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Analysis of the vibration of pipes conveying fluid

Y L Zhang, D G Gorman* and J M Reese
Department of Engineering, University of Aberdeen, Scotland, UK

Abstract: The dynamic equilibrium matrix equation for a discretized pipe element containing flowing
fluid is derived from the Lagrange principle, the Ritz method and consideration of the coupling
between the pipe and fluid. The Eulerian approach and the concept of fictitious loads for kinematic
correction are adopted for the analysis of geometrically non-linear vibration. The model is then
deployed to investigate the vibratory behaviour of the pipe conveying fluid. The results for a long,
simply supported, fluid-conveying pipe subjected to initial axial tensions are compared with exper-
imentally obtained results and those from a linear vibration model.

Keywords: vibration, pipes conveying fluid, finite element method, fluid–structure interaction

NOTATION l, L pipe elemental length and pipe length
respectively

m
i
, Mt ith elemental and assembly fluid–pipe massAp , Af cross-sectional area of the pipe and fluid

matrices respectivelyrespectively
mp , mf pipe and fluid masses per unit lengthB linear strain–displacement matrix

respectivelyc
i
, Ct ith elemental and assembly damping matrix

mp , mf pipe and fluid inertia force–accelerationrespectively
matrices respectivelyDe , Di external and internal diameters respectively

N matrix of shape functionsD symmetric stress–strain matrix
p:p , p: f vectors of the prescribed pipe and fluide

l
, eR relative errors of eigenvectors and

boundary traction respectivelydisplacements respectively
r, R vectors of elemental and global unknowne tensor field of strain of the pipe

generalized displacements respectivelye0 vector of the initial strain composed of a
s total number of elementsstatic axial stretched strain, a temperature
t timestrain and a strain caused by pressurization
T
i

coordinate transformation matrix of thep0 within the pipe
ith element, i=1, 2, .. ., sE, EI Young’s modulus and flexural rigidity

T0 , T initial axial tension and axial tension of therespectively
pipe respectivelyEe energy of external forces on the fluid–pipe

T0 vector of initial axial forceelement
={T0 cos Q, 0, T0 sin Q}TE

i
strain energy of the pipe element

u, Q, w displacement components in the x, Q andf 1
i
, f ld
i

ith elemental load and fictitious load
y directions respectivelyvectors respectively

up , uf vector fields of the pipe and fluidF t assembled force vector at time t
displacements respectively, i.e.G shear modulus
up={u, Q, w}T, uf={uf , Qf , wf}Th

i
shape functions, i=1, 2, .. ., 10

u̇p , u̇f vector fields of absolute velocity of the pipeI area moment of inertia of the pipe
and fluid element respectivelyk

i
, Kt ith elemental and assembly fluid–pipe

üp , üf vector fields of absolute acceleration of thestiffness matrices respectively
pipe and fluid element respectivelyK shear coefficient

ur vector fields of fluid displacement relative
to the pipe displacement upThe MS was received on 27 April 1998 and was accepted after revision U, U scalar and vector fields of fluid velocity

for publication on 17 November 1998.
relative to the moving pipe respectively,* Corresponding author: Department of Engineering, University of

Aberdeen, Fraser Noble Building, Aberdeen AB24 3UE, UK. i.e. U={U cos Q, 0, U sin Q}T
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850 Y L ZHANG, D G GORMAN AND J M REESE

x, y coordinates in x, y coordinate system element methods [14]. However, numerical work on the
non-linear vibration of pipes conveying fluid is quite lim-X9 p , X9 f vectors of the pipe and fluid body forces

respectively, including forces exerted by the ited. Lin and Tsai [15] extended the concept of fictitious
loads [16, 17] to dynamic problems of pipes conveyingfluid on the inside surface of the pipe and

vice versa fluid with the inclusion of shear deformation effects for
the analysis of geometrically non-linear vibration. They0(t) platform displacement of the shaker in the

y direction deformation of the structures can be computed by iterat-
ively updating the finite element nodal coordinates. As the

