5,847 research outputs found

    Place classification with a graph regularized deep neural network

    Full text link
    © 2016 IEEE. Place classification is a fundamental ability that a robot should possess to carry out effective human-robot interactions. In recent years, there is a high exploitation of artificial intelligence algorithms in robotics applications. Inspired by the recent successes of deep learning methods, we propose an end-to-end learning approach for the place classification problem. With deep architectures, this methodology automatically discovers features and contributes in general to higher classification accuracies. The pipeline of our approach is composed of three parts. First, we construct multiple layers of laser range data to represent the environment information in different levels of granularity. Second, each layer of data are fed into a deep neural network for classification, where a graph regularization is imposed to the deep architecture for keeping local consistency between adjacent samples. Finally, the predicted labels obtained from all layers are fused based on confidence trees to maximize the overall confidence. Experimental results validate the effectiveness of our end-to-end place classification framework in which both the multilayer structure and the graph regularization promote the classification performance. Furthermore, results show that the features automatically learned from the raw input range data can achieve competitive results to the features constructed based on statistical and geometrical information

    Neural Network Memory Architectures for Autonomous Robot Navigation

    Full text link
    This paper highlights the significance of including memory structures in neural networks when the latter are used to learn perception-action loops for autonomous robot navigation. Traditional navigation approaches rely on global maps of the environment to overcome cul-de-sacs and plan feasible motions. Yet, maintaining an accurate global map may be challenging in real-world settings. A possible way to mitigate this limitation is to use learning techniques that forgo hand-engineered map representations and infer appropriate control responses directly from sensed information. An important but unexplored aspect of such approaches is the effect of memory on their performance. This work is a first thorough study of memory structures for deep-neural-network-based robot navigation, and offers novel tools to train such networks from supervision and quantify their ability to generalize to unseen scenarios. We analyze the separation and generalization abilities of feedforward, long short-term memory, and differentiable neural computer networks. We introduce a new method to evaluate the generalization ability by estimating the VC-dimension of networks with a final linear readout layer. We validate that the VC estimates are good predictors of actual test performance. The reported method can be applied to deep learning problems beyond robotics

    Co-Regularized Deep Representations for Video Summarization

    Full text link
    Compact keyframe-based video summaries are a popular way of generating viewership on video sharing platforms. Yet, creating relevant and compelling summaries for arbitrarily long videos with a small number of keyframes is a challenging task. We propose a comprehensive keyframe-based summarization framework combining deep convolutional neural networks and restricted Boltzmann machines. An original co-regularization scheme is used to discover meaningful subject-scene associations. The resulting multimodal representations are then used to select highly-relevant keyframes. A comprehensive user study is conducted comparing our proposed method to a variety of schemes, including the summarization currently in use by one of the most popular video sharing websites. The results show that our method consistently outperforms the baseline schemes for any given amount of keyframes both in terms of attractiveness and informativeness. The lead is even more significant for smaller summaries.Comment: Video summarization, deep convolutional neural networks, co-regularized restricted Boltzmann machine

    Representation Learning: A Review and New Perspectives

    Full text link
    The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning
    • …
    corecore