3 research outputs found

    Restricted power domination and fault-tolerant power domination on grids

    Get PDF
    AbstractThe power domination problem is to find a minimum placement of phase measurement units (PMUs) for observing the whole electric power system, which is closely related to the classical domination problem in graphs. For a graph G=(V,E), the power domination number of G is the minimum cardinality of a set S⊆V such that PMUs placed on every vertex of S results in all of V being observed. A vertex with a PMU observes itself and all its neighbors, and if an observed vertex with degree d>1 has only one unobserved neighbor, then the unobserved neighbor becomes observed. Although the power domination problem has been proved to be NP-complete even when restricted to some special classes of graphs, Dorfling and Henning in [M. Dorfling, M.A. Henning, A note on power domination in grid graphs, Discrete Applied Mathematics 154 (2006) 1023–1027] showed that it is easy to determine the power domination number of an n×m grid. Their proof provides an algorithm for giving a minimum placement of PMUs. In this paper, we consider the situation in which PMUs may only be placed within a restricted subset of V. Then, we present algorithms to solve this restricted type of power domination on grids under the conditions that consecutive rows or columns form a forbidden zone. Moreover, we also deal with the fault-tolerant measurement placement in the designed scheme and provide approximation algorithms when the number of faulty PMUs does not exceed 3

    Placing Monitoring Devices in Electric Power Networks Modelled by Block Graphs

    No full text
    The problem of monitoring an electric power system by placing as few measurement devices in the system as possible is closely related to the well known vertex covering and dominating set problems in graphs (see SIAM J. Discrete Math. 15(4) (2002), 519-529). A set S of vertices is defined to be a power dominating set of a graph if every vertex and every edge in the system is monitored by the set S (following a set of rules for power system monitoring). The minimum cardinality of a power dominating set of a graph is its power domination number. We investigate the power domination number of a block graph
    corecore