10 research outputs found

    How Do the Hearts of Deep Fakes Beat? Deep Fake Source Detection via Interpreting Residuals with Biological Signals

    Full text link
    Fake portrait video generation techniques have been posing a new threat to the society with photorealistic deep fakes for political propaganda, celebrity imitation, forged evidences, and other identity related manipulations. Following these generation techniques, some detection approaches have also been proved useful due to their high classification accuracy. Nevertheless, almost no effort was spent to track down the source of deep fakes. We propose an approach not only to separate deep fakes from real videos, but also to discover the specific generative model behind a deep fake. Some pure deep learning based approaches try to classify deep fakes using CNNs where they actually learn the residuals of the generator. We believe that these residuals contain more information and we can reveal these manipulation artifacts by disentangling them with biological signals. Our key observation yields that the spatiotemporal patterns in biological signals can be conceived as a representative projection of residuals. To justify this observation, we extract PPG cells from real and fake videos and feed these to a state-of-the-art classification network for detecting the generative model per video. Our results indicate that our approach can detect fake videos with 97.29% accuracy, and the source model with 93.39% accuracy.Comment: To be published in the proceedings of 2020 IEEE/IAPR International Joint Conference on Biometrics (IJCB

    Analysis of Score-Level Fusion Rules for Deepfake Detection

    Get PDF
    Deepfake detection is of fundamental importance to preserve the reliability of multimedia communications. Modern deepfake detection systems are often specialized on one or more types of manipulation but are not able to generalize. On the other hand, when properly designed, ensemble learning and fusion techniques can reduce this issue. In this paper, we exploit the complementarity of different individual classifiers and evaluate which fusion rules are best suited to increase the generalization capacity of modern deepfake detection systems. We also give some insights to designers for selecting the most appropriate approach

    FaceForensics++: Learning to Detect Manipulated Facial Images

    Full text link
    The rapid progress in synthetic image generation and manipulation has now come to a point where it raises significant concerns for the implications towards society. At best, this leads to a loss of trust in digital content, but could potentially cause further harm by spreading false information or fake news. This paper examines the realism of state-of-the-art image manipulations, and how difficult it is to detect them, either automatically or by humans. To standardize the evaluation of detection methods, we propose an automated benchmark for facial manipulation detection. In particular, the benchmark is based on DeepFakes, Face2Face, FaceSwap and NeuralTextures as prominent representatives for facial manipulations at random compression level and size. The benchmark is publicly available and contains a hidden test set as well as a database of over 1.8 million manipulated images. This dataset is over an order of magnitude larger than comparable, publicly available, forgery datasets. Based on this data, we performed a thorough analysis of data-driven forgery detectors. We show that the use of additional domainspecific knowledge improves forgery detection to unprecedented accuracy, even in the presence of strong compression, and clearly outperforms human observers.Comment: Video: https://youtu.be/x2g48Q2I2Z

    Media Forensics and DeepFakes: an overview

    Full text link
    With the rapid progress of recent years, techniques that generate and manipulate multimedia content can now guarantee a very advanced level of realism. The boundary between real and synthetic media has become very thin. On the one hand, this opens the door to a series of exciting applications in different fields such as creative arts, advertising, film production, video games. On the other hand, it poses enormous security threats. Software packages freely available on the web allow any individual, without special skills, to create very realistic fake images and videos. So-called deepfakes can be used to manipulate public opinion during elections, commit fraud, discredit or blackmail people. Potential abuses are limited only by human imagination. Therefore, there is an urgent need for automated tools capable of detecting false multimedia content and avoiding the spread of dangerous false information. This review paper aims to present an analysis of the methods for visual media integrity verification, that is, the detection of manipulated images and videos. Special emphasis will be placed on the emerging phenomenon of deepfakes and, from the point of view of the forensic analyst, on modern data-driven forensic methods. The analysis will help to highlight the limits of current forensic tools, the most relevant issues, the upcoming challenges, and suggest future directions for research
    corecore