51 research outputs found

    Cubic Augmentation of Planar Graphs

    Full text link
    In this paper we study the problem of augmenting a planar graph such that it becomes 3-regular and remains planar. We show that it is NP-hard to decide whether such an augmentation exists. On the other hand, we give an efficient algorithm for the variant of the problem where the input graph has a fixed planar (topological) embedding that has to be preserved by the augmentation. We further generalize this algorithm to test efficiently whether a 3-regular planar augmentation exists that additionally makes the input graph connected or biconnected. If the input graph should become even triconnected, we show that the existence of a 3-regular planar augmentation is again NP-hard to decide.Comment: accepted at ISAAC 201

    Constrained Planarity and Augmentation Problems

    Get PDF
    A clustered graph C=(G,T) consists of an undirected graph G and a rooted tree T in which the leaves of T correspond to the vertices of G=(V,E). Each vertex m in T corresponds to a subset of the vertices of the graph called ``cluster''. c-planarity is a natural extension of graph planarity for clustered graphs, and plays an important role in automatic graph drawing. The complexity status of c-planarity testing is unknown. It has been shown by Dahlhaus, Eades, Feng, Cohen that c-planarity can be tested in linear time for c-connected graphs, i.e., graphs in which the cluster induced subgraphs are connected. In the first part of the thesis, we provide a polynomial time algorithms for c-planarity testing of specific planar clustered graphs: Graphs for which - all nodes corresponding to the non-c-connected clusters lie on the same path in T starting at the root of T, or graphs in which for each non-connected cluster its super-cluster and all its siblings in T are connected, - for all clusters m G-G(m) is connected. The algorithms are based on the concepts for the subgraph induced planar connectivity augmentation problem, also presented in this thesis. Furthermore, we give some characterizations of c-planar clustered graphs using minors and dual graphs and introduce a c-planar augmentation method. Parts II deals with edge deletion and bimodal crossing minimization. We prove that the maximum planar subgraph problem remains NP-complete even for non-planar graphs without a minor isomorphic to either K(5) or K(3,3), respectively. Further, we investigate the problem of finding a minimum weighted set of edges whose removal results in a graph without minors that are contractible onto a prespecified set of vertices. Finally, we investigate the problem of drawing a directed graph in two dimensions with a minimal number of crossings such that for every node the incoming and outgoing edges are separated consecutively in the cyclic adjacency lists. It turns out that the planarization method can be adapted such that the number of crossings can be expected to grow only slightly for practical instances

    Advancements on SEFE and Partitioned Book Embedding Problems

    Full text link
    In this work we investigate the complexity of some problems related to the {\em Simultaneous Embedding with Fixed Edges} (SEFE) of kk planar graphs and the PARTITIONED kk-PAGE BOOK EMBEDDING (PBE-kk) problems, which are known to be equivalent under certain conditions. While the computational complexity of SEFE for k=2k=2 is still a central open question in Graph Drawing, the problem is NP-complete for k3k \geq 3 [Gassner {\em et al.}, WG '06], even if the intersection graph is the same for each pair of graphs ({\em sunflower intersection}) [Schaefer, JGAA (2013)]. We improve on these results by proving that SEFE with k3k \geq 3 and sunflower intersection is NP-complete even when the intersection graph is a tree and all the input graphs are biconnected. Also, we prove NP-completeness for k3k \geq 3 of problem PBE-kk and of problem PARTITIONED T-COHERENT kk-PAGE BOOK EMBEDDING (PTBE-kk) - that is the generalization of PBE-kk in which the ordering of the vertices on the spine is constrained by a tree TT - even when two input graphs are biconnected. Further, we provide a linear-time algorithm for PTBE-kk when k1k-1 pages are assigned a connected graph. Finally, we prove that the problem of maximizing the number of edges that are drawn the same in a SEFE of two graphs is NP-complete in several restricted settings ({\em optimization version of SEFE}, Open Problem 99, Chapter 1111 of the Handbook of Graph Drawing and Visualization).Comment: 29 pages, 10 figures, extended version of 'On Some NP-complete SEFE Problems' (Eighth International Workshop on Algorithms and Computation, 2014

    Algorithms for Graph Connectivity and Cut Problems - Connectivity Augmentation, All-Pairs Minimum Cut, and Cut-Based Clustering

