates reference all coordinates to the inertial frame and were the
best-performing option for spatial problems.

• Chapter 8 presented a preliminary method of generating random,
gait-like motions termed ”Silly Walks”, which were found to offer a
more favorable balance of tractability and solution variety than other
forms of random seed.

9.2 Perspective

In the conclusion of the second case study in Chapter 3, we declare that
”the primary goal of the study was to determine whether a large set of
incrementally-improving solutions produced by trajectory optimization would
yield identifiable trends.” Of course, that is not entirely true: the primary
goal of the study was clearly to find out how a fast-moving quadruped should
bring itself to a sudden halt. Particularly at the time that study was con-
ducted, when our fledgling research group did not yet have a robot to its
name, nor the subsequently-developed technology to reconstruct the motion
of filmed cheetahs in 3D [177], the standard of proof associated with such a
goal seemed too lofty for us to satisfy.

This reticence points to the fundamental limitation of this thesis: the lack
of an ultimate validation step. While we have described our framework for
investigating unknown maneuvers with trajectory optimization, and the ways
we have adapted the formulation of these problems to support it, we have

151



yet to show that the results it gives are grounded in reality.

There is good reason to be skeptical of trajectory optimization. In a popu-
lar textbook on Convex Optimization [178], local optimization of nonlinear
problems is deemed to be ”more art than technology”. Even assuming that
the model itself is a reasonable representation of reality, there is always a
question of whether a superior feasible trajectory exists, but is more difficult
to extract from the solution space, or whether a subtle shift in some parame-
ter or bound might produce a radically different outcome. (In this regard, it
might be helpful to introduce a degree of randomness into the system models
in our future work.)

When interpreting the results of these studies, we must always keep the dis-
tinction between optimal and optimized locomotion in mind [32]. A mean
value of some characteristic extracted from a collection of optimized trajecto-
ries might be an indication of how that characteristic contributes to successful
motion, or it might just indicate which solutions a given numerical process
produces most frequently.

To truly complete this thesis, the first priority of our future work – my first
act as Dr. Shield, as it were – should be to pursue physical validation.
One way to do this would be to extend the work to its logical conclusion of
optimization-inspired control, and confirm that the strategies obtained are,
indeed, viable ways to execute aggressive maneuvers on hardware. Another
would be to (somewhat literally) walk before we try to run, by applying our
approach to a more well-trodden legged locomotion problem such as walking
initiation or termination in humans, and evaluating whether the conclusions
match established results.

9.3 Opportunities

9.3.1 ”Grey Box” Motion Planning

In recent years, many of the most spectacular advances in robotic motion
planning have used model-free, black box methods – for example, the use
of reinforcement learning in simulated environments to teach the quadruped
ANYmal agile and robust motion skills [15, 16]. While advances in robust
trajectory optimization [36, 40, 3] have improved the adaptability of solu-
tions to uncertainty in the model or environment, it is still a decidedly white
box (model-based) approach, with flexibility and computational efficiency re-
maining challenging in online applications. For complicated but well-specified
tasks such as the MIT Cheetah 3’s desk jump [1], however, trajectory op-
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timization is a more effective method of generating a feasible solution from
scratch.

Given the complementary nature of trajectory optimization and machine
learning, there is potential for the two methods to enhance each other when
combined in a grey box approach. An immediately obvious option is the
possible use of the large datasets of local minima our proposed framework
generates as training data for synthesizing successful maneuvers. Prior work
has demonstrated the ability of trajectory optimization data to teach robots
motion primitives for walking [179], and improve the efficiency of high-
dimensional policy search algorithms for complex tasks including legged lo-
comotion [105, 180].

Considering the computational cost of contact-implicit trajectory optimiza-
tion, and the difficulty of finding viable contact sequences for complex tasks
without a good initial seed [26], there is a clear case for bilevel approaches
that offset the contact discovery problem to gradient-free methods that might
handle it more efficiently. TrajectoTree [150] is a recent example of a combi-
nation along these lines.

Conversely, black box approaches could guide trajectory optimization by pro-
viding a rapid means of synthesizing favorable seed trajectories. ’Memory
of motion’ methods [152, 181] have shown that neural networks trained on
the results of offline trajectory optimization can generate effective seeds for
optimal control – an approach that extends logically to trajectory optimiza-
tion.

9.3.2 Method Advancements

It is likely that major performance advances in trajectory optimization are
only possible through developments at the solver level, as the general-purpose
solvers currently in use are not optimized for the specific numerical challenges
arising in these problems. Current work towards this goal includes that of
Howell et al. [182].

There is, however, still room for improvement in the formulation and initial-
ization of these problems. Some openings for future work we have identified
over the course of the research discussed in this dissertation include:

• the incorporation of recent bilevel and convex optimization approaches
to handle the contact problem more effectively [138, 116, 117, 136].

• a trajectory-optimization-specific ”minimum rotation” coordinate for-
mulation that combines the most efficient joint models from the RTAO
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and maximal coordinate formulations.

• improved problem initialization, be that through further development
of the ”Silly Walk” method [21], an incremental process incorporating
reduced-order versions of the problem [149], the aforementioned ’mem-
ory of motion’-inspired approach [152], or some combination thereof.
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