a, b Rayleigh damping constants in-plane kinematic corrections are asked for, it is unnecess-
C fluid–pipe boundary composed of static and ary to formulate non-linear strain–displacement terms in

kinematic boundaries the finite element model for the analysis of geometrically
k shear coefficient=6EI/(KGAp l2) non-linear vibration. This finite element model, however,
n Poisson’s ratio of the rubber material is not quite applicable to non-linear dynamic analysis of
j =x/l pipes conveying fluid that are subjected to various initial
P total potential energy=E

i
+Ee axial strain and transient flow within the pipes. Besides, in

rp , rf densities of rubber and liquid water the previous finite element model, flowing fluid and
respectively moving pipes are only coupled weakly.

s vector of stress=D(e+e0) This paper presents a finite element model in which
∑s
i=1

matrix assembly flowing fluid and moving pipes have been fully coupled
Q
j
, Q
j+1

cross-sectional rotation of jth and ( j+1)th using the Eulerian approach and the concept of fictitious
nodes of ith element respectively loads for the kinematic corrections. This model is used for

v natural frequency analysing the dynamic response of fluid-conveying pipes
V solution domain of the fluid–pipe system subjected to initial axial strains. These strains arise from

initial stretch or compression, temperature and/or internal
pressure. The effects of shear deformation and rotary iner-Subscripts

tia are also incorporated in the model, thus lending to thei elemental number
analysis of Timoshenko beams after linearizing the finiten vibration mode of the system
element formulation. The effect of initial axial strain andp, f pipe and fluid quantities respectively
fluid flow on the dynamic behaviour of the system is ana-u, Q, w quantities in the x, w and y directions
lysed. Numerical examples are given in order to verify itsrespectively
utility and are compared with experiment.

l eigenvalues of the system

2 BASIC ASSUMPTIONS AND DESCRIPTION
OF THE SYSTEM

Superscripts

t time
T transpose of matrix The system to be studied (Fig. 1) consists of a circular

pipe, simply supported and pinned at both ends, of
length L, cross-sectional area Ap , mass per unit length

1 INTRODUCTION mp and flexural rigidity EI, conveying a fluid of mass mf
per unit length with axial flow velocity U and pressure
p. The initial, constant axial tension over the length ofOver the past four decades the vibration of pipes convey-
the pipe is T0 .ing fluid has been studied extensively; an excellent over-

The general assumptions made in the course of theview is presented by Paı̈doussis and Li [1]. The linear
analysis of the system are as follows:vibration of the system has been understood for some time

[2–9]. Linear models are found, however, to be in serious 1. The pipe is composed of a linear, homogeneous and
error when the fluid flow velocity approaches a critical isotropic elastic material.
value ( leading to bifurcation of the dynamic response) [10] 2. The fluid is incompressible.
or the pipe performs large-amplitude vibration in which 3. The velocity profile of the fluid is uniform.
components of in-plane force (which are a function of the
instantaneous vibration shape) have a marked effect. This
latter effect is termed the geometric or membrane effect and
is the subject of the benchmark paper by Holmes [11].

In recent years much effort has been devoted to
assessing non-linear dynamic behaviour mainly by using
analytical (see, for example, references [12] and [13]) and

Fig. 1 Schematic of the system under considerationnumerical methods such as finite difference and finite
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851ANALYSIS OF THE VIBRATION OF PIPES CONVEYING FLUID

4. The diameter of the pipe is much smaller than its in which D is a symmetric stress–strain matrix:
length.

5. The motion of the pipe is planar.
6. There is no axial or lateral motion at either end of

D=CEAp 0 0

0 EI 0

0 0 KGApDthe pipe.

Let coordinate x be in the axis at static equilibrium and
coordinate y be normal to it.

