119 research outputs found

    Iris Biometric Watermarking for Authentication Using Multiband Discrete Wavelet Transform and Singular-Value Decomposition

    Get PDF
    The most advanced technology, watermarking enables intruders to access the database. Various techniques have been developed for information security. Watermarks and histories are linked to many biometric techniques such as fingerprints, palm positions, gait, iris and speech are recommended. Digital watermarking is the utmost successful approaches among the methods available. In this paper the multiband wavelet transforms and singular value decomposition are discussed to establish a watermarking strategy rather than biometric information. The use of biometrics instead of conservative watermarks can enhance information protection. The biometric technology being used is iris. The iris template can be viewed as a watermark, while an iris mode of communication may be used to help information security with the addition of a watermark to the image of the iris. The research involves verifying authentication against different attacks such as no attacks, Jpeg Compression, Gaussian, Median Filtering and Blurring. The Algorithm increases durability and resilience when exposed to geometric and frequency attacks. Finally, the proposed framework can be applied not only to the assessment of iris biometrics, but also to other areas where privacy is critical

    Backdoor Attacks and Defences on Deep Neural Networks

    Get PDF
    Nowadays, due to the huge amount of resources required for network training, pre-trained models are commonly exploited in all kinds of deep learning tasks, like image classification, natural language processing, etc. These models are directly deployed in the real environments, or only fine-tuned on a limited set of data that are collected, for instance, from the Internet. However, a natural question arises: can we trust pre-trained models or the data downloaded from the Internet? The answer is ‘No’. An attacker can easily perform a so-called backdoor attack to hide a backdoor into a pre-trained model by poisoning the dataset used for training or indirectly releasing some poisoned data on the Internet as a bait. Such an attack is stealthy since the hidden backdoor does not affect the behaviour of the network in normal operating conditions, and the malicious behaviour being activated only when a triggering signal is presented at the network input. In this thesis, we present a general framework for backdoor attacks and defences, and overview the state-of-the-art backdoor attacks and the corresponding defences in the field image classification, by casting them in the introduced framework. By focusing on the face recognition domain, two new backdoor attacks were proposed, effective under different threat models. Finally, we design a universal method to defend against backdoor attacks, regardless of the specific attack setting, namely the poisoning strategy and the triggering signal

    Watermarks

    Get PDF

    Multibiometric security in wireless communication systems

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/08/2010.This thesis has aimed to explore an application of Multibiometrics to secured wireless communications. The medium of study for this purpose included Wi-Fi, 3G, and WiMAX, over which simulations and experimental studies were carried out to assess the performance. In specific, restriction of access to authorized users only is provided by a technique referred to hereafter as multibiometric cryptosystem. In brief, the system is built upon a complete challenge/response methodology in order to obtain a high level of security on the basis of user identification by fingerprint and further confirmation by verification of the user through text-dependent speaker recognition. First is the enrolment phase by which the database of watermarked fingerprints with memorable texts along with the voice features, based on the same texts, is created by sending them to the server through wireless channel. Later is the verification stage at which claimed users, ones who claim are genuine, are verified against the database, and it consists of five steps. Initially faced by the identification level, one is asked to first present one’s fingerprint and a memorable word, former is watermarked into latter, in order for system to authenticate the fingerprint and verify the validity of it by retrieving the challenge for accepted user. The following three steps then involve speaker recognition including the user responding to the challenge by text-dependent voice, server authenticating the response, and finally server accepting/rejecting the user. In order to implement fingerprint watermarking, i.e. incorporating the memorable word as a watermark message into the fingerprint image, an algorithm of five steps has been developed. The first three novel steps having to do with the fingerprint image enhancement (CLAHE with 'Clip Limit', standard deviation analysis and sliding neighborhood) have been followed with further two steps for embedding, and extracting the watermark into the enhanced fingerprint image utilising Discrete Wavelet Transform (DWT). In the speaker recognition stage, the limitations of this technique in wireless communication have been addressed by sending voice feature (cepstral coefficients) instead of raw sample. This scheme is to reap the advantages of reducing the transmission time and dependency of the data on communication channel, together with no loss of packet. Finally, the obtained results have verified the claims

    Digital watermarking and novel security devices

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Establishing the digital chain of evidence in biometric systems

