199 research outputs found

    Semi-supervised Graph Neural Networks for Pileup Noise Removal

    Full text link
    The high instantaneous luminosity of the CERN Large Hadron Collider leads to multiple proton-proton interactions in the same or nearby bunch crossings (pileup). Advanced pileup mitigation algorithms are designed to remove this noise from pileup particles and improve the performance of crucial physics observables. This study implements a semi-supervised graph neural network for particle-level pileup noise removal, by identifying individual particles produced from pileup. The graph neural network is firstly trained on charged particles with known labels, which can be obtained from detector measurements on data or simulation, and then inferred on neutral particles for which such labels are missing. This semi-supervised approach does not depend on the ground truth information from simulation and thus allows us to perform training directly on experimental data. The performance of this approach is found to be consistently better than widely-used domain algorithms and comparable to the fully-supervised training using simulation truth information. The study serves as the first attempt at applying semi-supervised learning techniques to pileup mitigation, and opens up a new direction of fully data-driven machine learning pileup mitigation studies

    ABCNet: An attention-based method for particle tagging

    Get PDF
    In high energy physics, graph-based implementations have the advantage of treating the input data sets in a similar way as they are collected by collider experiments. To expand on this concept, we propose a graph neural network enhanced by attention mechanisms called ABCNet. To exemplify the advantages and flexibility of treating collider data as a point cloud, two physically motivated problems are investigated: quark-gluon discrimination and pileup reduction. The former is an event-by-event classification while the latter requires each reconstructed particle to receive a classification score. For both tasks ABCNet shows an improved performance compared to other algorithms available.Comment: 13 pages, 5 figure

    Graph Neural Networks for Particle Reconstruction in High Energy Physics detectors

    Full text link
    Pattern recognition problems in high energy physics are notably different from traditional machine learning applications in computer vision. Reconstruction algorithms identify and measure the kinematic properties of particles produced in high energy collisions and recorded with complex detector systems. Two critical applications are the reconstruction of charged particle trajectories in tracking detectors and the reconstruction of particle showers in calorimeters. These two problems have unique challenges and characteristics, but both have high dimensionality, high degree of sparsity, and complex geometric layouts. Graph Neural Networks (GNNs) are a relatively new class of deep learning architectures which can deal with such data effectively, allowing scientists to incorporate domain knowledge in a graph structure and learn powerful representations leveraging that structure to identify patterns of interest. In this work we demonstrate the applicability of GNNs to these two diverse particle reconstruction problems.Comment: Presented at NeurIPS 2019 Workshop "Machine Learning and the Physical Sciences

    Graph Neural Networks for Particle Reconstruction in High Energy Physics detectors

    Get PDF
    Pattern recognition problems in high energy physics are notably different from traditional machine learning applications in computer vision. Reconstruction algorithms identify and measure the kinematic properties of particles produced in high energy collisions and recorded with complex detector systems. Two critical applications are the reconstruction of charged particle trajectories in tracking detectors and the reconstruction of particle showers in calorimeters. These two problems have unique challenges and characteristics, but both have high dimensionality, high degree of sparsity, and complex geometric layouts. Graph Neural Networks (GNNs) are a relatively new class of deep learning architectures which can deal with such data effectively, allowing scientists to incorporate domain knowledge in a graph structure and learn powerful representations leveraging that structure to identify patterns of interest. In this work we demonstrate the applicability of GNNs to these two diverse particle reconstruction problems

    Pile-Up Mitigation using Attention

    Full text link
    Particle production from secondary proton-proton collisions, commonly referred to as pile-up, impair the sensitivity of both new physics searches and precision measurements at LHC experiments. We propose a novel algorithm, PUMA, for identifying pile-up objects with the help of deep neural networks based on sparse transformers. These attention mechanisms were developed for natural language processing but have become popular in other applications. In a realistic detector simulation, our method outperforms classical benchmark algorithms for pile-up mitigation in key observables. It provides a perspective for mitigating the effects of pile-up in the high luminosity era of the LHC, where up to 200 proton-proton collisions are expected to occur simultaneously
    • …
    corecore