Infinitesimal fluid–pipe elements, to which the Lagrange
principle may be applied, may be separated into pipe

3 MODEL DEVELOPMENT elements and fluid elements. For the function P defined
by equation (1), functions are required that are continu-

3.1 Order of magnitude analysis ous in the solution domain V and, when appropriately
combined, can satisfy the kinematic boundary con-

As the effect of large vibration (or geometric non- ditions on C
u
. A pipe element with two nodes and three

linearity) of pipes conveying fluid will be examined, it is degrees of freedom per node is shown in Fig. 2.
useful to perform an order of magnitude analysis. The approximate solution of the pipe displacement is
Recalling the assumption that the motion of the pipe is sought in the matrix form of the shape functions, i.e.
planar, it is assumed that the lateral displacement w in
the y direction is ‘small’ compared with the length of the up={u, Q, w}T=u0+Nr (2)
pipe, i.e.

where u0 are the functions constructed such that theyw(y)/L~O(e)
satisfy the prescribed kinematic boundary conditions, i.e.where e%1.
u0={0, 0, y0(t)}T,It is known that, in the governing matrix equations

for large vibration, terms of higher order than that for
r={u1 , w1, Q1 , u2 , w2, Q2}T (3)small vibration exist. Thus, if the governing matrix equa-

tions are of even order, terms of O(e2) have to be present
andin the equations. Therefore, all expressions in the equa-

tions presented in this paper have to be exact to O(e3)
before any simplification can be undertaken. It can also
be shown (see, for example, reference [18 ]) that longi- N=Ch1 0 0 h2 0 0

0 h3 h4 0 h5 h6
0 h7 h8 0 h9 h

10
D (4)

tudinal displacements, u in the x direction, and the
rotational displacement Q are given by

u(x)/L~O(e2) Comparing equations (2), (3) and (4) leads to
Q~O(e)

u=N
u
r, Q=N

Q
r and w=y0(t)+N

w
rTherefore, a displacement vector can be defined as

(5)u={u/L, Q, w/L}~O(e).

in which
3.2 Dynamic equilibrium equation

N
u
= [h1 0 0 h2 0 0]

The principle of minimum potential energy, as described
by the Lagrange principle, can be applied to fluid–pipe N

Q
= [0 h3 h4 0 h5 h6 ]vibration interaction and formulated to model the

deformed fluid–pipe elements into which the system is N
w
= [0 h7 h8 0 h9 h

10
]

discretized as follows (see, for example, reference [19 ]):

Matrix N contains the shape functions h
i

correspondingP=E
i
+Ee=minimum (1)

where

E
i
=

1
2 P
V

(e+e0)D(e+e0) dV

Ee=− P
V

uTpX9 p dV− P
V

uTf X9 f dV

Fig. 2 Two-node pipe element with three degrees of freedom− P
C
p

uTp p:p dC− P
C
p

uTf p: f dC per node (u, Q and w)
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852 Y L ZHANG, D G GORMAN AND J M REESE

to the individual nodal parameters, namely Substitution of equation (2) in (8) results in

uf=u0+Nr+ur (9)h1=1−j

Using the theory of linear elasticity, the constitutiveh2=j relation for a one-dimensional stress–strain beam can be
written in matrix form ash3=

6(j−j2)
l(1+2k)

s=D(e+e0) (10)

Substituting equations (2) and (6) to (9) in equation (1),h4=
(1+2k)−2(2+k)j−3j2

1+2k the function P may be expressed as

h5=
6(−j+j2)
l(1+2k) P=

1

2 P
V

(Br+e
NL
+e0)TD(Br+e

NL
+e0) dV

h6=
−2(1−k)j+3j2

1+2k − P
V

(uT
0
+rTNT)X9 p dV

h7=
(1+2k)−2kj−3j2+2j3

1+2k − P
V

(uT
0
+rTNT+uTr )X9 f dV

h8=
l [−(1+k)j+(2+k)j2−3j3 ]

1+2k − P
C
p

(uT
0
+rTNT) p:p dC

h9=
2kj+3j2−2j3

1+2k − P
C
p

(uT
0
+rTNT+uTr ) p: f dC (11)

h
10
=

l [kj+(1−k)j2−j3 ]
1+2k A necessary condition for the minimum of the function

P of multiple variables is that the first partial derivatives
If it is assumed that the deformed curvature can be with respect to all the variables must be zero, which in
approximated by the second derivative of the flexural the matrix notation implies
displacement, then the strain field in terms of the infini-
tesimal and large displacements may be represented by qP

qr
=0 (12)