    Get PDF
    Traditionally, a chain of evidence or chain of custody refers to the chronological documentation, or paper trail, showing the seizure, custody, control, transfer, analysis, and disposition of evidence, physical or electronic. Whether in the criminal justice system, military applications, or natural disasters, ensuring the accuracy and integrity of such chains is of paramount importance. Intentional or unintentional alteration, tampering, or fabrication of digital evidence can lead to undesirable effects. We find despite the consequences at stake, historically, no unique protocol or standardized procedure exists for establishing such chains. Current practices rely on traditional paper trails and handwritten signatures as the foundation of chains of evidence.;Copying, fabricating or deleting electronic data is easier than ever and establishing equivalent digital chains of evidence has become both necessary and desirable. We propose to consider a chain of digital evidence as a multi-component validation problem. It ensures the security of access control, confidentiality, integrity, and non-repudiation of origin. Our framework, includes techniques from cryptography, keystroke analysis, digital watermarking, and hardware source identification. The work offers contributions to many of the fields used in the formation of the framework. Related to biometric watermarking, we provide a means for watermarking iris images without significantly impacting biometric performance. Specific to hardware fingerprinting, we establish the ability to verify the source of an image captured by biometric sensing devices such as fingerprint sensors and iris cameras. Related to keystroke dynamics, we establish that user stimulus familiarity is a driver of classification performance. Finally, example applications of the framework are demonstrated with data collected in crime scene investigations, people screening activities at port of entries, naval maritime interdiction operations, and mass fatality incident disaster responses

    Multibiometric security in wireless communication systems

    Get PDF
    This thesis has aimed to explore an application of Multibiometrics to secured wireless communications. The medium of study for this purpose included Wi-Fi, 3G, and WiMAX, over which simulations and experimental studies were carried out to assess the performance. In specific, restriction of access to authorized users only is provided by a technique referred to hereafter as multibiometric cryptosystem. In brief, the system is built upon a complete challenge/response methodology in order to obtain a high level of security on the basis of user identification by fingerprint and further confirmation by verification of the user through text-dependent speaker recognition. First is the enrolment phase by which the database of watermarked fingerprints with memorable texts along with the voice features, based on the same texts, is created by sending them to the server through wireless channel. Later is the verification stage at which claimed users, ones who claim are genuine, are verified against the database, and it consists of five steps. Initially faced by the identification level, one is asked to first present one’s fingerprint and a memorable word, former is watermarked into latter, in order for system to authenticate the fingerprint and verify the validity of it by retrieving the challenge for accepted user. The following three steps then involve speaker recognition including the user responding to the challenge by text-dependent voice, server authenticating the response, and finally server accepting/rejecting the user. In order to implement fingerprint watermarking, i.e. incorporating the memorable word as a watermark message into the fingerprint image, an algorithm of five steps has been developed. The first three novel steps having to do with the fingerprint image enhancement (CLAHE with 'Clip Limit', standard deviation analysis and sliding neighborhood) have been followed with further two steps for embedding, and extracting the watermark into the enhanced fingerprint image utilising Discrete Wavelet Transform (DWT). In the speaker recognition stage, the limitations of this technique in wireless communication have been addressed by sending voice feature (cepstral coefficients) instead of raw sample. This scheme is to reap the advantages of reducing the transmission time and dependency of the data on communication channel, together with no loss of packet. Finally, the obtained results have verified the claims.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Data Hiding with Deep Learning: A Survey Unifying Digital Watermarking and Steganography

    Full text link
    Data hiding is the process of embedding information into a noise-tolerant signal such as a piece of audio, video, or image. Digital watermarking is a form of data hiding where identifying data is robustly embedded so that it can resist tampering and be used to identify the original owners of the media. Steganography, another form of data hiding, embeds data for the purpose of secure and secret communication. This survey summarises recent developments in deep learning techniques for data hiding for the purposes of watermarking and steganography, categorising them based on model architectures and noise injection methods. The objective functions, evaluation metrics, and datasets used for training these data hiding models are comprehensively summarised. Finally, we propose and discuss possible future directions for research into deep data hiding techniques

    Digital watermarking methods for data security and authentication

    Get PDF
    Philosophiae Doctor - PhDCryptology is the study of systems that typically originate from a consideration of the ideal circumstances under which secure information exchange is to take place. It involves the study of cryptographic and other processes that might be introduced for breaking the output of such systems - cryptanalysis. This includes the introduction of formal mathematical methods for the design of a cryptosystem and for estimating its theoretical level of securit
    • 

    corecore