    Get PDF
    We address a collection of related connectivity and cut problems in simple graphs that reach from the augmentation of planar graphs to be k-regular and c-connected to new data structures representing minimum separating cuts and algorithms that smoothly maintain Gomory-Hu trees in evolving graphs, and finally to an analysis of the cut-based clustering approach of Flake et al. and its adaption to dynamic scenarios

    Rectangular Layouts and Contact Graphs

    Get PDF
    Contact graphs of isothetic rectangles unify many concepts from applications including VLSI and architectural design, computational geometry, and GIS. Minimizing the area of their corresponding {\em rectangular layouts} is a key problem. We study the area-optimization problem and show that it is NP-hard to find a minimum-area rectangular layout of a given contact graph. We present O(n)-time algorithms that construct O(n2)O(n^2)-area rectangular layouts for general contact graphs and O(nlogn)O(n\log n)-area rectangular layouts for trees. (For trees, this is an O(logn)O(\log n)-approximation algorithm.) We also present an infinite family of graphs (rsp., trees) that require Ω(n2)\Omega(n^2) (rsp., Ω(nlogn)\Omega(n\log n)) area. We derive these results by presenting a new characterization of graphs that admit rectangular layouts using the related concept of {\em rectangular duals}. A corollary to our results relates the class of graphs that admit rectangular layouts to {\em rectangle of influence drawings}.Comment: 28 pages, 13 figures, 55 references, 1 appendi

    Compact Drawings of 1-Planar Graphs with Right-Angle Crossings and Few Bends

    Full text link
    We study the following classes of beyond-planar graphs: 1-planar, IC-planar, and NIC-planar graphs. These are the graphs that admit a 1-planar, IC-planar, and NIC-planar drawing, respectively. A drawing of a graph is 1-planar if every edge is crossed at most once. A 1-planar drawing is IC-planar if no two pairs of crossing edges share a vertex. A 1-planar drawing is NIC-planar if no two pairs of crossing edges share two vertices. We study the relations of these beyond-planar graph classes (beyond-planar graphs is a collective term for the primary attempts to generalize the planar graphs) to right-angle crossing (RAC) graphs that admit compact drawings on the grid with few bends. We present four drawing algorithms that preserve the given embeddings. First, we show that every nn-vertex NIC-planar graph admits a NIC-planar RAC drawing with at most one bend per edge on a grid of size O(n)×O(n)O(n) \times O(n). Then, we show that every nn-vertex 1-planar graph admits a 1-planar RAC drawing with at most two bends per edge on a grid of size O(n3)×O(n3)O(n^3) \times O(n^3). Finally, we make two known algorithms embedding-preserving; for drawing 1-planar RAC graphs with at most one bend per edge and for drawing IC-planar RAC graphs straight-line

    A Dichotomy Result for Cyclic-Order Traversing Games

    Get PDF
    Traversing game is a two-person game played on a connected undirected simple graph with a source node and a destination node. A pebble is placed on the source node initially and then moves autonomously according to some rules. Alice is the player who wants to set up rules for each node to determine where to forward the pebble while the pebble reaches the node, so that the pebble can reach the destination node. Bob is the second player who tries to deter Alice\u27s effort by removing edges. Given access to Alice\u27s rules, Bob can remove as many edges as he likes, while retaining the source and destination nodes connected. Under the guide of Alice\u27s rules, if the pebble arrives at the destination node, then we say Alice wins the traversing game; otherwise the pebble enters an endless loop without passing through the destination node, then Bob wins. We assume that Alice and Bob both play optimally. We study the problem: When will Alice have a winning strategy? This actually models a routing recovery problem in Software Defined Networking in which some links may be broken. In this paper, we prove a dichotomy result for certain traversing games, called cyclic-order traversing games. We also give a linear-time algorithm to find the corresponding winning strategy, if one exists

    SPQR-tree-like embedding representation for level planarity

    Get PDF
    An SPQR-tree is a data structure that efficiently represents all planar embeddings of a connected planar graph. It is a key tool in a number of constrained planarity testing algorithms, which seek a planar embedding of a graph subject to some given set of constraints. We develop an SPQR-tree-like data structure that represents all level-planar embeddings of a biconnected level graph with a single source, called the LP-tree, and give an algorithm to compute it in linear time. Moreover, we show that LP-trees can be used to adapt three constrained planarity algorithms to the level-planar case by using LP-trees as a drop-in replacement for SPQR-trees
    corecore