(see, for example, reference [20])
This condition is applied to equation (11) for P, ande=e

L
+e
NL

(6)
then the Lagrange principle is extended to dynamic prob-

in which lems (see, for example, reference [19 ]) by adding the
inertia forces of the pipe and fluid into the second and

e
L
=Gquqx ,

qQ
qx

, Q+
qw
qxHT=Br (7a) third integral terms on the right-hand side of equa-

tion (11). The following set of non-linear algebraic equa-
tions are obtained after manipulation, and assuming that

e
NL
=G12 AqwqxB2, 0, 0HT (7b) the difference in pressure between the inlet and outlet of

the pipe is small compared with the inlet pressure:
The matrix B is P

V

BTD(Br+e0) dV+T0 P
V

N∞T
w

N∞
w

r dVB=

+ P
V

(BTDB
NL
+BT
NL

DB+BT
NL

DB
NL

)r dVCdh1
dx

0 0
dh2
dx

0 0

0
dh3
dx

dh4
dx

0
dh5
dx

dh6
dx

0 h3+
dh7
dx

h4+
dh8
dx

0 h5+
dh9
dx

h6+
dh
10

dx
D − P

V

[NT(X9 p−mp üp)+NT(X9 f−mf üf)] dV

− P
C

NT( p:p+p: f) dC=0 (13)
The vector field of the fluid displacement is decomposed

whereinto two parts. One of these is the vector field of the
pipe displacement up , the other is the vector field of the
fluid displacement relative to the pipe ur , which is equal
to Ut, and therefore mp=Cmp 0 0

0 rpI 0

0 0 mpDuf=up+ur (8)

C04498 © IMechE 1999Proc Instn Mech Engrs Vol 213 Part C



853ANALYSIS OF THE VIBRATION OF PIPES CONVEYING FLUID

is the pipe inertia force–acceleration matrix, qup
qt
=
qu0
qt
+Nṙ,

q2up
qt2
=
q2u0
qt2
+Nr̈

qup
qx
=N∞r,

q2up
qx qt

=N∞ṙmf=Cmf 0 0

0 rfIf 0

0 0 mfD q2up
qx2
=N◊r

is the fluid inertia force–acceleration matrix,
(16a)

B
NL
=[1, 0, 0]T

qw
qx

N∞
w Similarly, it can be shown that

is dependent on the displacement and ( ¨ ) represents the
second-order substantial derivative with respect to time; U̇=U A001B N∞w ṙ+

qU
qt A100B+ qUqt A001B N∞wr (16b)

the prime denotes a derivative with respect to x.
Fluid–structure interaction mechanisms are rep-

In this analysis, the Eulerian approach is used toresented by the forces exerted by the flowing fluid within
update the coordinates iteratively and also to reform thethe pipe on the pipe wall, and vice versa. At the interface
stiffness matrix iteratively. This enables geometricallywhere the fluid and pipe are coupled, the vector field of
non-linear vibration to be analysed while ignoring thethe pipe element displacement is equal to that of the
third integral term on the left-hand side of equation (13),flowing fluid element displacement normal to the vector
which is known as the initial displacement matrix duefield of fluid relative velocity, U. The vector field of the
to large deformation. In the course of the iteration, thegeneralized pipe velocity and acceleration can be
concept of fictitious loads has to be applied to equa-expressed as
tion (13) on the basis of the in-plane kinematic correc-
tions due to large deformation. Substituting equations

u̇p=
qup
qt

and üp=
q2up
qt2

(14)
(14) to (16) in (13), applying Green’s theorem on the
second-order terms with respect to x (which also serves

By differentiating both sides of equation (8), the follow- to reduce the order of the governing equation) and then
ing expressions describing the fluid velocity and acceler- transforming local coordinates into global ones by using
ation vectors are obtained: the coordinate transformation matrix

u̇f=
qup
qt
+U

qup
qx
+U+O(e3) (15a)

