817 research outputs found

    Dynamics of the Desai-Zwanzig model in multiwell and random energy landscapes

    Get PDF
    We analyze a variant of the Desai-Zwanzig model [J. Stat. Phys. {\bf 19}1-24 (1978)]. In particular, we study stationary states of the mean field limit for a system of weakly interacting diffusions moving in a multi-well potential energy landscape, coupled via a Curie-Weiss type (quadratic) interaction potential. The location and depth of the local minima of the potential are either deterministic or random. We characterize the structure and nature of bifurcations and phase transitions for this system, by means of extensive numerical simulations and of analytical calculations for an explicitly solvable model. Our numerical experiments are based on Monte Carlo simulations, the numerical solution of the time-dependent nonlinear Fokker-Planck (McKean-Vlasov equation), the minimization of the free energy functional and a continuation algorithm for the stationary solutions

    Switching Between Expectation Processes in the Foreign Exchange Market: A Probabilistic Approach Using Survey Data

    Get PDF
    This paper relaxes a fundamental hypothesis commonly accepted in the expectation formation literature: expectations are, unchangingly, either rational or generated by one of the three simple extrapolative, regressive or adaptive processes. Using expectations survey data provided by Consensus Forecasts on six European exchange rates against the US Dollar, we find that the rational expectations hypothesis is rejected at the aggregate level. By implementing a switching regression methodology with stochastic choice of regime, we show that the expectation generating process is given at any time by some combination of the three simple processes. An interpretation of this framework in terms of economically rational expectations is suggested.expectation formation; switching-regime; exchange rates; survey data; cost and advantage analysis

    Stability of Multi-Dimensional Switched Systems with an Application to Open Multi-Agent Systems

    Full text link
    Extended from the classic switched system, themulti-dimensional switched system (MDSS) allows for subsystems(switching modes) with different state dimensions. In this work,we study the stability problem of the MDSS, whose state transi-tion at each switching instant is characterized by the dimensionvariation and the state jump, without extra constraint imposed.Based on the proposed transition-dependent average dwell time(TDADT) and the piecewise TDADT methods, along with the pro-posed parametric multiple Lyapunov functions (MLFs), sufficientconditions for the practical and the asymptotical stabilities of theMDSS are respectively derived for the MDSS in the presenceof unstable subsystems. The stability results for the MDSS areapplied to the consensus problem of the open multi-agent system(MAS) which exhibits dynamic circulation behaviors. It is shownthat the (practical) consensus of the open MAS with disconnectedswitching topologies can be ensured by (practically) stabilizingthe corresponding MDSS with unstable switching modes via theproposed TDADT and parametric MLF methods.Comment: 12 pages, 9 figure

    On the dynamics of social conflicts: looking for the Black Swan

    Get PDF
    This paper deals with the modeling of social competition, possibly resulting in the onset of extreme conflicts. More precisely, we discuss models describing the interplay between individual competition for wealth distribution that, when coupled with political stances coming from support or opposition to a government, may give rise to strongly self-enhanced effects. The latter may be thought of as the early stages of massive, unpredictable events known as Black Swans, although no analysis of any fully-developed Black Swan is provided here. Our approach makes use of the framework of the kinetic theory for active particles, where nonlinear interactions among subjects are modeled according to game-theoretical tools.Comment: 26 pages, 7 figure
    • …
    corecore