2 research outputs found

    DEVELOPMENT OF A NOVEL Z-AXIS PRECISION POSITIONING STAGE WITH MILLIMETER TRAVEL RANGE BASED ON A LINEAR PIEZOELECTRIC MOTOR

    Get PDF
    Piezoelectric-based positioners are incorporated into stereotaxic devices for microsurgery, scanning tunneling microscopes for the manipulation of atomic and molecular-scale structures, nanomanipulator systems for cell microinjection and machine tools for semiconductor-based manufacturing. Although several precision positioning systems have been developed for planar motion, most are not suitable to provide long travel range with large load capacity in vertical axis because of their weights, size, design and embedded actuators. This thesis develops a novel positioner which is being developed specifically for vertical axis motion based on a piezoworm arrangement in flexure frames. An improved estimation of the stiffness for Normally Clamped (NC) clamp is presented. Analytical calculations and finite element analysis are used to optimize the design of the lifting platform as well as the piezoworm actuator to provide maximum thrust force while maintaining a compact size. To make a stage frame more compact, the actuator is integrated into the stage body. The complementary clamps and the amplified piezoelectric actuators based extenders are designed such that no power is needed to maintain a fixed vertical position, holding the payload against the force of gravity. The design is extended to a piezoworm stage prototype and validated through several tests. Experiments on the prototype stage show that it is capable of a speed of 5.4 mm/s, a force capacity of 8 N and can travel over 16 mm

    Development of a Compact Piezoworm Actuator For Mr Guided Medical Procedures

    Get PDF
    In this research, a novel piezoelectric actuator was developed to operate safely inside the magnetic resonance imaging (MRI) machine. The actuator based on novel design that generates linear and rotary motion simultaneously for higher needle insertion accuracy. One of the research main objectives is to aid in the selection of suitable materials for actuators used in this challenging environment. Usually only nonmagnetic materials are used in this extremely high magnetic environment. These materials are classified as MRI compatible materials and are selected to avoid hazardous conditions and image quality degradation. But unfortunately many inert materials to the magnetic field do not possess desirable mechanical properties in terms of hardness, stiffness and strength and much of the available data for MRI compatible materials are scattered throughout the literature and often too device specific . Furthermore, the fact that significant heating is experienced by some of these devices due to the scanner’s variable magnetic fields makes it difficult to draw general conclusions to support the choice of suitable material and typically these choices are based on a trial-and-error with extensive time required for prototype development and MRI testing of such devices. This research provides a quantitative comparison of several engineering materials in the MRI environment and comparison to theoretical behavior which should aid designers/engineers to estimate the MRI compatible material performance before the expensive step of construction and testing. This work focuses specifically on the effects in the MRI due to the material susceptibility, namely forces, torques, image artifacts and induced heating
    corecore