502 research outputs found

    An empirical evaluation of High-Level Synthesis languages and tools for database acceleration

    Get PDF
    High Level Synthesis (HLS) languages and tools are emerging as the most promising technique to make FPGAs more accessible to software developers. Nevertheless, picking the most suitable HLS for a certain class of algorithms depends on requirements such as area and throughput, as well as on programmer experience. In this paper, we explore the different trade-offs present when using a representative set of HLS tools in the context of Database Management Systems (DBMS) acceleration. More specifically, we conduct an empirical analysis of four representative frameworks (Bluespec SystemVerilog, Altera OpenCL, LegUp and Chisel) that we utilize to accelerate commonly-used database algorithms such as sorting, the median operator, and hash joins. Through our implementation experience and empirical results for database acceleration, we conclude that the selection of the most suitable HLS depends on a set of orthogonal characteristics, which we highlight for each HLS framework.Peer ReviewedPostprint (author’s final draft

    AxleDB: A novel programmable query processing platform on FPGA

    Get PDF
    With the rise of Big Data, providing high-performance query processing capabilities through the acceleration of the database analytic has gained significant attention. Leveraging Field Programmable Gate Array (FPGA) technology, this approach can lead to clear benefits. In this work, we present the design and implementation of AxleDB: An FPGA-based platform that enables fast query processing for database systems by melding novel database-specific accelerators with commercial-off-the-shelf (COTS) storage using modern interfaces, in a novel, unified, and a programmable environment. AxleDB can perform a large subset of SQL queries through its set of instructions that can map compute-intensive database operations, such as filter, arithmetic, aggregate, group by, table join, or sort, on to the specialized high-throughput accelerators. To minimize the amount of SSD I/O operations required, AxleDB also supports hardware MinMax indexing for databases. We evaluated AxleDB with five decision support queries from the TPC-H benchmark suite and achieved a speedup from 1.8X to 34.2X and energy efficiency from 2.8X to 62.1X, in comparison to the state-of-the-art DBMS, i.e., PostgreSQL and MonetDB.The research leading to these results has received funding from the European Union Seventh Framework Program (FP7) (under the AXLE project GA number 318633), the Ministry of Economy and Competitiveness of Spain (under contract number TIN2015-65316-p), Turkish Ministry of Development TAM Project (number 2007K120610), and Bogazici University Scientific Projects (number 7060).Peer ReviewedPostprint (author's final draft

    Transformations of High-Level Synthesis Codes for High-Performance Computing

    Full text link
    Specialized hardware architectures promise a major step in performance and energy efficiency over the traditional load/store devices currently employed in large scale computing systems. The adoption of high-level synthesis (HLS) from languages such as C/C++ and OpenCL has greatly increased programmer productivity when designing for such platforms. While this has enabled a wider audience to target specialized hardware, the optimization principles known from traditional software design are no longer sufficient to implement high-performance codes. Fast and efficient codes for reconfigurable platforms are thus still challenging to design. To alleviate this, we present a set of optimizing transformations for HLS, targeting scalable and efficient architectures for high-performance computing (HPC) applications. Our work provides a toolbox for developers, where we systematically identify classes of transformations, the characteristics of their effect on the HLS code and the resulting hardware (e.g., increases data reuse or resource consumption), and the objectives that each transformation can target (e.g., resolve interface contention, or increase parallelism). We show how these can be used to efficiently exploit pipelining, on-chip distributed fast memory, and on-chip streaming dataflow, allowing for massively parallel architectures. To quantify the effect of our transformations, we use them to optimize a set of throughput-oriented FPGA kernels, demonstrating that our enhancements are sufficient to scale up parallelism within the hardware constraints. With the transformations covered, we hope to establish a common framework for performance engineers, compiler developers, and hardware developers, to tap into the performance potential offered by specialized hardware architectures using HLS

