3,492 research outputs found

    Planar Matching in Streams Revisited

    Get PDF
    We present data stream algorithms for estimating the size or weight of the maximum matching in low arboricity graphs. A large body of work has focused on improving the constant approximation factor for general graphs when the data stream algorithm is permitted O(n polylog n) space where n is the number of nodes. This space is necessary if the algorithm must return the matching. Recently, Esfandiari et al. (SODA 2015) showed that it was possible to estimate the maximum cardinality of a matching in a planar graph up to a factor of 24+epsilon using O(epsilon^{-2} n^{2/3} polylog n) space. We first present an algorithm (with a simple analysis) that improves this to a factor 5+epsilon using the same space. We also improve upon the previous results for other graphs with bounded arboricity. We then present a factor 12.5 approximation for matching in planar graphs that can be implemented using O(log n) space in the adjacency list data stream model where the stream is a concatenation of the adjacency lists of the graph. The main idea behind our results is finding "local" fractional matchings, i.e., fractional matchings where the value of any edge e is solely determined by the edges sharing an endpoint with e. Our work also improves upon the results for the dynamic data stream model where the stream consists of a sequence of edges being inserted and deleted from the graph. We also extend our results to weighted graphs, improving over the bounds given by Bury and Schwiegelshohn (ESA 2015), via a reduction to the unweighted problem that increases the approximation by at most a factor of two

    Almost-Smooth Histograms and Sliding-Window Graph Algorithms

    Full text link
    We study algorithms for the sliding-window model, an important variant of the data-stream model, in which the goal is to compute some function of a fixed-length suffix of the stream. We extend the smooth-histogram framework of Braverman and Ostrovsky (FOCS 2007) to almost-smooth functions, which includes all subadditive functions. Specifically, we show that if a subadditive function can be (1+ϵ)(1+\epsilon)-approximated in the insertion-only streaming model, then it can be (2+ϵ)(2+\epsilon)-approximated also in the sliding-window model with space complexity larger by factor O(ϵ1logw)O(\epsilon^{-1}\log w), where ww is the window size. We demonstrate how our framework yields new approximation algorithms with relatively little effort for a variety of problems that do not admit the smooth-histogram technique. For example, in the frequency-vector model, a symmetric norm is subadditive and thus we obtain a sliding-window (2+ϵ)(2+\epsilon)-approximation algorithm for it. Another example is for streaming matrices, where we derive a new sliding-window (2+ϵ)(\sqrt{2}+\epsilon)-approximation algorithm for Schatten 44-norm. We then consider graph streams and show that many graph problems are subadditive, including maximum submodular matching, minimum vertex-cover, and maximum kk-cover, thereby deriving sliding-window O(1)O(1)-approximation algorithms for them almost for free (using known insertion-only algorithms). Finally, we design for every d(1,2]d\in (1,2] an artificial function, based on the maximum-matching size, whose almost-smoothness parameter is exactly dd

    A Simple, Space-Efficient, Streaming Algorithm for Matchings in Low Arboricity Graphs

    Get PDF
    We present a simple single-pass data stream algorithm using O((log n)/eps^2) space that returns an (alpha + 2)(1 + eps) approximation to the size of the maximum matching in a graph of arboricity alpha

    Scalable and Energy-Efficient Millimeter Massive MIMO Architectures: Reflect-Array and Transmit-Array Antennas

    Full text link
    Hybrid analog-digital architectures are considered as promising candidates for implementing millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems since they enable a considerable reduction of the required number of costly radio frequency (RF) chains by moving some of the signal processing operations into the analog domain. However, the analog feed network, comprising RF dividers, combiners, phase shifters, and line connections, of hybrid MIMO architectures is not scalable due to its prohibitively high power consumption for large numbers of transmit antennas. Motivated by this limitation, in this paper, we study novel massive MIMO architectures, namely reflect-array (RA) and transmit-array (TA) antennas. We show that the precoders for RA and TA antennas have to meet different constraints compared to those for conventional MIMO architectures. Taking these constraints into account and exploiting the sparsity of mmWave channels, we design an efficient precoder for RA and TA antennas based on the orthogonal matching pursuit algorithm. Furthermore, in order to fairly compare the performance of RA and TA antennas with conventional fully-digital and hybrid MIMO architectures, we develop a unified power consumption model. Our simulation results show that unlike conventional MIMO architectures, RA and TA antennas are highly energy efficient and fully scalable in terms of the number of transmit antennas.Comment: submitted to IEEE ICC 201