T
i
=Ccos Q

j
−sin Q

j
0 0 0 0

sin Q
j

cos Q
j

0 0 0 0

0 0 1 0 0 0

0 0 0 cos Q
j+1

−sin Q
j+1

0

0 0 0 sin Q
j+1

cos Q
j+1

0

0 0 0 0 0 1
Düf=

q2up
qt2
+2U

q2up
qx qt

+U2
q2up
qx2
+
qU
qt
qup
qx

+U̇+O(e3) (15b)

(17)Differentiation of equation (2) partially with respect to
t and x gives the following set of second-order differential equations

is obtained:

TT
i CP
V

NT(mp+mf)N dVD Ti r̈+TT
i CP
V

NT(2mfU )N∞ dV+ P
V

NT
w

(mfU )N∞
w

dVD Ti ṙ
+TT
i CP
V

BTDB dV+ P
V

N∞T
w

(T0)N∞w dV− P
V

N∞T(mfU2)N∞ dVD Tir
+TT
i CP
V

NT(mfU̇ )N∞ dV+ P
V

NT
w

(mfU̇ )N∞
w

dVD Tir
=TT
i C− P

V

BTDe0 dV+ P
V

NT(X9 p+X9 f) dV+ P
C
p

NT( p:p+p: f) dCD
−TT
i CP
V

NT
u

(mfU̇ ) dV+ P
V

NT(mp+mf)ü0 dVD+ f ld
i

(18)

C04498 © IMechE 1999 Proc Instn Mech Engrs Vol 213 Part C
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This can be rewritten in the standard form a1=ApE(1−cos Q
j
)

m
i
r̈+c
i
ṙ+k

i
r= f 1

i
+ f ld
i

(19) a2=
6EI(Q

j
−sin Q

j
)

l2+12EI/kGApin which individual symbols have the following meaning: a3=ApE(1−cos Q
j+1

)

m
i
=TT
i CP
V

NT(mp+mf)N dVD Ti (20a) a4=
6EI(Q

j+1
−sin Q

j+1
)

l2+12EI/kGAp
The definition of T

i
in equation (17), together with equa-is the ith elemental fluid–pipe mass matrix in the global

tions (5) and (20), shows that equation (18) is non-coordinate system,
linear for large deformation. This equation represents
the generalized conditions of dynamic equilibrium of the

c
i
=TT
i C2U P

V

NTmfN∞ dV+mfU P
V

NT
w

N∞
w

dVD Ti discretized system element in the global coordinate
system for analysis of geometrically non-linear vibration.

(20b)
The governing equations (19) of the fluid-conveying

pipe elements can be combined to form the assembly ofis the ith elemental fluid flowing damping matrix in the
the discretized system at any instant t by considering theglobal coordinate system,
equilibrium and continuity of displacements at the
interfaces between adjoining elements, i.e.

k
i
=TT
i CP
V

BTDB dV−U2 P
V

N∞TmfN∞ dV MtR̈+CtṘ+KtR=Ft (21)

In this equation Ct represents the total damping matrix,
+T0 P

V

N∞T
w

N∞
w

dVD Ti which is composed of two parts if Rayleigh damping
within the pipe is taken into account, i.e.

Ct=Ctf+Cts+TT
i CU̇ P

V

NTmfN∞ dV+mfU̇ P
V

NT
w

N∞
w

dVD Ti
in which Ctf is due to translation and rotation of the fluid

(20c)
and Cts is a linear combination of the mass and stiffness
matrices Mt and Kt, given by (see, for example, referenceis the ith elemental fluid–pipe stiffness matrix consisting
[21 ])of the pipe stiffness and initial stress matrices and the

flowing fluid stiffness matrix in the global coordinate Cts=aMt+bKt
system, and

The assembly equation of the discretized system can
then be solved by the well-known Newmark method.