    High Performance Computing via High Level Synthesis

    Get PDF
    As more and more powerful integrated circuits are appearing on the market, more and more applications, with very different requirements and workloads, are making use of the available computing power. This thesis is in particular devoted to High Performance Computing applications, where those trends are carried to the extreme. In this domain, the primary aspects to be taken into consideration are (1) performance (by definition) and (2) energy consumption (since operational costs dominate over procurement costs). These requirements can be satisfied more easily by deploying heterogeneous platforms, which include CPUs, GPUs and FPGAs to provide a broad range of performance and energy-per-operation choices. In particular, as we will see, FPGAs clearly dominate both CPUs and GPUs in terms of energy, and can provide comparable performance. An important aspect of this trend is of course design technology, because these applications were traditionally programmed in high-level languages, while FPGAs required low-level RTL design. The OpenCL (Open Computing Language) developed by the Khronos group enables developers to program CPU, GPU and recently FPGAs using functionally portable (but sadly not performance portable) source code which creates new possibilities and challenges both for research and industry. FPGAs have been always used for mid-size designs and ASIC prototyping thanks to their energy efficient and flexible hardware architecture, but their usage requires hardware design knowledge and laborious design cycles. Several approaches are developed and deployed to address this issue and shorten the gap between software and hardware in FPGA design flow, in order to enable FPGAs to capture a larger portion of the hardware acceleration market in data centers. Moreover, FPGAs usage in data centers is growing already, regardless of and in addition to their use as computational accelerators, because they can be used as high performance, low power and secure switches inside data-centers. High-Level Synthesis (HLS) is the methodology that enables designers to map their applications on FPGAs (and ASICs). It synthesizes parallel hardware from a model originally written C-based programming languages .e.g. C/C++, SystemC and OpenCL. Design space exploration of the variety of implementations that can be obtained from this C model is possible through wide range of optimization techniques and directives, e.g. to pipeline loops and partition memories into multiple banks, which guide RTL generation toward application dependent hardware and benefit designers from flexible parallel architecture of FPGAs. Model Based Design (MBD) is a high-level and visual process used to generate implementations that solve mathematical problems through a varied set of IP-blocks. MBD enables developers with different expertise, e.g. control theory, embedded software development, and hardware design to share a common design framework and contribute to a shared design using the same tool. Simulink, developed by MATLAB, is a model based design tool for simulation and development of complex dynamical systems. Moreover, Simulink embedded code generators can produce verified C/C++ and HDL code from the graphical model. This code can be used to program micro-controllers and FPGAs. This PhD thesis work presents a study using automatic code generator of Simulink to target Xilinx FPGAs using both HDL and C/C++ code to demonstrate capabilities and challenges of high-level synthesis process. To do so, firstly, digital signal processing unit of a real-time radar application is developed using Simulink blocks. Secondly, generated C based model was used for high level synthesis process and finally the implementation cost of HLS is compared to traditional HDL synthesis using Xilinx tool chain. Alternative to model based design approach, this work also presents an analysis on FPGA programming via high-level synthesis techniques for computationally intensive algorithms and demonstrates the importance of HLS by comparing performance-per-watt of GPUs(NVIDIA) and FPGAs(Xilinx) manufactured in the same node running standard OpenCL benchmarks. We conclude that generation of high quality RTL from OpenCL model requires stronger hardware background with respect to the MBD approach, however, the availability of a fast and broad design space exploration ability and portability of the OpenCL code, e.g. to CPUs and GPUs, motivates FPGA industry leaders to provide users with OpenCL software development environment which promises FPGA programming in CPU/GPU-like fashion. Our experiments, through extensive design space exploration(DSE), suggest that FPGAs have higher performance-per-watt with respect to two high-end GPUs manufactured in the same technology(28 nm). Moreover, FPGAs with more available resources and using a more modern process (20 nm) can outperform the tested GPUs while consuming much less power at the cost of more expensive devices
    • …
    corecore