    An Estimator for Matching Size in Low Arboricity Graphs with Two Applications

    Get PDF
    In this paper, we present a new simple degree-based estimator for the size of maximum matching in bounded arboricity graphs. When the arboricity of the graph is bounded by α\alpha, the estimator gives a α+2\alpha+2 factor approximation of the matching size. For planar graphs, we show the estimator does better and returns a 3.53.5 approximation of the matching size. Using this estimator, we get new results for approximating the matching size of planar graphs in the streaming and distributed models of computation. In particular, in the vertex-arrival streams, we get a randomized O(nϵ2logn)O(\frac{\sqrt{n}}{\epsilon^2}\log n) space algorithm for approximating the matching size within (3.5+ϵ)(3.5+\epsilon) factor in a planar graph on nn vertices. Similarly, we get a simultaneous protocol in the vertex-partition model for approximating the matching size within (3.5+ϵ)(3.5+\epsilon) factor using O(n2/3ϵ2logn)O(\frac{n^{2/3}}{\epsilon^2}\log n) communication from each player. In comparison with the previous estimators, the estimator in this paper does not need to know the arboricity of the input graph and improves the approximation factor for the case of planar graphs

    Hardness of Exact Distance Queries in Sparse Graphs Through Hub Labeling

    Full text link
    A distance labeling scheme is an assignment of bit-labels to the vertices of an undirected, unweighted graph such that the distance between any pair of vertices can be decoded solely from their labels. An important class of distance labeling schemes is that of hub labelings, where a node vGv \in G stores its distance to the so-called hubs SvVS_v \subseteq V, chosen so that for any u,vVu,v \in V there is wSuSvw \in S_u \cap S_v belonging to some shortest uvuv path. Notice that for most existing graph classes, the best distance labelling constructions existing use at some point a hub labeling scheme at least as a key building block. Our interest lies in hub labelings of sparse graphs, i.e., those with E(G)=O(n)|E(G)| = O(n), for which we show a lowerbound of n2O(logn)\frac{n}{2^{O(\sqrt{\log n})}} for the average size of the hubsets. Additionally, we show a hub-labeling construction for sparse graphs of average size O(nRS(n)c)O(\frac{n}{RS(n)^{c}}) for some 0<c<10 < c < 1, where RS(n)RS(n) is the so-called Ruzsa-Szemer{\'e}di function, linked to structure of induced matchings in dense graphs. This implies that further improving the lower bound on hub labeling size to n2(logn)o(1)\frac{n}{2^{(\log n)^{o(1)}}} would require a breakthrough in the study of lower bounds on RS(n)RS(n), which have resisted substantial improvement in the last 70 years. For general distance labeling of sparse graphs, we show a lowerbound of 12O(logn)SumIndex(n)\frac{1}{2^{O(\sqrt{\log n})}} SumIndex(n), where SumIndex(n)SumIndex(n) is the communication complexity of the Sum-Index problem over ZnZ_n. Our results suggest that the best achievable hub-label size and distance-label size in sparse graphs may be Θ(n2(logn)c)\Theta(\frac{n}{2^{(\log n)^c}}) for some 0<c<10<c < 1

    Streaming Kernelization

    Full text link
    Kernelization is a formalization of preprocessing for combinatorially hard problems. We modify the standard definition for kernelization, which allows any polynomial-time algorithm for the preprocessing, by requiring instead that the preprocessing runs in a streaming setting and uses O(poly(k)logx)\mathcal{O}(poly(k)\log|x|) bits of memory on instances (x,k)(x,k). We obtain several results in this new setting, depending on the number of passes over the input that such a streaming kernelization is allowed to make. Edge Dominating Set turns out as an interesting example because it has no single-pass kernelization but two passes over the input suffice to match the bounds of the best standard kernelization
    corecore