f 1
i
=TT
i C− P

V

BTDe0 dV+ P
V

NT(X9 p+X9 f) dV The eigenproblems can be solved by the inverse iteration
method. It should be noted that geometric non-linearity
due to large deformation, rotary inertia and shear defor-

+ P
C

NT( p:p+p: f) dCD mation are incorporated in this model. It can be seen
that, when the vibration displacement is small, equation
(21) reduces to the linear vibration problem. For large

+TT
i CP
V

NT(mp+mf)üo dV+mfU̇ P
V

NT
u

dVD deformation the structural matrices and force vectors in
equation (21) are dependent on the displacements r. For(20d)
small deformation, T

i
and f ld

i
may be thought of as a

unit diagonal matrix and a zero vector respectively.is the dynamic force acting upon the system in the global
Therefore, this formulation can be used to solve bothcoordinate system.
geometrically linear and non-linear dynamic problems.The fictitious loads in the global coordinate system
‘Natural frequencies’ can be extracted from equationcan be expressed as (see, for example, reference [15]):
(21) for the small vibrations in which equation (21)

f ld
i
=TT
i

k0
i
uld=TT

i
{−a1 , 2a2 , a2 l, a3 ,−2a4 ,a4 l}T becomes linear. Resonant frequencies can also be

(20e) obtained within the non-linear regime by using an iter-
ation method. This model can also be applied to pipes

where with different boundary conditions.

k0
i
= P
V

BTDB dV, uld
4 EXPERIMENTAL SET-UP AND PROCEDURE

={0, 0, Q
j
−sin Q

j
, l(1−cos Q

j+1
),

Experiments were conducted using a closed-loop flow
facility as shown schematically in Fig. 3. Steady flow was0, Q

j+1
−sin Q

j+1
}T

C04498 © IMechE 1999Proc Instn Mech Engrs Vol 213 Part C



855ANALYSIS OF THE VIBRATION OF PIPES CONVEYING FLUID

Fig. 3 Closed-loop flow experimental facility

produced using a centrifugal pump and a manual/ surface of the mid-point of the pipe. Both signals were
then passed to a real-time fast Fourier transform (FFT)automatic control valve. The test section consisted of a

circular rubber pipe simply supported and pinned at analyser.
A schematic diagram of this measurement set-up iseither end of a rigid platform. The complete assembly

was clamped on to a shaker driven by an amplified sine- shown in Fig. 4. The sampling rate for all frequency
readings was 1000 Hz and the total sampling time waswave signal from a 5 MHz function generator. This

method of fixing the pipe to the platform is sufficient to 4.096 s. The excitation and response signals from the
laser velocity transducer and the accelerometer wereassume that simply supported boundary conditions

apply at each end of the pipe. treated and displayed on the oscilloscope screen simul-
taneously. Both signals were also input to the FFT ana-The shaker excitation was measured by an acceler-

ometer mounted on the shaker platform. The acceler- lyser. The excitation frequency was adjusted until a
stationary picture was obtained on the oscilloscopeometer signal was examined using an oscilloscope and a

phase meter. A laser velocity transducer was used to screen and the shift in phase between the two signals
was 90° in order to find the ‘natural frequencies’ and tomeasure the vibration response of the pipe. The laser

was carefully aligned to focus its narrow beam at a small record the amplitude of the responses and the frequency
spectrum. This process was completed for various initialpiece of retroreflective tape, which is attached to the

Fig. 4 Schematic diagram of the measurement equipment

C04498 © IMechE 1999 Proc Instn Mech Engrs Vol 213 Part C
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Fig. 5 Mid-point amplitude of the pipe versus amplitude of seismic excitation y:0 : CC non-linear model;
·· ·· ·· linear model

axial tensions and flow velocities. Using this type of For the first, third and fifth ‘natural frequencies’, the
comparisons between results from the present model, themeasurement it should be noted that, for the specific

case where the fluid is not flowing in the pipe, the only linear model and experiment are discussed for two cases
below. The linear vibration model is given in themodes that can be excited are the odd modes, i.e. 1, 3,

