821,642 research outputs found
Design pipe bracket for vessel with using Titanium metal in marine environment
The research investigates the design and utilization of the pipe bracket with titanium metal for the ocean going vessel to confront marine environment. The main aim of this report is to study the performance of titanium metal compared with other materials when they are being used in marine environment .Another aim of this report is to design pipe bracket for the ocean going vessel, then did the simulation and calculation of the loads which applied on the pipe bracket. The studying of my aims were targeted during all the phases of this project.
This report has gone through several stages so that be achieved. The first phase was referring the gathering information about the primary mechanical properties of titanium metal as light weight, flexible and strong resistance to corrosion. The different corrosion properties of pipe material and how they interact together with titanium metal or sea water. The second phase was concerning three different pipe types (rigid support, adjustable support, elastic support) and choose the type of adjustable due to it makes easily assemble due to nuts and bolts could be rearranged for adjusting the support when using on the vessel. Mention the Standard pipe size for using in different place and having a design drawing of my pipe bracket. The next phase was doing mechanical analysis of my bracket model on the Solidworks program and maximum loads which were applied on the bracket were calculated by using related formulas. The last phase was considering the manufacturing process for the pipe bracket and having the primary cost for making and selling it
Reusable high-temperature heat pipes and heat pipe panels
A reusable, durable heat pipe which is capable of operating at temperatures up to about 3000 F in an oxidizing environment and at temperatures above 3000 F in an inert or vacuum environment is produced by embedding a refractory metal pipe within a carbon-carbon composite structure. A reusable, durable heat pipe panel is made from an array of refractory-metal pipes spaced from each other. The reusable, durable, heat-pipe is employed to fabricate a hypersonic vehicle leading edge and nose cap
Toroidal mirrors provide virtual walls for breaks in light pipes
Section of light pipe consists of separated segments having opposed toroidal mirrors that intercept meridional rays to present virtual wall in space between mirrors, thus insuring uninterrupted light transmission down the pipe. Design affords internal access to pipe section. Segments are electrically or thermally insulated from one another
Analysis of the vibration of pipes conveying fluid
The dynamic equilibrium matrix equation for a discretized pipe element containing flowing fluid is derived from the Lagrange principle, the Ritz method and consideration of the coupling between the pipe and fluid. The Eulerian approach and the concept of fictitious loads for kinematic correction are adopted for the analysis of geometrically non-linear vibration. The model is then deployed to investigate the vibratory behaviour of the pipe conveying fluid. The results for a long, simply supported, fluid-conveying pipe subjected to initial axial tensions are compared with experimentally obtained results and those from a linear vibration model
Nothing to hide: An X-ray survey for young stellar objects in the Pipe Nebula
We have previously analyzed sensitive mid-infrared observations to establish
that the Pipe Nebula has a very low star-formation efficiency. That study
focused on YSOs with excess infrared emission (i.e, protostars and pre-main
sequence stars with disks), however, and could have missed a population of more
evolved pre-main sequence stars or Class III objects (i.e., young stars with
dissipated disks that no longer show excess infrared emission). Evolved
pre-main sequence stars are X-ray bright, so we have used ROSAT All-Sky Survey
data to search for diskless pre-main sequence stars throughout the Pipe Nebula.
We have also analyzed archival XMM-Newton observations of three prominent areas
within the Pipe: Barnard 59, containing a known cluster of young stellar
objects; Barnard 68, a dense core that has yet to form stars; and the Pipe
molecular ring, a high-extinction region in the bowl of the Pipe. We
additionally characterize the X-ray properties of YSOs in Barnard 59. The ROSAT
and XMM-Newton data provide no indication of a significant population of more
evolved pre-main sequence stars within the Pipe, reinforcing our previous
measurement of the Pipe's very low star formation efficiency.Comment: Accepted for publication in Ap
Extended Development of Variable Conductance Heat Pipes
A high-capacity vapor-modulated heat pipe was designed and tested. In 1977, a program was undertaken to use the aforementioned heat pipe to study protection from freezing-point failure, increase control sensitivity, and transient behavior under a wide range of operating conditions in order to determine the full performance potential of the heat pipe. A new concept, based on the vapor-induced-dry-out principle, was developed for passive feedback temperature control as a heat pipe diode. This report documents this work and describes: (1) the experimental and theoretical investigation of the performance of the vapor-modulated heat pipe; and (2) the design, fabrication and test of the heat pipe diode
Spaceborne power systems preference analyses. Volume 2: Decision analysis
Sixteen alternative spaceborne nuclear power system concepts were ranked using multiattribute decision analysis. The purpose of the ranking was to identify promising concepts for further technology development and the issues associated with such development. Four groups were interviewed to obtain preference. The four groups were: safety, systems definition and design, technology assessment, and mission analysis. The highest ranked systems were the heat-pipe thermoelectric systems, heat-pipe Stirling, in-core thermionic, and liquid-metal thermoelectric systems. The next group contained the liquid-metal Stirling, heat-pipe Alkali Metal Thermoelectric Converter (AMTEC), heat-pipe Brayton, liquid-metal out-of-core thermionic, and heat-pipe Rankine systems. The least preferred systems were the liquid-metal AMTEC, heat-pipe thermophotovoltaic, liquid-metal Brayton and Rankine, and gas-cooled Brayton. The three nonheat-pipe technologies selected matched the top three nonheat-pipe systems ranked by this study
- …