5, 7, etc. When the fluid is flowing, all modes can be Appendix.
It was assumed that the shear deformation of theexcited but the present measurement set-up allows only

the odd modes to be observed. rubber pipe could be neglected and so was not included
in the present vibration model. Prior to investigating the
effect of an axial tension and internal flow velocity on
the vibrating behaviour of the pipe conveying fluid, the5 RESULTS
dynamic response of the system as a function of varying
amplitudes of seismic excitation was investigated. TheThe pipe conveying fluid (Fig. 3) was made of rubber
effect of amplitude of excitation on the mid-point ampli-and subjected to a vertical harmonic seismic support
tude of the pipe is shown in Fig. 5 at initial axial tensionmotion y0(t)=y:0 sin Vt, in which y:0 represents the exci-
T0=7.63 N and internal flow velocity U=7.19 m/s. Thetation amplitude. Simply supported boundary con-
figure shows a comparison of results obtained by usingditions were assumed. The pipe had external and internal
linear theory ( linearizing the present model ) and non-diameters De=9.7×10−3 m and D

i
=6.0×10−3 m

linear theory (the full present model ). This figure showsrespectively and length L=3.62×10−1 m. The Young’s
the non-linear vibration response due to large vibrationmodulus E=2.0924×106 Pa, Poisson’s ratio n=0.5,
initiated at a seismic excitation displacement of y:0=the density of the rubber rp=1128.56 kg/m3 and water
0.002 m.density rf=1000.00 kg/m3. The pipe was modelled by

Figure 6 shows the amplitude/frequency response of15 elements. The relative errors of the eigenvalues and
the mid-point for a seismic excitation amplitude ofthe generalized displacements, used to check conver-
0.012 m. The skew form of this response can be immedi-gence, were less than e

l
=10−4 and e

R
=10−5e

I
respect-

ately recognized as indicating non-linear frequencyively, e
l

and e
R

being defined as
response.

The experimental results are characterized by non-e
l
=
|l
i+1
|−|l

i
|

|l
i
|

and e
R
=
|Rj+1 |−|Rj |
|Rj | linear behaviour only for the first mode and lower axial

tensions. Linear vibration response is, however, pre-where l are the eigenvalues, subscripts i+1 and i denote
dominant in most cases.the present and the previous numbers of elements

respectively, superscripts j+1 and j represent the pre-
sent and previous computed generalized displacements 5.1 Empty pipe
respectively and e

I
is an (n+1th)-order unit vector.

The pipe was subjected to various initial tensions. The Prior to discussing the coupled vibration modes of the
pipe conveying fluid, attention will be focused upon thevibration of the pipe in the absence of or while conveying

fluid over a wide range of flow velocities was investigated vibration modes of the pipe in the absence of fluid.
The first, third and fifth natural frequencies are extractedtheoretically and experimentally.
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Fig. 6 Variation in peak displacement with exciting frequency V at T0=7.63 N, U=7.19 m/s and y:0=
0.012 m

both from the present model in the linear response region closer to experimental ones than those of the linear
model.of Fig. 5 and from the linear vibration model given in

the Appendix. Assessment of the effects of initial axial
tensions on vibration modes are shown in Table 1.

The results indicate that the natural frequencies will 5.2 Pipe conveying fluid
increase as the initial axial tensions increase. For the first
mode, natural frequencies obtained using the present The effect of initial axial tensions and flow speed of the

fluid on vibration modes in the linear response regionmodel and the linear model are somewhat different from
the experimental ones, but for the third or higher modes are calculated. Table 2 shows the first, third and fifth

natural frequencies at various initial axial tensions for athe theoretical values using the present model are much

Table 1 Comparison of theoretical results of natural frequencies with experimental results for the
empty pipe

Natural frequencies v
n
* (Hz)

Initial axial Experimental Present model Linear (Appendix)
tension
T0 (N ) v1 v3 v5 v1 v3 v5 v1 v3 v5

4.95 13.96 49.46 92.37 14.61 45.69 78.05 14.45 44.81 75.49
7.63 18.65 59.38 106.74 17.83 53.80 89.84 16.87 52.44 86.07

10.68 69.08 62.11 60.68
12.43 70.92 66.24 64.78
13.21 20.13 71.35 23.06 67.97 22.12 66.37
13.75 74.88 69.13 67.71

* Subscript n=1, 3 and 5 denotes the number of the vibration mode.

Table 2 Comparison of theoretical results of natural frequencies with experimental results for the
pipe containing static fluid

Natural frequencies v
n

(Hz)

Initial axial Experimental Present model Linear (Appendix)
tension
T0 (N ) v1 v3 v5 v1 v3 v5 v1 v3 v5

4.95 11.97 38.20 72.94 11.75 36.48 64.05 11.68 35.56 60.25
7.63 14.56 45.41 83.15 14.37 44.33 77.73 14.37 44.05 74.31

10.68 52.04 50.48 51.98
12.43 54.47 53.93 56.00
13.21 55.22 55.38 57.69
13.75 57.77 56.36 58.90
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flow velocity U=0.0. In Fig. 7 the third natural frequen- Figures 8 to 10 depict the first, third and fifth natural
frequencies varying with flow velocity of the fluid. Ascies are plotted against initial tensions.

Table 3 and Figs 8 to 10 show the comparisons of expected, an increasing flow velocity has the effect of
decreasing the natural frequencies. In general, for mostexperimental results of vibration modes with theoretical

ones, again in the linear response region, and the effect frequencies the experimental results are higher than the
calculated ones. This discrepancy may be mainly attri-of flow speeds on the vibration modes of the pipe at

initial axial tension T0=7.63 N. buted to differences between the mathematical model

Fig. 7 Comparison of predicted third natural frequency with experiment at U=0.0: + experimental result;
CC present model; ··· ·· · linear model

Table 3 Comparison of theoretical results of natural frequencies with experimental results for the
pipe conveying fluid at initial axial tension T0=7.63 N

Natural frequencies v
n

(Hz)

Flow Experimental Present model Linear (Appendix)
velocity
U (m/s) v1 v3 v5 v1 v3 v5 v1 v3 v5

0.00 14.56 45.41 83.15 14.37 44.33 77.73 14.37 44.05 74.31
1.54 14.26 44.35 81.02 14.27 44.06 77.37 14.21 43.67 73.70
3.07 14.13 43.99 80.72 13.95 43.23 76.30 13.82 42.61 72.26
4.34 13.66 43.35 79.95 13.51 42.13 74.86 13.27 40.98 70.18
5.42 13.27 42.36 78.84 13.03 40.89 73.26 12.68 39.36 67.84
6.43 12.92 41.98 77.70 12.48 39.48 71.43 12.02 37.45 65.15
7.19 12.53 41.20 75.86 12.20 38.25 69.84 11.44 35.80 62.79

Fig. 8 Comparison of predicted first natural frequency with experiment at T0=7.63 N: + experimental
result; CC present model; ·· ·· ·· linear model
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Fig. 9 Comparison of predicted third natural frequency with experiment at T0=7.63 N: + experimental
result; CC present model; ·· ·· ·· linear model

Fig. 10 Comparison of predicted fifth natural frequency with experiment at T0=7.63 N: + experimental
result; CC present model; · ·· ·· · linear model

and experimental conditions. The experimental model mation and/or rotary inertia effects, or can be used to
analyse simple linear conditions. Vibration problems ofexhibited some non-ideal end-supported conditions. The

temperature of the water within the pipe may also change initially stretched pipes conveying fluid are also exam-
ined. At various initial axial tensions of the pipe andwith time.

In general, the results of the present model in the linear flow velocities the numerical predictions of the first, third
and fifth natural frequencies using this vibration modelrange appear to agree better with experimental natural

frequencies than do the simple linear model results. The in its linear regime have been compared with correspond-
ing experimental results. The results are in goodauthors intend to extend this work to consider more

complex flows and include total Lagrangian formations. agreement.
Future results will be compared with results using the
present model.
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